
ETH Library

An Event-Based Neural
Network Architecture With an
Asynchronous Programmable
Synaptic Memory

Journal Article

Author(s):
Moradi, Saber; Indiveri, Giacomo

Publication date:
2014-02

Permanent link:
https://doi.org/10.3929/ethz-a-009947706

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Transactions on Biomedical Circuits and Systems 8(1), https://doi.org/10.1109/TBCAS.2013.2255873

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-009947706
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/TBCAS.2013.2255873
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 1

An Event-Based Neural Network Architecture With
an Asynchronous Programmable Synaptic Memory

Saber Moradi, Student Member, IEEE, and Giacomo Indiveri, Senior Member, IEEE

Abstract—We present a hybrid analog/digital very large scale
integration (VLSI) implementation of a spiking neural network
with programmable synaptic weights. The synaptic weight values
are stored in an asynchronous Static Random Access Memory
(SRAM) module, which is interfaced to a fast current-mode
event-driven DAC for producing synaptic currents with the ap-
propriate amplitude values. These currents are further integrated
by current-mode integrator synapses to produce biophysically
realistic temporal dynamics. The synapse output currents are
then integrated by compact and efficient integrate and fire silicon
neuron circuits with spike-frequency adaptation and adjustable
refractory period and spike-reset voltage settings. The fabricated
chip comprises a total of 32 32 SRAM cells, 4 32 synapse
circuits and 32 1 silicon neurons. It acts as a transceiver,
receiving asynchronous events in input, performing neural com-
putation with hybrid analog/digital circuits on the input spikes,
and eventually producing digital asynchronous events in output.
Input, output, and synaptic weight values are transmitted to/from
the chip using a common communication protocol based on the
Address Event Representation (AER). Using this representation it
is possible to interface the device to a workstation or a micro-con-
troller and explore the effect of different types of Spike-Timing
Dependent Plasticity (STDP) learning algorithms for updating
the synaptic weights values in the SRAM module. We present
experimental results demonstrating the correct operation of all
the circuits present on the chip.

Index Terms—Address event representation (AER), analog/dig-
ital, asynchronous, circuit, event-based, learning, neural network,
neuromorphic, programmable weights, real-time, sensory-motor,
silicon neuron, silicon synapse, spike-timing dependent plasticity
(STDP), spiking, static random access memory (SRAM), synaptic
dynamics, very large scale integration (VLSI).

I. INTRODUCTION

S
PIKING neural networks represent a promising computa-

tional paradigm for solving complex pattern recognition

and sensory processing tasks that are difficult to tackle using

standard machine vision and machine learning techniques [1],

[2]. Much research has been dedicated to software simulations

of spiking neural networks [3], and a wide range of solutions
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have been proposed for solving real-world and engineering

problems [4], [5]. But these solutions are often implemented

as software algorithms running on bulky and power-hungry

workstations. In order to apply this computational paradigm to

compact efficient neural processing and sensory-motor systems,

that compute on real-world sensory signals and interact with the

environment in real-time, it is necessary to develop dedicated

hardware implementations of spiking neural networks which

are low-power and can operate with biologically plausible

time-constants. In this specific scenario, this suggests the de-

sign of full custom analog/digital Very Large Scale Integration

(VLSI) neuromorphic systems [6]. However, to meet the re-

quirement of real-time interaction with the environment, some

of the recently proposed VLSI design solutions that operate

only on “accelerated time” scales (i.e., in which unit of real time

is “simulated” in hardware two or three orders of magnitude

faster), are not suitable [7], [8]. Similarly, neural VLSI solutions

that focus on large-scale systems simulations are not ideal, as

they compromise the low-power or compactness requirements

[9]–[12]. In this paper we propose a compact full-custom VLSI

device that comprises low-power sub-threshold analog circuits

and asynchronous digital circuits to implement networks of

spiking neurons with programmable synaptic weights [13],

[14]. In our implementation neural computation is performed in

the analog domain while the communication of spikes between

neurons is carried out asynchronously in the digital domain.

