
An Event-Driven Multi-Kernel Convolution
Processor Module for Event-Driven Vision Sensors

Luis Camuñas-Mesa, Carlos Zamarreño-Ramos, Alejandro Linares-Barranco, Member, IEEE,
Antonio J. Acosta-Jiménez, Teresa Serrano-Gotarredona, Member, IEEE, and

Bernabé Linares-Barranco, Fellow, IEEE

Abstract—Event-Driven vision sensing is a new way of sensing 
visual reality in a frame-free manner. This is, the vision sensor 
(camera) is not capturing a sequence of still frames, as in conven-
tional video and computer vision systems. In Event-Driven sen-
sors each pixel autonomously and asynchronously decides when to 
send its address out. This way, the sensor output is a continuous 
stream of address events representing reality dynamically continu-
ously and without constraining to frames. In this paper we present 
an Event-Driven Convolution Module for computing 2D convolu-
tions on such event streams. The Convolution Module has been 
designed to assemble many of them for building modular and hi-
erarchical Convolutional Neural Networks for robust shape and 
pose invariant object recognition. The Convolution Module has 
multi-kernel capability. This is, it will select the convolution kernel 
depending on the origin of the event. A proof-of-concept test proto-
type has been fabricated in a 0.35 m CMOS process and extensive 
experimental results are provided. The Convolution Processor has 
also been combined with an Event-Driven Dynamic Vision Sensor 
(DVS) for high-speed recognition examples. The chip can discrim-
inate propellers rotating at 2 k revolutions per second, detect sym-
bols on a 52 card deck when browsing all cards in 410 ms, or detect 
and follow the center of a phosphor oscilloscope trace rotating at 
5 KHz.

Index Terms—Address-event representation (AER), asyn-
chronous vision sensors and processors, high-speed imaging, 
image convolutions, image sensors, machine vision, neural net-
works hardware, neuromorphic circuits, robot vision systems, 
visual system.

I. INTRODUCTION

S TATE-OF-THE-ART artificial vision technology is
presently based on capturing and processing a sequence of

still image frames. Present day development trends are towards

This work was supported by EU Grant 216777 (NABAB), and Spanish 
Grant TEC2009-10639-C04-01 (VULCANO) with support from the European 
Regional Devel-opment Fund. The work of C. Zamarreño-Ramos was 
supported by a national FPU scholarship.
L. Camuñas-Mesa is with the Department of Engineering, University of Le-

icester, U.K.
C. Zamarreño-Ramos is with the Sevilla Microelectronics Institute (IMSE-

CNM-CSIC), Sevilla 41092, Spain.
A. Linares-Barranco is with the Department of Computer Architecture and 

Technology, University of Sevilla, Sevilla 41092, Spain.
A. Acosta-Jiménez is with the Sevilla Microelectronics Institute 

(IMSE-CNM-CSIC), Sevilla 41092, Spain, and also with the Department 
of Electronics and Electromagnetism, University of Sevilla, Sevilla 41092, 
Spain.

T. Serrano-Gotarredona and B. Linares-Barranco are with the Sevilla Micro-
electronics Institute (IMSE-CNM-CSIC), Spain, and also with the Department 
of Computer Architecture and Technology, University of Sevilla, Spain.

more pixels per frame to increase spatial resolution and higher

frame rates to increase temporal resolution. Unfortunately,

this trend also yields exponentially increasing data rate, thus

imposing higher computational and power demands on later

processing stages.

However, in the last years we have been witnessing a new

type of vision sensors appearing in the specialized literature,

which are not based on capturing sequences of frames. Taking

inspiration from biological retinas, the pixels in these sensors

decide when sending information out, as opposed to waiting

for an externally controlled periodic sampling instant. These

sensors are said to be “Event-Driven”, because each pixel

sends out an information event when it senses a given level of

luminance, or a level of spatial or temporal contrast. Example

Event-Driven sensors are: simple luminance to frequency

transformation sensors [1], time-to-first event coding sensors

[2]–[4], foveated sensors [5], [6], temporal contrast vision

sensors [7]–[11], motion sensing and computation systems

[12], [13], and spatial contrast sensors [9], [10], [14]–[16],

among many others. Of special interest for very high-speed ap-

plications are the so-called “Dynamic Vision Sensors” (DVS),

where each pixel autonomously computes the normalized time

derivative of the sensed light and provides an output

event with its coordinate when this amount exceeds a

preset contrast [7], [8], [11]. Fig. 1 illustrates the operation of

such sensor when observing a 7.5 KHz spiral on an analog os-

cilloscope operated in x-y mode and stimulated with two phase

shifted sinusoids of decreasing amplitude. The only ambient

light is that of the oscilloscope phosphor. Fig. 1(b) represents

in 3D coordinates the address events produced by the

sensor during about 500 s. The sensor provides events with

a latency of a few microseconds to milliseconds depending on

illumination, but relative inter-event temporal resolution is in

the order of hundreds of nano seconds. Thus, it is possible to

know when the oscilloscope spot crossed a pixel with sub-mi-

crosecond timing precision. In general, Event-Driven Sensors

share interesting properties such as fast sensing capability,

reduced information throughput, low power, and efficient

in-sensor pre-processing, which makes them attractive for low

power portable applications as well as high-speed scenarios.

But sensing is simply the first step in a vision system. The

next step is performing processing to achieve a desired func-

tionality, such as object recognition. As these Event-Driven

sensors provide information events with sub-microsecond time

resolution, it is obvious that the most efficient way of processing

would be event by event, as opposed to histogramming them

into artificial frames and use conventional frame-based image

processing techniques. Taking further inspiration from biology,



Fig. 1. Example of DVS (Dynamic Vision Sensor) high-speed Event-Driven
sensing. (a) The sensor is observing a 7.5 KHz spiral on an analog oscilloscope
with no other ambient light than the screen phosphor. (b) Address Events cap-
tured by the DVS during 500 m represented in 3D space. Dots are fast
OFF-ON positively signed events, while circles are slow ON-OFF negatively
signed events.