Specifically, the analog circuits implement neural and synaptic

dynamics in a very compact and power efficient way, while dig-

ital asynchronous circuits implement a real-time event (spike)

based communication protocol. We designed a new set of asyn-

chronous circuits for interfacing the asynchronous events to

conventional five-bit Static Random Access Memory (SRAM)

cells, to manage the storage of the network’s synaptic weight

values. In this way, the programmable SRAM cells can update

the network’s synaptic weights using the same asynchronous

communication protocol used to transmit spiking events across

the network. The use of SRAM cells as digital memory storage

for synaptic weights in neuromorphic chips has already been

proposed in the past (e.g., see [14] for a recent study). Also

the idea of programming different parameters in spiking neural

networks, such as synaptic weights [13], [15], [16], or even

dendritic tree and synaptic routing structures [17]–[20], is

not new. However, as these solutions typically require long

settling times, they are not ideal for integration in circuits that

employ fast asynchronous digital event-based communication

circuits. Here we propose a solution that uses both SRAM cells

and fast Digital to Analog Converters (DACs) interfaced to

asynchronous digital circuits, to either set the synaptic weights

1932-4545/$31.00 © 2013 IEEE
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Fig. 1. (a) Chip block diagram. The device comprises a neural-core module with an array of synapses and integrate-and-fire neurons, an asynchronous SRAM
module to store the synaptic weight values, a bias generator to set the parameters in the analog circuits, and asynchronous control and interfacing circuits to manages
the AER communication. (b) Chip micro-graph. The chip was fabricated using a standard 0.35 �� CMOS technology and occupies an area of ��� � ��� ��

including pad-frame.

on-line with each incoming event, or to program the weights

off-line and use the values stored in the SRAM in standard

multi-chip event-based architectures. The asynchronous com-

munication scheme implemented in this VLSI device is based

on the Address Event Representation (AER) communication

protocol, commonly used to build large-scale multi-chip neu-

romorphic systems [6], [21]–[23], while the SRAM and DAC

circuits described, as well as the basic architecture design are

based on a previous VLSI prototype device that we presented

in [24].

The ability to set/change the synaptic weights on-line [25],

[26] and to program/store them for off-line or batch-mode

use allows users to explore different spike-based learning

algorithms and methods, for example by implementing them in

software on a PC or on an external micro-controller interfaced

to the chip. By including the VLSI device in the training loop,

the circuit non-idealities and variability can be potentially

adapted away through the PC-based learning algorithms [27].

Once the network has been trained and the synaptic weight

values stored in the SRAM, the VLSI device can be used in

stand-alone mode to carry out neural computation in real-time,

exploiting its low-power, and compact size properties. Typical

use-case scenario for these types of devices in an actual system

is that of implementing event-based spiking neural network

architectures, that computing weighted sums of their inputs and

produce the desired outputs in the form of asynchronous spikes.

As such these devices are ideal for processing event-based sen-

sory data, for example generated by silicon cochleas or silicon

retinas [28], [29] and driving robotic actuators in real-time.

In the next section we describe the overall chip architecture.

Details about the circuits of each block are discussed in Sec-

tion III. In Section IV we present experimental results from the

fabricated chip, and show how the measurements match with

the expected functionality. Finally we present the discussion

and conclusion in Section V.

II. THE CHIP ARCHITECTURE

The architecture of the chip is illustrated in Fig. 1. The

chip was fabricated using AMS 0.35 Complementary

Metal-Oxide Semiconductor (CMOS) technology. It comprises

five main blocks: the asynchronous controller, the SRAM block,

the neural-core, the bias generator and the AER Input/Output

(IO) interfaces.

The AER I/O interfaces are standard encoder/decoder circuits

commonly used in AER systems [30]. The bias generator block

provides 38 temperature-compensated analog currents as global

biases used in the neural-core [31]. In the current prototype chip,

the bias generator occupies a significant fraction of the layout

area. But, as opposed to the other blocks on this chip, the size of

this block will not change when scaling up these devices to large

network sizes. The asynchronous controller manages the com-

munication between the external digital asynchronous signals

and the on-chip ones. The asynchronous SRAM block is used

to store synaptic weight values using standard memory circuits

but with the inclusion of a filter circuit that generates a dual-rail

representation of the data [32]. The neural core block comprises

a column of 32 1 adaptive integrate-and-fire neurons [33] and

an array of 4 32 synapses with DAC circuits to convert the dig-

itally encoded weight into an analog current. In principle, given

that the synapse integrator circuits implement linear filters, it

would be sufficient to use one synapse per neuron, and mul-

tiplex it in time to represent virtual synapses (where is the

number of memory cells in the corresponding row of the SRAM

block). But we designed four synapse circuits per neuron, to im-

plement both excitatory and inhibitory synapses, as well as dif-

ferent dynamics (synapses with different time-constants could

not be time-division multiplexed). In total there are three ex-

citatory synapse circuits with independent time constants, and

one inhibitory synapse circuit. An additional element of flexi-

bility present in the neural core is provided by a “synaptic ad-
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dress-demultiplexer”, which allows the user to re-configure the

connectivity between the synapse circuits and the neurons (see

Section III-C). This circuit is typically set once, to configure the

network at start-up time, and is not changed during the experi-

ment.

As described in Fig. 1, external input signals are encoded

using a Bundled Data (BD) representation with an 18 bit wide

bus for the data and two additional lines for the control signals

(REQ and ACK). In the input bus 10 bits encode the X- and

Y-addresses of the memory cells, five bits encode the synaptic

weight values and three bits encode the synapse type to be used.

Communication transactions are event-based: if the receiver’s

ACK signal is inactive (i.e. after previous transactions are com-

pleted), the sender can trigger a new event transaction to send

data by activating the REQ signal. Given the BD representa-

tion, we make a timing assumption and assume that the data is

valid, when the REQ signal arrives at the receiver end. Once

the asynchronous data is received and latched on-chip, we con-

vert the data representation from BD to Dual Rail (DR). These

data encoding schemes require more routing resources (e.g.,

they use multiple lines per bit), but they have the advantage of

being delay-insensitive and do not require any timing assump-

tions (the request signal, encoded by the data itself, is active

only if the data is valid) [34]. In our system, we use off-chip

BD representations to reduce the number of input pad require-

ments, and an on-chip DR representation with a “1-of-2” coding

scheme (which requires two wires per bit), to implement a quasi

delay-insensitive coding scheme. Once converted to DR, the

input data is sent to both the SRAM and the neural-core blocks.

The input to the SRAM block is used by the row and column

decoders to select the proper memory cell and to read or write

a five-bit synaptic weight value, depending on the status of a

Write_enable control signal. The input to the neural-core block

is used to select one of the four synapse circuits belonging to the

row of the SRAM cell addressed. The content of the SRAM cell

drives the DAC of the selected synapse, which in turn produces

the synaptic current with the desired amplitude.

The asynchronous communication cycle is completed when

the memory’s content is delivered to the synapses: the synapse

circuits in the neural-core block acknowledge the asynchronous

controller; the controller waits for the chip REQ signal to be-

come low and de-asserts the ACK signal; the input data to the

SRAM and neural-core block becomes neutral; and the neural-

core circuits de-assert the acknowledge to the controller.

III. CIRCUIT DESCRIPTIONS

A. Asynchronous Controller

The circuits that implement the asynchronous controller and

the translation from the BD representation to the DR one are

shown in Fig. 2. Upon receiving a REQ signal, a “C-element”

[35] sets the acknowledge ACK signal (which is also the in-

ternal PixReq signal) to high; the BD input data is latched by

PixReq and converted to DR representation using a “1-of-2”

coding scheme (see bit lines in Fig. 2). To ensure that

the buffers latch valid data at the input when the request signal

Fig. 2. Asynchronous controller circuits implement the handshaking protocol
and convert the data representation from bundled-data to dual-rail.

arrives, we typically delay the generation of the REQ output on

the sender side.