these frame-free event flows can be fed to “Event-Driven

Feature Extractor Modules.” This way, as in the brain [17],

a first layer would extract low level features such as short

oriented edges at different scales and angles, a second layer

would combine them into more complex shapes, and sub-

sequent layers would continue to combine simpler features

into more complex and specialized ones, until recognizing

specific objects. Such computational systems have been studied

intensively in the fields of computational neuroscience and

artificial vision [18]–[20]. Many of them can be described by

the computational paradigm known as “Convolutional Neural

Networks” or ConvNets in brief. ConvNets take direct inspira-

tion from Hubel and Wiesel Nobel Prize winning discoveries

[17]. Their first software implementation goes back to 1969

[21], with strong developments since the 90s starting with the

work at AT&T Bell Labs [22]. Today, ConvNets count with

many successful commercial applications such as AT&T/Lu-

cent-Technologies/NCR check reading ATM machines [23],

Microsoft OCR and handwritten character recognition sys-

tems [24], Thomson developments in face/object recognition

[25], France Telecom/Orange with face detection and recog-

nition, as well as text detection and recognition [26]–[28], or

Google developments for detecting faces and license plates in

StreetView images [29]. So far, ConvNets have been developed

for frame-based sensors, mostly as software programs, although

some digital hardware implementations have been reported

[30]–[35]. In this paper we present an Event-Driven Convolu-

tional Module (ConvModule) intended as a starting building

block for assembling expandable, modular, hierarchical and

reconfigurable ConvNet vision systems for Event-Driven

Vision Sensors.1 These ConvModules process the event flow

coming from the sensors event by event, with processing delays

in the range of a hundred nano seconds, thus preserving the

microsecond time resolution of the sensor events. Also, as input

and output event flows have negligible per-event processing

delays, the two flows are virtually simultaneous. This is a fun-

damental difference with respect to frame-based sensing and

processing systems, where the delay of the combined sensor +

processor systems can never be smaller than frame rate.

The paper is structured as follows. In the next Section we

quickly review the generic concept of Event-Driven convolu-

tion operation and summarize previous work as well as motiva-

tion for the present design. Section III describes the operation of

the presented ConvModule and introduces the architectural and

circuit changes with respect to previous designs. Section IV pro-

vides experimental characterization results of a fabricated chip

prototype, Section V discusses on scalability and future outlook,

Section VI compares with some frame-based GPU/FPGA im-

plementations, and finally Section VII draws conclusions.

II. EVENT-DRIVEN CONVOLUTION OPERATION

AND PREVIOUS WORK

Fig. 2 illustrates the operation of an Event-Driven

ConvModule (chip) when fed by events produced by an

Event-Driven vision sensor chip (like those reported by Del-

brück [7], Posch [11], or Leñero-Bardallo [8]). On the left,

there is an Event-Driven Vision Sensor chip, and on the right an

Event-Driven processor like the one reported in this paper. In the

Event-Driven Sensor chip, each pixel includes a photo sensor

and some pre-processing circuitry to compute, for example,

spatial or temporal contrast. Whenever a pixel detects a given

level of contrast, it requests access to the AER (Address Event

Representation) bus to send out its coordinate using asyn-

chronous handshaking [36]. The Event-Driven ConvModule

(chip) receives this event and sends it to a “Projection Field” of

pixels. Each pixel in the ConvModule accumulates the contribu-

tions of the incoming events, until reaching a threshold, in which

case it will send out a new event through the ConvModule output

AER port. If is the coordinate of the incoming event

and is a pixel within the Projection Field of this event,

the contribution of the input event to the projection field pixels

is weighted by a factor which depends on their relative spatial

positions . The 2D function

defines the convolution kernel. By accumulating the continuous

flow of input event kernel-weighted contributions, the output

flow of events represents the 2D convolution of the input flow

with kernel [37].

1Although reported event-driven ConvModule prototypes always occupy one
full chip, as in the present paper prototype, the ultimate goal would be to inte-
grate many of them in a NoC (Network on Chip) die, together with routing and
reconfiguration engines. But this is beyond the scope of the present paper. Sec-
tion V provides a futuristic outlook of what might be expected.



TABLE I
CONVMODULE CHIPS PERFORMANCE COMPARISON

i. Measured by stimulating one pixel only.

Fig. 2. Illustration of Event-Driven Convolution Processing. When an event
of coordinate (x, y) is received from an event-driven vision sensor, a contri-
bution is sent to a “Receptive Field” of pixels in the destination Event-Driven
ConvModule.

Fig. 3. Array of 24 Event-Driven Gabor filters. Each subfigure corresponds
to events captured during the same 40 ms time window, and each number in
the subfigure indicates the number of events captured during this 40 ms time
window. The subfigure on left margin is obtained from a DVS retina sensor.
The other 24 subfigures correspond to Event-Driven Convolution Filtering op-
erations usingGabor kernel of six different orientations and four different scales.
The input and all 24 outputs are simultaneous.

Fig. 3 shows an example simulation of AER flow con-

volution processing on real sensory data. The event flow

generated by a 128 128 pixel motion detection retina is sent

in parallel to an array of 24 ConvModules, each programmed

with a Gabor kernel of different scale and orientation. The

retina is looking at two persons walking and providing events

representing their moving silhouettes. These events are sent

to all 24 ConvModules in parallel, which compute the events

representing a 2D Gabor filter operation of the input. Each

sub-figure in Fig. 3 corresponds to assembling a 2D histogram

by collecting the events during the same 40 ms time window.

The events coming out of the sensor have a typical delay of

a few microseconds to milliseconds with respect to reality,

depending on ambient light [7], [8], [11]. The ConvModules

need about 100 ns to 1 m to process each event, depending on

kernel size. Each ConvModule needs to collect a given number

of space-time correlated input events to provide an output

event, depending on the ConvModule settings. For high-speed

processing, one can set this number to be around ten events

or less. In general, more relevant pixels in the sensor have

stronger signals and send out their events sooner or more fre-

quently. Consequently, more relevant events will be processed

first by later ConvModules. This way, in an object recognition

hierarchical ConvNet, recognition can be achieved as soon as

the sensor provides enough significant space-time correlated

events. We refer to this as the “pseudo-simultaneity” property

of event-driven convolution processing. This input-to-output

pseudo-simultaneity property of event-driven convolutions is

very attractive for hierarchical multi-layer ConvNets in object

recognition applications. One key requirement, however, is

that the sensor provides a sparse representation of the observed

reality in order to not saturate the finite peak event rate of the

AER links. In general, each ConvModule reduces the event rate

from input to output. Therefore, typically the highest event rate

is found at the sensor output. In Fig. 3, the input flow contains

980 events for the selected 40 ms time window. The number of

events produced by the ConvModules during the same 40 ms

varies from 227 to 846 events.

Table I summarizes the features of previously reported

Event-Driven ConvModule chips. The first event-driven

ConvModule chip was reported in 1997 by Venier et al. [38].

It implemented a hard-wired elliptic kernel, whose shape

could be fine tuned through analog biases. In 1999, Serrano

et al. reported an architecture to perform 2D event-driven

convolutions with kernels of more generic shape, as long as



the kernel could be decomposed into a horizontal and ver-

tical components [37]. In 2005 Choi

et al. [39] presented an event-driven ConvModule chip for

Gabor-like kernels, where again the shape of the kernels

could be fine tuned through analog biases. In 2006, Serrano

et al. presented an event-driven ConvModule chip for generic

kernels of arbitrary shape and size [40], where kernels were

uploaded on a kernel-RAM at start-up. All these event-driven

ConvModule chips used analog charge packet integration on

in-pixel capacitors to perform weighted event integration.

Given the severe area and current consumption restrictions

required per pixel, analog computing circuits were designed

to operate in weak inversion. Consequently, they suffered

from severe transistor mismatch and low computational preci-

sion. In particular, Serrano’s chip which included an in-pixel

calibration circuitry to improve precision, only managed to

reach an overall 3-bit precision. The limited precision, tedious

calibration process, and critical analog biasing motivated the

exploration of a fully digital pixel using digital adders and

accumulators to perform the weighted event integration. A

preliminary prototype was developed using conservative digital

circuit techniques and an oversized 18-bit precision for the

pixel accumulation registers [41]. Another severe limitation of

all previously reported event-driven ConvModule prototypes

was that they could only operate a single-kernel convolution.

However, for generic ConvNet systems assembly, each module

receives several visual input flows and requires to compute

and accumulate a convolution with different kernel for each.

Fig. 4 shows the multi-layer feed-forward structure of a typical

ConvNet architecture [21]–[31]. Typically, there are between

three to eight sequential layers. Each layer contains a set of

“Feature Maps” (FM). Each FM in the first layer after the

sensor receives input from the sensor only and computes a

single kernel convolution. However, FMs starting from the

second layer receive more than one visual flow, and for each

have to use a different kernel to compute and accumulate the

convolutions. The event-driven ConvModule we present in

this paper has multi-kernel capability and can compute and

accumulate different kernel convolutions in parallel for mul-

tiple simultaneous input flows. Also, the pixel accumulators

use a more realistic register size of 6 bits while using more

compact pass transistor logic circuits. As a result, pixel area is

approximately one fourth of the previous design, thus allowing

higher pixel density. Additionally, it allows for up to 32 sep-

arate kernels. Performing 32 kernel convolutions with prior

ConvModules, requires the use of 33 of them: one for each

kernel plus an extra one for adding all 32 outputs.

III. CONVMODULE DESCRIPTION

The architecture of the ConvModule is shown in Fig. 5(a).

It contains a synchronous controller with an internal clock,

a 32 32 4-bit words static kernel-RAM, a kernel parameter

lookup table (LUT), a column blocker, a 2’s complement block,

a left/right column shifter, an array of 64 64 pixels, and an

asynchronous event read out block which follows row-parallel

burst-mode event read-out [42].

Event-driven convolutions are performed as follows

[37]–[41]. Pixels in the “Pixel Array” (see Fig. 5(a))

Fig. 4. Typical hierarchical structure of a feed forward ConvNet architecture.

hold their state in a continuous and dynamic manner. When

the module receives an input event , kernel

(which is a 2D matrix stored in the “Kernel-RAM”) is

added/subtracted to the “Projection Field” of pixels around

“Event Address” , as illustrated in Fig. 5(a). Input

event sign determines whether the kernel is added or

subtracted. Independently of the input event flow, all pixels

“suffer” from a constant rate leak that will drive their state

to a resting level. When a pixel reaches a positive (negative)

threshold, it is reset to its resting level, and a positively (nega-

tively) signed output event is sent out through the AER output

port with the pixel’s coordinate. This way, ConvModules are

excellent spatio-temporal feature extractors, because if enough

input events representing the kernel spatial feature are received

close in time (to avoid the effect of the leak), output events

representing the location of these features are produced.

To perform these simplistic conceptual operations, the ma-

chinery described below is used. To devise this machinery, the

main strategic criterion was to perform each event kernel ad-

dition/subtraction as fast as possible. For this, kernel lines are

copied in one controller clock-cycle from the kernel-RAM to

the Pixel Array, and added-accumulated during the next clock-

cycle. Another strategic choice was to fully decouple the output

events read-out process from the input events convolution com-

putations, by having the synchronous controller take care of this

last process only. Next, we describe in more detail the different

operations.

A. Synchronous Controller

The controller is outlined in Fig. 5(b). At start-up, the kernels

are loaded onto the static kernel-RAM and other necessary

kernel parameters onto the kernel-LUT. Also, registers that

store configuration and control parameters are loaded at start-up.

Input asynchronous events are fed in through synchronizers

into a small 4-position FIFO. Then a Finite-State-Machine

(FSM), described in VHDL, controls the sequential operation

of copying appropriately the selected kernel onto the desired

pixels within the pixel array. Each incoming event includes:

1) a 14-bit event address ; 2) an event sign bit; and 3) a

5-bit kernel number to select one of up to 32 stored kernels.

Although the present ConvModule has only 64 64 pixels, it

can “see” a 128 128 input space. Configuration parameters

and define the pixel array position within



Fig. 5. (a) ConvModule architecture. (b) Controller block diagram.

the total 128 128 input space. This allows to assemble several

ConvModules in parallel, each processing a different 64 64

tile of the total 128 128 space. For processing larger spaces,

an extra address remapper module [44] would be required for

each 128 128 tile.

B. Controller Finite State Machine Description

Fig. 6 shows a simplified state transition diagram of the syn-

chronous controller FSM. By default it stays in a resting state

waiting for a new input event. Once an event is received and the

Fig. 6. Synchronous Controller FSM simplified state transition diagram.

kernel selected, the first computation is to detect whether the

selected kernel lies fully inside the pixel array, fully outside, or

whether some rows fall outside either from the bottom or the

top. If the kernel lies fully outside, the operation for this event

is finished, and the FSM returns to the resting state. In the other

cases, the FSM computes which kernel-RAM rows need to be

copied onto which pixel array rows and copies them sequen-

tially one after the other. Depending on the situation, these com-

putations differ, and the FSM follows three possible state paths:

‘Reading/Writing state2’ if the kernel lies fully inside the pixel

array, ‘Reading/Writing state1’ if the kernel top rows fall out-

side the pixel array, and ‘Reading/Writing state3’ if the bottom

kernel rows fall outside. For each row, all values are copied

in parallel. Since there is more than one kernel in the kernel-

RAM, the “Block_col” signal in Fig. 5(b) activates through the

“Column blocker” only those columns where the selected kernel

is stored. If the input event has negative sign, the 2’s comple-

ment block is activated to invert the sign of all weights of the

selected kernel, through FSM signal “invert_data”. FSM signal

“Horiz_shift” controls a switchmatrix (left/right column shifter)

to align the kernel-RAM columns where the selected kernel is

stored to the pixel array columns where it needs to be copied.