B. Memory

The SRAM architecture is illustrated in Fig. 3. Two row and

column decoders receive five bits each, encoded in dual-rail, and

generate a one-hot code at the output. A standard six-transistor

circuit (6T SRAM design) is used to implement the memory

cells [Fig. 3(b)]. The memory array has 32 32 words, each

word comprising five bits. An output filter [Fig. 3(c) and (d)]

produces a dual-rail representation of the data [32]. During idle

mode, when there is no input, the Bitline and /Bitline signals

are pulled up to VDD and the output of the filter circuits [b0.0

and b0.1 of Fig. 3(c)] are both set to Gnd. During a “Read” op-

eration, the X-decoder of the memory block selects a column

(via the WL word-line of Fig. 3(b)); the Bitline and /Bitline sig-

nals of the five memory cells in the selected column are then set

to values that correspond to the content of the five-bit memory

word; and the Y-decoder enables the transmission gates of the

corresponding row, thus allowing all the driven Bitline and /Bit-

line signals of the selected word to reach the input of the filter

circuit. Finally, the filter circuit generates dual-rail data from

the Bitline and /Bitline signals, setting either of the b0.0 or b0.1

lines to VDD, according to the content of the memory cell.

The content of the memory block is programmed by setting

the Write_enable signal to VDD and transmitting the five bits

that represent the content of the memory cells together with the

standard address-event data. In this “write” mode the memory

bits can drive the set of Bitline and /Bitline signals belonging to

the row selected by the Y-decoder input data. As the X-decoder

input data enables only one of the SRAM column WL word-
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Fig. 3. (a) Memory architecture. (b) A six-transistor standard memory cell.
(c) Transmission gate. (d) Memory output filter circuit to produce dual-rail data
representation.

lines, only the memory cell with the corresponding X- and Y-ad-

dress will change its content. In addition to being stored in the

6T SRAM cell, the content of the memory word is also passed

through to the neural-core, for producing synaptic currents with

the desired amplitude. This “pass-through” mode allows users

to both store and set synaptic weights on-line, during normal

operation of the spiking neural network, by simply writing the

synaptic weight on the AER bus together with the address-event

data. Conversely, in “read” mode the memory cell bits set by the

external signals cannot alter the content of the memory cells.

Rather, standard address-event data (e.g., produced by a silicon

retina or other types of neuromorphic sensors [29]) access the

data stored in the addressed memory cell to set the synapse

weight and stimulate the corresponding neuron, without having

to provide a synaptic weight with each event.

Another novel aspect of this architecture lies in the possibility

to select a memory address column and stimulate all of the cells

in all rows, effectively “broadcasting” an address-event to all

neurons in the array. This is achieved by using a dedicated ad-

dress in the S-decoder of the neuron block (bottom right decoder

in Fig. 1): if the “broadcast” address is set in the input address-

event data, the corresponding neuron block decoder output is

set to one and OR’ed with the SRAM block Y-decoder outputs

to enable all SRAM output transmission gates. All synapses

will therefore be stimulated with the selected weights, and all

neurons will receive their corresponding weighted post-synaptic

current. This broadcast feature is useful in experiments in which

Fig. 4. Neuron circuit schematic. An input DPI low-pass filter �� �
implements the neuron leak conductance. A non-inverting amplifier with cur-
rent-mode positive feedback �� � produces address-events at extremely
low-power operation. A reset block �� � resets the neuron to the reset
voltage � and keeps it reset for a refractory period, set by the � bias
voltage. An additional DPI low-pass filter �� � integrates the output
events in a negative feedback loop, to implement a spike-frequency adaptation

mechanism.

input patterns need to stimulate the synapses of all neurons in

parallel.

C. Neural-Core

The neural-core block comprises 32 Integrate-and-Fire

(I&F) neurons, four synapse circuits (three excitatory and one

inhibitory) per neuron, and a synapse address-demultiplexer

circuit.

1) Neuron Circuit: The neuron circuit is the “Adaptive

exponential I&F neuron” described in [33], but with an extra

free parameter corresponding to the neuron’s reset potential.