After a secured delay, the FSM enables the destination pixel

array row, so that the active kernel row is copied onto the cor-

responding pixel array row. This row copy operation is sequen-

tially repeated for all required kernel rows. The controller needs

clock cycles, where is the number of kernel



Fig. 7. Kernel parameters definition. (a) Kernel position and size within
Kernel-RAM and (b) kernel position with respect to input event coordinate
within pixel array space.

rows to copy. For each kernel stored, we need six extra parame-

ters, besides the values in the kernel-RAM. Fig. 7(a) shows one

kernel stored inside the 32 32 4-bit words kernel-RAM and the

four 5-bit parameters needed to define the kernel location and

size . Also, in general, the kernel

might not be centered with respect to the event address, but

could be displaced by and , as shown in Fig. 7(b). Every

time an input event is received, the FSM loads these six param-

eters from the kernel-LUT for the input event kernel number

and computes the sequence of FSM output control signals ap-

propriately. The rest of parameters stored in the configuration

registers are for (a) selecting internal or external clock, (b) en-

abling/disabling leak, (c) selecting accumulator limit, (d) se-

lecting whether positive or negative events are discarded (thus

reducing AER bus traffic if they will not be used), (e) setting

the leak rate accumulator limit, and (f) parameters and

which define the position of the 64 64 pixel array

within the total 128 128 visible input space.

C. Leak/Forgetting Capability

Besides the kernel row-wise copy operation, the controller

also generates a periodic signal for all pixels in the array, to per-

form a constant rate leak of the accumulated value. This is a nec-

essary feature in Event-Driven frame-free processing systems.

Note that a ConvModule provides output events at specific co-

ordinates if a set of space-time correlated input events represent

the “feature” defined by the kernel. Consequently, these corre-

lated input events have to be received during a time interval,

controlled by the leak-rate. This leak-rate is adjusted to the time

constant of the “reality” under observation. If the sensor is ob-

serving walking humans, this rate should be adjusted to be in

the range of tens to hundreds of milliseconds. If it is used in a

microscopic particle tracking application [45], then the required

time constant should be rather in the microsecond range.

D. Pixel Description

Fig. 8 shows the block diagram of the pixel. Kernel weights

(3-bit plus sign) are received column-wise, and added/sub-

tracted to a 6-bit accumulator, using 2’s complement logic.

Row-wise signal “Enable” comes from the FSM and enables

kernel addition of only one row of the pixel array. Signal

“Sel_forgetting” activates addition/subtraction of a fixed in-

teger for all pixels in the array, to perform the constant rate

leak. Leak addition or subtraction is selected depending on the

TABLE II
CHIP SPECIFICATIONS

pixel accumulator sign. The accumulator is monitored by a

comparison block that detects whether a positive or negative

threshold is reached. If reached, the accumulator is reset to

zero, and the pixel requests to send out a signed output event.

The in-pixel AER interface is standard for row-parallel event

read-out [42]. Fig. 9 shows the schematic of the 16-transistor

adder cell used. It employs pass transistor logic with buffering

of critical nodes.

IV. EXPERIMENTAL RESULTS

A test prototype chip holding the ConvModule has been

fabricated in the AMS 0.35 m CMOS technology with 3.3 V

power supply. A chip microphotograph is shown in Fig. 10

and specifications are summarized in Table II. It occupies

5.5 5.8 mm with each pixel using 58.0 53.8 m . A

close-up of the pixel layout is shown in Fig. 11 highlighting the

main parts. Pixel array is 64 64 with 6-bit adder/accumulator,

kernel-RAM array size is 32 32 with 4-bit 2’s complement

words. Controller clock operates at 100 MHz. Chip power

consumption depends greatly on input and output event traffic,

and an important fraction is consumed by the output event pads,

reaching a maximum of about 200 mW.

A. ConvModule Timing Characteristics

Fig. 12 shows a characteristic timing diagram of input and

output handshaking signals. Kernel weights and pixel thresh-

olds were set so that each input event would generate ten output

events, coming from five consecutive rows. Output and

signals are shorted. Events coming from the same row are

read out at a rate of 27 ns per event, while when switching to

a new row requires 60 ns. Measured input to output latency is

192 ns. Maximum sustained input event rate depends on the

number of kernel lines , since the controller needs

clock cycles for processing one event. Therefore, input

event rate varies between 1.47 and 16.6 Meps (mega events per

second) depending on , while output event rate can reach up

to 37 Meps.

B. Illustration of Luminance Processing

AER is highly inefficient when using rate coding to represent

a static luminance image, because the total number of events be-

comes excessively large. This is why, in practical AER vision



Fig. 8. Pixel block diagram.

Fig. 9. Pixel 16-transistor adder cell.

systems, a proper sensor with some kind of focal plane pre-pro-

cessing (such as spatial [2], [9], [10], [15], [16] or temporal

[7]–[11] contrast, or motion extraction [12], [13]) is used. Nev-

ertheless, in this section we show a luminance rate-coding ex-

periment to illustrate “pseudo-simultaneity” and “first-flash fea-

ture-extraction” [43].

Fig. 13 illustrates event flow processing for a luminance

rate-coded input event burst. The ConvModule was loaded with

a vertical 11 7 Gabor filter to extract vertical edges. Input flow

codes pixel light intensity with number of events per pixel (rate

coding). In Fig. 13(a) each pixel uses 0 to 16 events. Visual

input used 94 94 pixels and needed 90 k events. An 11 line

kernel needs 260 ns to be processed (4 22 clock cycles at

100 MHz). However, only events for the central 74 70 pixels

will be processed, as kernel size is 11 7 and ConvModule pixel

array is 64 64. These 90 k events were processed in 14.9 ms,

and Fig. 13(b) shows a representation of the 51 k output events

produced by the ConvModule during the same 14.9 ms. In

Fig. 13(c) and (d) we show the reconstructed input and output

images when collecting the events during the first 3.2 ms only,

and Fig. 13(e) and (f) corresponds to collecting events during

the first 1.7 ms only. As can be seen, reconstructed input and

output images degrade as less events per pixel are available.

However, vertical edges are detected quite well even during

the first milliseconds (see Fig. 13(d)), so that a fast preliminary

feature extraction (“first-flash feature-extraction”) takes place

during the first events of the input flow. Fig. 13 illustrates nicely

the “pseudo-simultaneity” property between input and output

flows of Event-Driven Convolutional processing, as input and

output events belong to the same time interval.

C. High Speed Moving Stimuli. Rotating Propellers

Fig. 13 illustrates Event-Driven convolution operation on

static input visual flow. Dynamic Vision Sensors are meant

for dynamic inputs, specially for very high speed, as each

sensor pixel computes the temporal derivative of the sensed



Fig. 10. Chip microphotograph.

Fig. 11. Close-up of pixel layout indicating main parts.

light. Fig. 14 illustrates the operation of the ConvModule

when receiving the events of two propellers of different shapes

rotating at 2000 revolutions per second, while moving slowly

across the field of view. These events are generated artificially

in a computer following the method explained elsewhere [40]

and sent to the ConvModule chip using an event data player

[44]. Fig. 14(a) shows the events collected during 50 ms (100

revolutions), while Fig. 14(b) for 50 s (one tenth of a revo-

lution). The ConvModule was programmed with a kernel to

detect the S-shaped propeller in horizontal position by simple

template matching: positive weights for propeller pixels and

negative weights for surrounding pixels. Kernel size is 23 23.