The circuit diagram of this new design is shown in Fig. 4.

The neuron’s input DPI integrates the input current until it

reaches the neuron’s threshold voltage. At this point there is

an exponential rise due to the positive feedback in the silicon

neuron’s circuit that causes the neuron to generate an action

potential. The membrane potential is then reset to the neuron’s

tunable reset potential .

Analogous circuits implemented in a previous chip have been

shown to be extremely low power, consuming about 7 pJ per

spike [36]. In addition, the circuit is extremely compact com-

pared to alternative designs [33], while still being able to repro-

duce interesting dynamics, such as spike-frequency adaptation

(as demonstrated in Section IV).

2) Synapse Circuit: The synapse circuit includes three main

functional blocks (see Fig. 5): a DPI [37] to implement the

synaptic dynamics; a DAC circuit to generate the appropriate

weighted current fed in input to the DPI; and a validity-check cir-

cuit to activate the DAC when there is valid data at its input, and

to produce an acknowledge signal fed back to the asynchronous

controller.

As the output of the memory block generates valid DR

representation data, the synapse validity-check block raises its

PiXAck signal and feeds the memory content data to the DAC.

The PiXAck signals of all synapses are wire-OR’ed together.

The result is used by the asynchronous controller to complete
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Fig. 5. Programmable synapse circuit: a synapse decoder (Decoder-S) selects
the type of circuit to use (three different excitatory variants, or inhibitory). A
validity-check block processes the memory block output. Upon receiving valid
data (i.e., with incoming address-events) this circuit generates the acknowledge
signal PiXAck and passes the weight-value bits on to the synapse DAC. The
synaptic weight word is then converted to an analog current fed in input to a
DPI synapse circuit. The DPI circuit then produces a post-synaptic current with
biologically realistic temporal dynamics [37].

the handshaking cycle (see Fig. 2). The type of synapse circuit

selected (different variants of excitatory/inhibitory DPI cir-

cuits) depends on the address-event data sent to the neural-core

S-decoder. The asynchronous data and control paths of SRAM

and neural-core blocks are independent. For correct operation,

the S-decoder output should be ready before the weight bits are

sent to the synapse DAC. We assume that this is true, because

we make the timing assumption that the Decoder-S data path is

faster than the memory access-time. The memory access time

includes both the decoding time and the time required for the

Bitline signals to be driven by the memory control circuits.

The synapse DAC circuit is activated by both the Decoder-S

output and the validity-check block. The five bits that encode

the weight value control switches on a corresponding number

of branches, each connected to a current source, programmable

via the bias-generator block [31]. In principle, for perfect binary

encoding the current in each branch should be twice as large as

the current in the previous branch. But we chose to have five

independent current sources in order to fine tune them and com-

pensate for mismatch effects across the synapse population. The

sum of the currents from the five branches of each synapse DAC

produces the final current, used by the corresponding DPI

synapse circuit. We bias the DPI circuit in its linear range [38] to

TABLE I
NEURON AND SYNAPSE CIRCUIT PARAMETERS. THE REFERENCE CURRENTS

� OF THE SYNAPSE WERE TUNED TO BE � �

implement a linear first-order low-pass filter. In this way we can

use a single DPI for a row of 32 “virtual” synapses, time-division

multiplexing it in time to integrate their independent contribu-

tions. The DPI output current will therefore be the integral

of the weighted current pulses produced by the address-events

sent to the memory-cells of the corresponding row.

D. Synapse Address-Demultiplexer

This circuit is a digital programmable switch-matrix that

re-configures the connectivity between the synapse output

nodes with neuron input ones. In its default configuration the

synapse output nodes of each row are connected to the neuron

input node of the same row, therefore giving rise to a network

of 32 neurons, each receiving 4 32 virtual synaptic inputs

(4 synapse types and 32 synaptic weights, stored in the SRAM

cells). By changing the address-demultiplexer state, the synapse

output currents can be re-routed to different subsets of neurons.