Fig. 14(c) shows the kernel weights, and Fig. 14(d) the output

of the ConvModule where the events follow the center of the

S-shape propeller and ignore the rectilinear one.

Fig. 12. Timing characterizations of input and output handshaking signals.

Fig. 13. Illustration of Event-Driven Luminance coding and convolution pro-
cessing. Kernel is an 11 7 vertical Gabor filter. Input space is 94 94 pixels
and output space is 64 64 pixels. (a) Full reconstruction of the 14.9 ms 90 k
event burst representing a luminance image with pixels having between 0 to 16
events each. (b) Convolution output 51 k event burst produced during the same
14.9 ms, with pixels producing between 0 to 20 signed events each. (c) Input
reconstruction of the first 11 k input events of the first 3.2 ms, with pixels having
between 0 to 2 events each. (d) Output reconstructed from the first 6.6 k events
of the first 3.2 ms, with pixels producing between 0 to 4 signed events each.
(e) Input reconstruction of the first 5.6 k input events of the first 1.7 ms, with
pixels having between 0 to 1 events each. (f) Output reconstructed from the first
3.3 k events of the first 1.7 ms, with pixels producing between 0 to 2 signed
events each.

D. Combining the ConvModule With a DVS Retina

The high-speed event based processing example in Fig. 14

uses synthetic input data. Fig. 15 illustrates Event-Driven

pattern recognition processing using real data from a 128 128

pixel Event-Driven DVS retina [8]. Performing robust shape

and scale invariant pattern recognition with Convolutional

Neural Networks requires large number of convolution mod-

ules, which is beyond the scope of the present article. However,

we can illustrate the high-speed potential for pattern recogni-

tion by simple template matching. This is the case illustrated in

Fig. 15. The retina events are filtered by a first center-on Con-

vModule and the output events are then processed by a second

ConvModule for template matching. Thus, our recognition



Fig. 14. 2 k rps propeller recognition. (a) 50 ms time capture of input stimulus events (100 revolutions). (b) 50 s time capture of input stimulus events (1/10
revolution). (c) Output events produced by the Event-Driven ConvModule during 50 ms, following the center of the S-shaped propeller. (d) Kernel programmed.

system is a simple sequence of two feed forward ConvModule

processing (see Fig. 15(a)). The retina is observing a person

browsing a 52 card deck at high speed, as shown in Fig. 15(b).

The 52 cards are swept in about 650 ms, although most of them

are browsed in 410 ms (see Fig. 15(c)), which gives an average

rate of about 8 ms per card. During these 410 ms the DVS retina

[8] generates about 460 k events, while peak event rate goes up

to 8 Meps. The DVS retina produces signed events. The sign bit

is ‘1’ for ON events (pixel light changed from dark to bright)

or ‘0’ for OFF events (pixel light changed from bright to dark).

We filtered out the OFF events and sent only the ON events

to the first ConvModule, programmed with the 7 7 center-on

kernel shown in Fig. 16(b), to enhance edges and symbols and

filter out noise. The ConvModule can “see” the full 128 128

input pixel space, but produces output events only for a 64 64

pixel window. Fig. 15(d) shows a 5 ms event capture from the

ON events sent to the first ConvModule obtained with the jAER

tool [46]. The output events of this first ConvModule are fed

to the second ConvModule programmed with the 31 31 pixel

template matching kernel shown in Fig. 15(e), to detect the

“clover” symbols on the cards. The second ConvModule also

produces 64 64 pixel output events, but we discard the most

external 15 pixel ring to avoid false detections by undesired

edge effects. Fig. 15(f) shows a versus time projection of the

events captured during 85 ms at the retina output (small dots),

first ConvModule output (circles) and second ConvModule

output (crosses). During these 85 ms six cards are browsed.

Cards 2 to 4 contain “clover” symbols, which are correctly

detected by the second ConvModule. Fig. 15(f) includes a 3 ms

zoom box at “card 2”, which are the events for one

“clover” symbol. The events within this box are zoomed out in

Fig. 15(g) as versus time and in Fig. 15(h) as versus . As

can be seen, the retina events for this “clover” symbol start at

about 26.3 ms and end at about 29 ms (2.7 ms total event time).

The first convolution output events start at 26.6 ms (300 s

after the input first event) and end at about 28 ms (1.4 ms total

event time). And the output events of the second convolution

come out at 27.8 ms, 1.5 ms after the first retina event and

1.2 ms before the last retina event, or 1.2 ms after the first filter

output event and 0.2 ms before the last one. Consequently,

this example also illustrates nicely the pseudo-simultaneity

processing of event-based systems, as recognition is achieved

while the input stimulus events are being produced by the

retina.

A final experiment that illustrates real data high-speed pro-

cessing using the multi-kernel capability of the ConvModule

is shown in Fig. 16(a). The same DVS retina [8] is looking

at a 5 KHz spiral on an oscilloscope (as in Fig. 1). The retina

sends its 128 128 pixel output events to a merger

module [44], where are the retina pixel coordinates, ‘ ’

is event sign, and ‘ ’ is a hard-wired 5-bit code to indicate

the origin module of the event. Thus all events produced by

the retina always have the same value ‘ ’. The merger output

goes to the ConvModule, whose output events are

fed back to the second merger input. The ConvModule “sees”

all 128 128 pixels but produces events only for a 64 64 pixel

central window. The events produced by the ConvModule have

a different code ‘ ’ than the retina. Consequently, the Con-

vModule receives input events from the retina and from itself

and will apply a different kernel depending on the origin of

the events. For the retina events it uses the center-on kernel in

Fig. 16(b) to enhance the center of the oscilloscope trace. And

for the events coming out of itself it uses the kernel in Fig. 16(c).

This kernel excites close by neighbors while it inhibits more dis-



Fig. 15. Browsing a 52 card deck. (a) Setup of experiment. (b) Snapshot of 1/60 exposure (17 ms) taken with a commercial camera. (c) Instantaneous event rate
of the half million events captured during 1.7 sec. (d) 5 ms event capture using a temporal derivative Event-Driven DVS retina. (e) 31 31 kernel used to detect
clover symbols. (f) 85 ms event capture from the retina output (small dots), first convolution output (circles) and second convolution output (crosses). Events are
projected on the y-time axes. During these 85 ms 6 cards are browsed. Cards 2 to 4 contain clover symbols. In ‘card2’ a 3 ms zoom box is shown. The events
corresponding to this zoom box are shown in (g) as versus time and in (h) as versus .

tant neighboring pixels, thus performing a soft-winner-takes-all

competition among ConvModule pixels. The result of this pro-

cessing is a sequence of small number of events following the

center of the oscilloscope trace. Fig. 16(d) shows in 3D coordi-

nates the 825 events from the retina (small dots) and the

90 events from the output of the ConvModule (thick dots with

line) during 500 s. The trace center is followed with a delay of

about 10 s with respect to the center of the input data events.