From the default case in which each synapse row is connected

only to the neuron of its corresponding row, one can configure

the address-demultiplexer to merge pairs of synapse rows, thus

routing all synaptic currents to only half the total neurons, or

merge four rows and route their outputs to one fourth of the

neurons, and so forth, all the way to merging all synapse row

addresses to route their output currents to one single neuron.

IV. EXPERIMENTAL RESULTS

To validate the correct operation of the proposed circuits we

conducted experiments in which we measured the neuron firing

rates as a function of synaptic weight values and injection cur-

rent. Table I shows the synapse and the neuron parameters used

in these experiments.

A. Asynchronous Event-Based Communication

The first experiment shows how the circuits can operate cor-

rectly using signals with temporal characteristics that differ by

more than seven orders of magnitude (i.e., from tens of nanosec-

onds to hundreds of milliseconds). Fig. 6 shows both the fast

digital signals involved in the asynchronous communication

(REQ, ACK and PixAck signals), and a slow one, involved in

the generation of synaptic currents with biologically plausible

time constants. The figure inset shows a single event transac-

tion, with REQ, ACK, and PixAck signals switching over a

period of less than 100 ns, following a four-phase handshaking

protocol: as REQ is activated, the asynchronous controller

asserts the chip ACK signal. This triggers the conversion of the

input address data from BD to DR representation and within
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Fig. 6. Signals involved in (fast) event-based communication and (slow)
synaptic dynamics: the REQ, ACK, and PixAck signals are asynchronous
digital pulses that last less than 100 ns, while the � signal is related the the
post-synaptic current and lasts hundreds of milliseconds. The figure inset shows
a single event transaction, with REQ, ACK, and PixAck signals switching.

20 to 40 ns the synapse validity-check block signal receives the

memory content addressed by the input event, asserts the pixel

PixAck signal, and enables the synapse DAC which stimulates

the DPI circuit. The DPI produces a slow post-synaptic current

(generated by a subthreshold p-type Metal-Oxide Semicon-

ductor Field Effect Transistor (MOSFET) driven by the

signal of Fig. 6). When the sender removes its REQ signal, the

asynchronous controller resets the ACK signal, which renders

the DR data invalid and therefore resets the PixAck signal in

the synapse validity-check block. The speed with which this

hand-shaking cycle is completed determines the chip’s max-

imum event input rate. From the inset of Fig. 6, we estimate a

maximum input rate of about 7.1 M,events/sec. However, in our

setup this rate is limited by the sender’s speed (the REQ signal

is held active for several nano-seconds, even after the ACK

signal has been raised by the receiver). Fig. 6 shows that the

receiver sets the PixAck signal high about 40 ns after the arrival

of the REQ signal. Therefore we estimate that in principle, the

receiver chip should be able to consume events at a maximum

rate of 12.5 M events/sec.

While the digital signals are required to switch as fast as pos-

sible, the analog signal of the synapse DPI circuit can

change with different time constants, which depend on the cir-

cuit’s bias voltage [37] (see also Fig. 5). It can be shown that

is related to the circuit time constant via the following

equations:

(1)

(2)

(3)

where where the term depends on the state of the DPI after

a spike, represents the transistor dark current, represents

the thermal voltage the subthreshold slope factor [39], and

. From these equations we can derive

(4)

Fig. 7. Wide range of synapse dynamics. The plot shows the slope of the �
signal, measured for different values of the � bias voltage. The five orders of
magnitude spanned by this signal are related to the synapse time constants via
equation (4).

Fig. 7 shows the slope of the trace (e.g., see also bottom

plot of Fig. 6) measured across all 32 excitatory synapses of the

array, for different values of . The data, spanning

over five orders of magnitude, can be fitted by a line and related

to the circuit time constant via (4).