A similar experiment was reported in the past [44]

using ConvModule chips and a dedicated Event-Driven

Winner-Takes-All (WTA) chip to detect and follow the center

of a rotating circle. However, the maximum rotating speed

reported then was 4 revolutions per second and the WTA output

had a delay with respect to the retina first stimuli events of

about 4 ms.

V. SCALABILITY AND FUTURE PROJECTIONS

The availability of multi-kernel event-driven ConvModules

allows the assembly of arbitrary scale event-driven Convolu-

tional Neural Networks (ConvNets). Here we try to estimate a

futuristic projected performance of such systems.

The circuit techniques presented in this paper for building a

64 64 pixel ConvModule in a 5.5 5.8 mm die in 0.35 m can

be extrapolated for modern 40 nm technologies. Pixel dimen-

sions could be expected to be reduced by a factor of about 10.

Consequently, increasing die area to about 1 cm , would make

it realistic to handle pixel arrays of over one mega pixel, while

emulating about one giga synapses (with projection fields of size

32 32). Handling such large arrays results also in longer event

words, which would benefit from some kind of “event compres-

sion” technique to optimize communication bandwidth [47]. In



order to improve event throughput, processing pixels should

be tiled into slices to avoid very long lines and pipeline/paral-

lelize event processing. Off-chip event communication should

be done serially [48], [49], and possibly using multiple I/O ports

to improve inter-chip throughput. All this could probably im-

prove event throughput by a factor of 100 with respect to the

presented prototype. Consequently, we might consider as vi-

able, event throughputs in the order of 10 –10 eps (events per

second) per chip.

Then, many of these chips (in the order of a hundred) could

be assembled on a single PCB in a 2D grid array [50]. One

such (stackable) PCB could emulate a neural ConvNet structure

holding in the order of 10 neurons with 10 synapses, which

is about 1% of the human brain.

However, the most interesting way of scaling (besides

scaling pixel array size) is to allow for multiple size-config-

urable ConvModules with configurable inter-module AER

links within a single NoC (network on chip) die. This way, a

single mega pixel (or mega neuron) size 40 nm NoC die could

hold large numbers of individual ConvModules capable of

interchanging intra-chip events at extremely high speeds. Note

that ConvNets have usually large pixel array ConvModules

in the first layers, but then their size reduces in subsequent

layers, while the number of ConvModules is maximum at

intermediate layers. For example, a standard face recognition

ConvNet for 640 480 pixel inputs [32] uses four sequential

layers: the first layer with 2.4 10 neurons (in 8 ConvMod-

ules each with one 5 5 kernel), the second with 1.5 10

neurons (in 20 ConvModules, each with 8 5 5 kernels), the

third with 3.5 10 neurons (in 20 ConvModules, each with

20 5 5 kernels), and the fourth with 1.6 10 neurons (in 9

ConvModules, each with 180 1 1 kernels). Thus, total number

of neurons is about 4.4 10 , which could be fit into about five

40 nm 1 cm NoC dies.

Regarding size of kernel-RAM, reported ConvNet systems

for object recognition type tasks use kernel sizes in the order

of 10 10 at the most, for VGA-like input images. On the

other hand, what is more relevant for scaling up ConvNets

is to have room for enough kernels per ConvModule. The

maximum number of kernels per ConvModule is usually given

by the number of ConvModules in the previous layer, which

is normally less than a hundred. Therefore, when scaling up,

each ConvModule should allow for about 100 10 10 kernels,

at least, or 10 kernel values.

Regarding speed performance, since event-driven processing

presents the pseudo-simultaneity property, recognition would be

performed as soon as a sensor provides enough representative

input events. A 128 128 pixel DVS sensor observing moving

objects (as in Fig. 3) generates 10–100 keps, and a time be-

tween 10–40 ms provides enough events to recognize objects

moving at normal life speeds (the high-speed card symbols in

Fig. 15 needed about 10 times less time). Shaking the DVS

sensor to observe static objects increases event rate to about

1–2 Meps. A 512 512 pixel DVS sensor would generate 16

times more events, but then objects can be recognized in less

time, as enough representative events would be available about

16 times earlier. Consequently, we estimate that a reasonable

Fig. 16. Illustration of High-Speed Multi-kernel operation. (a) Setup: An

Event-Driven Vision Sensor is observing a 5 KHz spiral on a phosphor

oscilloscope (see Fig. 1) and is sending its output events to the Convolution

Chip through an event merger module; the convolution module output is fed

back to its input through the merger module. The ConvModule selects kernel

(b) if the event comes from the vision sensor, or kernel (c) if it comes from its

own output. Kernel (b) intends to highlight a circular shape of about 5 pixel

diameter, while kernel (c) implements a soft winner-takes-all type of inter-pixel

competition through mutual inhibition and slight self-amplification. (d) The

result is that the ConvModule output events (large circles) follow closely the

center of the oscilloscope trace (small dots) with an average update time of

about 10 s.

recognition time for an event-driven ConvNet fed by a 512 512

pixel sensor could be in the order of a millisecond (indepen-

dently of its scale).



TABLE III
FRAME-BASED CONVNETS FOR FACE DETECTION

VI. COMPARISON WITH STATE-OF-THE-ART FRAME-BASED

GPU AND FPGA CONVNETS

Some researchers have reported GPU and FPGA-based

hardware realizations of sophisticated Frame-based ConvNets

for recognition type of applications, showing extraordinary

performance figures, for both recognition rates and processing

times. Table III summarizes recognition delays of three ex-

ample systems that perform face recognition with ConvNets,

implemented either with GPUs [33] or FPGAs [30], [32], [34],

[35], when using VGA-like size input images. Nasse’s imple-

mentation on an Nvidia GeForce 8800GT GPU needs 209 ms

per input frame. NEC’s system implemented on a Virtex-5

FPGA requires 160 ms, while Yale/NYU’s system on a recent

Virtex-6 FPGA can do a similar task in 6 ms.

The main advantage of Frame-based realizations is that

the hardware can be time-multiplexed by fetching interme-

diate data between the processor and external memory, at the

cost of slowing down speed performance. Time-multiplexing

is not possible with Event-driven hardware as each neuron

holds its state at each instant. On the other hand, one main

advantage of event-driven hardware is that, because of the

pseudo-simultaneity property, processing delay is kept approx-

imately constant as hardware scales up. Another advantage is

that up-scaling is simple by simply assembling more modules

through asynchronous interconnect AER buses. However, large

scale event-driven ConvNets are still under development.

VII. CONCLUSIONS

We have presented an Event-Driven Multi-Kernel Convo-

lution Module chip for performing 2D kernel convolutions on

visual data coming from Event-Driven Dynamic Vision Sen-

sors (DVS). A ConvModule proof-of-concept test prototype

has been fabricated in a 0.35 m CMOS process, occupies

a small area of 5.5 5.8 mm , and can process an array of

64 64 pixels. Consequently, it is quite realistic to integrate

several tens of such modules in a Network on Chip (NoC)

die fabricated in a modern sub-100-nm CMOS technology.

The presented ConvModule includes multi-kernel capability,

which is a key property for assembling modular hierarchical

multi-ConvModule systems for object recognition systems,

following the computational paradigm known as “Convolu-

tional Neural Networks”. Event-driven sensing and processing

systems turn out to present very high-speed visual processing

and recognition capability, as events produced by the sensors

are processed immediately by subsequent stages, event by

event, resulting in “pseudo-simultaneity” between input and

output visual information event streams. We have illustrated

this by a series of experiments on static and dynamic visual

event-driven data. The presented ConvModule could discrim-

inate between propellers of different shapes rotating at speeds

of up to 2000 revolutions per second, it could detect playing

card symbols when browsing cards at an average rate of 8 ms

per card and producing recognition events while the card is still

being displayed, or it could detect and follow the center of an

oscilloscope trace rotating at 5 KHz.

Future work will concentrate on assembly and reconfig-

urability strategies for assembling tens or hundreds of Event-

Driven ConvModules for generic object recognition tasks.

ACKNOWLEDGMENT

The authors are grateful to Tobi Delbrück for valuable dis-

cussions, providing an initial AER temporal contrast retina [7]

and the jAER open software [46], Anton Civit’s group for the

AER interfacing and data record/playback boards [44], Philipp

Häfliger for the CAVIAR PCB for holding the ConvChip and

the lens mount holder for the retina, and Eugenio Cullurciello

and Clement Farabert for valuable discussions. The authors are

also grateful to Simon Thorpe for valuable discussions on event

based processing and suggesting the idea of implementing the

multi-kernel capability.

REFERENCES

[1] E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A biomor-
phic digital image sensor,” IEEE J. Solid-State Circuits, vol. 38, pp.
281–294, 2003.

[2] P. F. Ruedi et al., “A 128 128 pixel 120-dB dynamic-range vision
sensor chip for image contrast and orientation extraction,” IEEE J.
Solid-State Circuits, vol. 38, pp. 2325–2333, 2003.

[3] M. Barbaro, P. Y. Burgi, A. Mortara, P. Nussbaum, and F. Heitger, “A
100 100 pixel silicon retina for gradient extraction with steering filter
capabilities and temporal output coding,” IEEE J. Solid-State Circuits,
vol. 37, pp. 160–172, 2002.

[4] C. Shunshun and A. Bermak, “Arbitrated time-to-first spike CMOS
image sensor with on-chip histogram equalization,” IEEE Trans. VLSI
Syst., vol. 15, no. 3, pp. 346–357, Mar. 2007.

[5] M. Azadmehr, H. Abrahamsen, and P. Hafliger, “A foveated AER im-
ager chip,” presented at the IEEE Int. Symp. Circuits and Syst., Kobe,
Japan, 2005.

[6] R. J. Vogelstien, U. Mallik, E. Culurciello, R. Etienne-Cummings, and
G. Cauwenberghs, “Spatial acuity modulation of an address-event im-
ager,” in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, 2004,
pp. 207–210.

[7] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 128 120 dB 15 s
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-
State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[8] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Bar-
ranco, “A 3.6 m latency asynchronous frame-free event-based dy-
namic vision sensor,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp.
1443–1455, Jun. 2011.

[9] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic
chip I: Outer and inner retina models,” IEEE Trans. Biomed. Eng., vol.
51, no. 4, pp. 657–666, Apr. 2004.

[10] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic
chip II: Testing and results,” IEEE Trans. Biomed. Eng., vol. 51, no. 4,
pp. 667–675, Apr. 2004.

[11] C. Posch, D.Matolin, and R.Wohlgenannt, “AQVGA 143 dB dynamic
range frame-free PWM image sensor with lossless pixel-level video
compression and time-domain CDS,” IEEE J. Solid-State Circuits, vol.
46, no. 1, pp. 259–275, Jan. 2011.



[12] C.M.Higgins and S. A. Shams, “A biologically inspiredmodular VLSI
system for visual measurement of self-motion,” IEEE Sensors J., vol.
2, no. 6, pp. 508–528, Dec. 2002.

[13] E. Ozalevli and C. M. Higgins, “Reconfigurable biologically inspired
visual motion system using modular neuromorphic VLSI chips,” IEEE
Trans. Circuits Syst. I, vol. 52, no. 1, pp. 79–92, 2005.

[14] K. Boahen and A. Andreou, “A contrast-sensitive retina with recip-
rocal synapses,” Advances in Neural Information Processing Systems
(NIPS), vol. 4, pp. 764–772, 1992.

[15] J. Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona,
and B. Linares-Barranco, “A spatial contrast retina with on-chip
calibration for neuromorphic spike-based AER vision systems,” IEEE
Trans. Circuits Syst. I, vol. 54, no. 7, pp. 1444–58, 2007.

[16] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Bar-
ranco, “A five-decade dynamic range ambient-light-independent cali-
brated signed-spatial-contrast AER retina with 0.1 ms latency and op-
tional time-to-first-spike mode,” IEEE Trans. Circuits Syst. I, vol. 57,
no. 10, pp. 2632–2643, Oct. 2010.

[17] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in
the cat’s striate cortex,” J. Physiol., no. 148, pp. 574–591, 1959.

[18] E. T. Rolls and G. Deco, Computational Neuroscience of Vision. Ox-
ford, U.K.: Oxford University Press, 2002.

[19] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust
object recognition with cortex-like mechanisms,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 3, pp. 411–426, Mar. 2007.

[20] T.Masquelier and S. Thorpe, “Unsupervised learning of visual features
through spike timing dependent plasticity,” PLoS Comp. Biol., vol. 3,
no. 2, p. e31, 2007, doi 10.1371/journal.pcbi.0030031.

[21] K. Fukushima, “Visual feature extraction by a multilayered network
of analog threshold elements,” IEEE Trans. Syst. Sci. Cybern., vol.
SSC-5, no. 4, pp. 322–333, Oct. 1969.

[22] B. E. Boser, E. Säckinger, J. Bromley, Y. LeCun, and L. D. Jackel, “An
analog neural network processor with programmable topology,” IEEE
J. Solid-State Circuits, vol. 26, no. 12, pp. 2017–2025, Dec. 1991.

[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551,
1989.

[24] K. Chellapilla, M. Shilman, and P. Simard, “Optimally combining a
cascade of classifiers,” in Proc. Document Recognition and Retrieval,
Jan. 2006, vol. 13, Electronic Imaging, 6067.

[25] R. Vaillant, C. Monrocq, and Y. LeCun, “Original approach for the
localisation of objects in images,” IEE Proc. Vision, Image, and Signal
Processing, vol. 141, no. 4, pp. 245–250, Aug. 1994.