B. Neuron Output Frequency vs Input Current

To study the relationship between the spike frequency of the

neurons in response to their input currents, we ran an experiment

sweeping the injection current to all neurons in the array and

measured their average spike frequency and their standard devi-

ations. Fig. 8 shows two examples of Frequency-Current (F-I)

curves measured by injecting currents ranging from 10 nA to

100 nA, and measuring the neuron’s firing rates for different

sets of bias parameters. In a first experiment we biased the cir-

cuit to produce relatively low, biologically plausible, firing rates

(see Fig. 8(a)) by setting , , and

all other bias values as in Table I. This produced a linear re-

sponse, with mean frequencies measured across the 32 neurons

ranging from about 5 Hz to 50 Hz, but also with an average stan-

dard deviation of 18.3%. By biasing the neurons in a regime that

produced higher firing rates, we could reduce the effect of mis-

match significantly [the average standard deviation in Fig. 8(b)

is about 6%]. Also in this case the response is linear, but the

curve saturates for high values of input currents (as observed

experimentally also in real neurons [40]), thanks to the effect

of refractory period circuit. We were able to reduce the effect

of mismatch in these circuits, also due to careful layout design.

The largest transistor (W/L) size in the neuron circuit is about

while the capacitance is 1.6 pF the

capacitance is approximately 120 fF and the is 28 fF. The

inset of Fig. 8(b) shows a trace of the membrane potential for a

constant current injection of 10 nA.

Fig. 9 shows a “raster plot” plotting the neurons output spikes

(address-events) over time in response to synaptic inputs, rather

than to direct current injection. The synapses were stimulated

with a regular spike train of 400 Hz, generated on the work-

station. All synapses were stimulated in parallel by using the

“broadcasting” feature of this architecture. For the data shown



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MORADI AND INDIVERI: AN EVENT-BASED NEURAL NETWORK ARCHITECTURE 7

Fig. 8. F-I Curves: Firing rate averaged over all neurons in response to an
injection current, measured with different neuron bias settings. (a) F-I curve
measured with neuron bias settings that produce biologically realistic firing
rates. (b) F-I curve for bias settings that produce higher-firing rates. The inset
illustrates a trace of the membrane potential in response to a constant input
current of 10 nA while refractory bias voltage is set to 120 mV.

(a) (b)

Fig. 9. (a) Raster plot of the silicon neurons, in response to regular input spike
trains of 400 Hz broadcast to synapses of all rows with the same weights values
of ������� . (b) Histogram of the neuron firing rates.

in Fig. 9, all memory words were set to , the S-de-

coder address was set to activate the “broadcast” feature and the

row decoder was set to stimulate row 10 (an irrelevant arbitrary

number, given the input events are broadcast to all rows).

As shown in the figure, all neurons fire regularly at a rate of

about 90 Hz. The standard deviation measured across the whole

Fig. 10. Spike frequency adaptation measurements, for two different input cur-
rents: the input current was produced using a p-type MOSFET with bias voltage
� � ���� (top plot) and� � ��	� (bottom plot). In both cases the neuron
was biased with the following settings: � � ����
� , � � ����� ,
� � ����� , � � ����� and � � ���� .

population is of approximately 16.6%. This is due to the vari-

ability induced by the AER circuits, and the mismatch of the

analog circuits involved in the response of the circuit (including

the input DACs and synapse DPIs).

C. Spike-Frequency Adaptation and Adjustable Reset Voltage

The spike-frequency adaptation sub-circuit of the silicon

neuron ( in Fig. 4) produces a slow current ( of

Fig. 4) which represents the after-hyper-polarization current

activated by -influx during action potentials in real neurons

[41]. This negative feedback mechanism introduces a second

“slow” variable in the neural dynamics equation that can endow

the neuron with a wide variety of dynamical behaviors, as

demonstrated in [42]–[44]. Fig. 10 shows the response of the

neuron to constant current injection for two different input

amplitudes and for bias settings that activated the adaptation

mechanism.