[26] M. Osadchy, Y. LeCun, and M. Miller, “Synergistic face detection and
pose estimation with energy-based models,” J. Mach. Learn. Res., vol.
8, pp. 1197–1215, May 2007.

[27] C. Garcia and M. Delakis, “Convolutional face finder: A neural archi-
tecture for fast and robust face detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 26, no. 11, pp. 1408–1423, 2004.

[28] F. Nasse, C. Thurau, and G. A. Fink, “Face detection using gpu based
convolutional neural networks,”Computer Analysis of Images and Pat-
terns, vol. 5702/2009, Lecture Notes in Computer Science, pp. 83–90,
2009.

[29] A. Frome, G. Cheung, A. Abdulkader,M. Zennaro, B.Wu, A. Bissacco,
H. Adam, H. Neven, and L. Vincent, “Large-scale privacy protection in
Google Street View,” in Int. Conf. Comput. Vision (ICCV’09), Kyoto,
Japan, 2009, pp. 2373–2380.

[30] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-
based processor for convolutional networks,” in Proc. Int. Conf. Field
Programmable Logic and Applications, Prague, Czech Republic, 2009,
pp. 32–37.

[31] C. Farabet, B. Martini, P. Akserod, S. Talay, Y. LeCun, and E. culur-
ciello, “Hardware accelerated convolutional neural networks for syn-
thetic vision systems,” in Proc. IEEE Int. Symp. Circuits and Systems
(ISCAS), Paris, France, 2010, pp. 257–260.

[32] M. Sankaradas, V. Jakkul, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, “A massively parallel coprocessor
for convolutional neural networks,” in Proc. 20th IEEE Int. Conf.
Application-Specific Systems, Architecture, and Processing., 2009,
pp. 53–58.

[33] F. Nasse, C. Thurau, and G. A. Fink, “Face detection using GPU-based
convolutional neural networks,” Computer Analysis of Images and
Patterns, vol. 5702, Lecture Notes in Computer Science, pp. 83–90,
2009.

[34] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P.
Akselrod, and S. Talay, “Large-scale FPGA-based convolutional net-
works,” inMachine Learning on Very Large Data Sets, R. Bekkerman,
M. Bilenko, and J. Langford, Eds. Cambridge, U.K.: Cambridge Uni-
versity Press, 2011.

[35] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y.
LeCun, “NeuFlow: A runtime-reconfigurable dataflow processor for
vision,” in Proc. Embedded Computer Vision Workshop (ECVW’11),
2011 [Online]. Available: https://engineering.purdue.edu/elab/re-
search/svision/svision.html

[36] M. A. Mahowald, “VLSI analogs of neuronal visual processing: A
synthesis of form and function,” Ph.D. dissertation, Computation and
Neural Systems, Caltech, Pasadena, CA, 1992.

[37] T. Serrano-Gotarredona, A. G. Andreou, and B. Linares-Barranco,
“AER image filtering architecture for vision processing systems,”
IEEE Trans. Circuits Syst. I, vol. 46, no. 9, pp. 1064–1071, Sep. 1999.

[38] P. Venier, A. Mortara, X. Arreguit, and E. A. Vittoz, “An integrated
cortical layer for orientation enhancement,” IEEE J. Solid-State Cir-
cuits, vol. 32, no. 2, pp. 177–186, Feb. 1997.

[39] T. Y. W. Choi, P. Merolla, J. Arthur, K. Boahen, and B. E. Shi, “Neu-
romorphic implementation of orientation hypercolumns,” IEEE Trans.
Circuits Syst. I, vol. 52, no. 6, pp. 1049–1060, Jun. 2005.

[40] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jiménez,
and B. Linares-Barranco, “A neuromorphic cortical-layer microchip
for spike-based event processing vision systems,” IEEE Trans. Circuits
Syst. I: Reg. Papers, vol. 53, no. 12, pp. 2548–2566, Dec. 2006.

[41] L. Camuñas-Mesa, A. Acosta-Jiménez, T. Serrano-Gotarredona, and
B. Linares-Barranco, “A 32 32 pixel convolution processor chip for
address event vision sensors with 155 ns event latency and 20 Meps
throughput,” IEEE Trans. Circuits Syst. I, vol. 58, no. 4, pp. 777–790,
Apr. 2011.

[42] K. Boahen, “Point-to-point connectivity between neuromorphic chips
using address events,” IEEE Trans. Circuits Syst. II, vol. 47, no. 5, pp.
416–434, May 2000.

[43] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” Nature, vol. 381, pp. 520–522, Jun. 6, 1996.

[44] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Bar-
ranco, R. Paz-Vicente, F. Gómez-Rodríguez, L. Camuñas-Mesa,
R. Berner, M. Rivas, T. Delbrück, S. C. Liu, R. Douglas, P.
Häfliger, G. Jiménez-Moreno, A. Civit, T. Serrano-Gotarredona,
A. Acosta-Jiménez, and B. Linares-Barranco, “CAVIAR: A 45
k-neuron, 5 M-synapse, 12 G-connects/sec AER hardware sen-
sory-processing-learning-actuating system for high speed visual
object recognition and tracking,” IEEE Trans. Neural Netw., vol. 20,
no. 9, pp. 1417–1438, Sep. 2009.

[45] Microscopic Particle Tracking Using a DVS Retina. Inst. Neuroinfor-
matics, Zurich, Switzerland. [Online]. Available: http://siliconretina.
ini.uzh.ch

[46] jAER Open Source Project. Inst. Neuroinformatics, Zurich, Switzer-
land. [Online]. Available: http://jaer.wiki.sourceforge.net

[47] D. G. Chen, A. Bermak, and C. Y. Tsui, “A low-complexity image
compression algorithm for Address-Event Representation (AER)
PWM image sensors,” in Proc. IEEE Int. Symp. Circuits and Systems
(ISCAS 2010), Rio de Janeiro, Brazil, 2010, pp. 2825–2828.

[48] C. Zamarreño-Ramos, T. Serrano-Gotarredona, and B. Linares-Bar-
ranco, “An instant-startup jitter-tolerant Manchester-encoding serial-
izer/deserializar scheme for event-driven bit-serial LVDS inter-chip
AER links,” IEEE Trans. Circuits Syst. I, in press, doi: 10.1109/TCSI.
2011.2151070.

[49] C. Zamarreño-Ramos, T. Serrano-Gotarredona, B. Linares-Barranco,
R. Kulkarni, and J. Silva-Martinez, “Voltagemode driver for low power
transmission of high speed serial AER links,” in Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS 2011), Rio de Janeiro, Brazil, May 15–18,
2011, pp. 2433–2436.

[50] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and S.
Furber, “Spinnaker: Mapping neural networks onto a massively-par-
allel chip multiprocessor,” in Proc. IEEE Int. Joint Conf. Neural Net-
works (IJCNN), Jun. 2008, pp. 2849–2856.