A parameter that plays an important role in producing dif-

ferent types of spiking dynamics is the neuron’s reset potential:

this parameter induces behaviors in bi-dimensional models that

are typically only observed in higher dimensional continuous

systems [45]. In many previous implementations of silicon neu-

rons this was equal to the resting potential (and both were equal

to ). The silicon neuron implemented in this device has an

explicit reset potential bias ( of Fig. 4) that can be set to ar-

bitrary values. In Fig. 11 we show how this bias voltage can be

used to adjust the neuron’s reset potential: at the beginning of

the experiment is set to , so that membrane potential

resting state and neuron reset potentials are both the same. After

600 m sec the reset voltage is set to 0.45 V (for the top plot of

Fig. 11), or to 0.35 V (middle plot), or to 0.25 V (bottom plot).

By exploring the parameter space given by the spike-fre-

quency adaptation voltage biases and by the reset-potential bias

it is possible to produce neuron firing patterns that include tonic,

adapting, bursting, and irregular spiking (e.g., see Fig. 6 of

[44]). The exploration of this parameter space goes beyond the

scope of this paper and will be subject to further investigations.
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Fig. 11. Demonstration of adjustable reset voltage in the neuron circuit.

Fig. 12. Firing frequency vs. synaptic weight values in response to regular
spike trains of 400 Hz.

D. Programmable Synaptic Weights

The final set of experiments we performed was meant to char-

acterize the properties of the SRAM block and fast DAC cir-

cuits for producing weighted synaptic inputs. To examine the

precision of the synapse weights encoded with the SRAM 5-bit

words, we stored the 32 word values ranging from to

in the 32 corresponding columns of the SRAM block,

for each row. In this way, each neuron is effectively connected

to 32 virtual synapses with 32 different synaptic weights. We

set the nominal synaptic current to 12.5 nA (see Table I),

stimulated one virtual synapse of all neurons with a 400 Hz

input spike train in each run, and repeated the experiment for

all memory values (i.e., for all columns in the SRAM block).

Fig. 12 shows the combined synapse-neuron response, averaged

across the population of 32 neurons. The variability in these

responses takes into account the mismatch in the neuron and

synapse circuits, the mismatch and imprecision of the DAC cir-

cuits, and the temporal jitter present due to the asynchronous

nature of the communication circuits used. Despite all these

effects, the standard deviation in Fig. 12 is always less than

, which results in an effective resolution of

or more. This is encouraging, because it

demonstrates that the approach followed can be used to imple-

ment spiking neural networks with programmable weights in a

compact and efficient manner.

V. CONCLUSION

We proposed a novel neuromorphic VLSI device comprising

both a spiking neural-core with biophysically realistic analog

synapse and neuron circuits, as well as a fully asynchronous dig-

ital memory block. We showed how it is possible to integrate fast

digital circuits next to very slow analog ones, using time con-

stants that span over seven orders of magnitude, and to obtain

remarkable performance figures with low mismatch. Although

implementing the interface to the SRAM block and the SRAM

itself could be done off-chip (e.g., using Field Programmable

Gate Array (FPGA) devices), we verified in this prototype chip

the correct functionality of the new asynchronous SRAM in-

terfacing circuits. More generally, we showed experimental re-

sults that demonstrate the proper operation of all the major cir-

cuit blocks in the chip. The data of Fig. 6 demonstrate that

input events are successfully transmitted through the input AER

stages onto the SRAM block, that the SRAM provides in output

the expected bits (previously programmed into the memory),

that the synapse converts the stored digital word into a properly

weighted synaptic current, and that the synaptic dynamics block

has the expected slow dynamics and linear filtering properties.

The data of Fig. 8(b) and Fig. 9 shows that the synaptic cur-

rents get properly integrated by the spiking neurons and that the

spikes get properly converted into AER events and transmitted

by the output AER stages. The experimental results shown in

Fig. 10 and Fig. 11 show how the neuron implements the adap-

tation and reset mechanism required to produce a wide range of

neural dynamics, and the data of Fig. 12 shows how it is pos-

sible to implement spiking neural networks with programmable

weighted synaptic currents. The proposed chip could be used

for implementing different Spike-Timing Dependent Plasticity

(STDP) learning strategies, and employed to solve tasks in the

context of real-time neuromorphic sensory-motor systems.
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