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Abstract 

Evidence accumulation models have been used to describe the cognitive processes underlying 

performance in tasks involving two-choice decisions about unidimensional stimuli, such as 

motion or orientation. Given the multidimensionality of natural stimuli, however, we might 

expect qualitatively different patterns of evidence accumulation in more applied perceptual 

tasks. One domain that relies heavily on human decisions about complex natural stimuli is 

fingerprint discrimination. We know little about the ability of evidence accumulation models 

to account for the dynamic decision process of a fingerprint examiner resolving if two 

different prints belong to the same finger or not. Here, we apply a dynamic decision-making 

model — the linear ballistic accumulator (LBA) — to fingerprint discrimination decisions in 

order to gain insight into the cognitive processes underlying these complex perceptual 

judgments. Across three experiments, we show that the LBA provides an accurate description 

of the fingerprint discrimination decision process with manipulations in visual noise, speed-

accuracy emphasis, and training. Our results demonstrate that the LBA is a promising model 

for furthering our understanding of applied decision-making with naturally varying visual 

stimuli. 

 

Keywords: Evidence accumulation, linear ballistic accumulator decision models, fingerprint 

discrimination, perceptual expertise.  
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Evidence accumulation models provide a detailed description of the processes underlying 

rapid human decision making (Donkin & Brown, 2018). The models assume that a decision-

maker samples evidence from the environment until a threshold amount of evidence is 

accumulated, at which point an overt response is triggered. Unlike ‘static’ decision models, 

such as signal detection (Green & Swets, 1966), evidence accumulation models account for 

choice probability and response times, as well as the interaction between the two. The appeal 

of an evidence accumulation approach to modelling decisions is that it can reveal novel facets 

of the decision process beyond raw response time, accuracy, and other static measures of 

performance. While these models have traditionally been applied to two-choice discrimination 

tasks where the stimuli vary artificially along a single dimension, such as motion or 

orientation detection tasks (for a review see Ratcliff & McKoon, 2008), their success has 

generated interest in potential applications beyond the lab. For instance, how these models 

fare with decisions about highly variable, multidimensional or noisy stimuli encountered in 

applied areas such as air traffic control, medical diagnosis or forensic science is unknown. 

Recent efforts have shown that accumulation models can account for behavior amidst 

additional task complexity. For example, this class of model has been applied to air traffic 

control conflict detection tasks (Loft, Bolland, Humphreys, & Neal, 2009; Vuckovic, 

Kwantes, Humphreys, & Neal, 2014), unmanned aerial vehicle simulation target detection 

tasks (Palada, Neal, Vuckovic, Martin, Samuels, & Heathcote, 2016), and medical image 

decision-making tasks (Trueblood et al., 2018). Using naturally varying stimuli (e.g., medical 

images) comprising covarying visual features, or more controlled stimuli (e.g., simulated 

targets) involving simpler decision rules, these prior studies have probed the generality of 

several different evidence accumulation models. Extending these models even further afield 

will help to reveal how closely each parameter tracks decision processes with different kinds 

of naturally varying stimuli, tasks, and participant samples.  
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Here we apply the linear ballistic accumulator model (LBA; Brown & Heathcote, 2008) 

to a fingerprint discrimination task where participants are faced with accumulated evidence 

about naturalistic stimuli that bear a strong resemblance to forensic fingerprint evidence 

encountered in the field. No such model has been used to describe how people arrive at a 

decision about the identity or source of forensic specimens—fingerprints, handwriting, 

firearms or hair—despite the analogous “evidence” accumulation nature of such forensic 

investigative tasks. Across three experiments, we examine whether the LBA can provide a 

coherent account of decision-making in a task that closely resembles the process of deciding 

whether a crime scene print matches a suspect (“same” fingerprints) or not (“different” 

fingerprints). Our first experiment examines the ability of the LBA to account for patterns of 

choices and response times in a fingerprint discrimination task. Our second experiment 

examines the effects of standard manipulations such as speed-accuracy emphasis and stimulus 

difficulty to test whether the model parameters are sensitive to factors they should be, 

according to theory. Our third experiment examines how a training intervention affects the 

cognitive processes underlying finger discrimination, as reflected by the model parameters.  

In the following sections, we review previous literature on fingerprint discrimination, 

describe how fingerprints could benefit from evidence accumulation modelling, and illustrate 

the application of the LBA to fingerprints.  

Fingerprint Discrimination 

Fingerprint discrimination is done by humans, not computers. When a fingerprint is found at a 

crime scene a human examiner—often a police officer—compares the print to a known 

suspect or to a list of candidate prints. They position two prints side-by-side, physically or on 

a computer screen, and visually compare them to judge whether they came from the same 

finger or two different fingers. Compared to novices, these examiners are remarkably accurate 

at discriminating prints (Tangen, Thompson & McCarthy, 2011), particularly when they are 

highly similar in the eyes of a computer algorithm (Thompson, Tangen & McCarthy, 2013b). 



   5 

 

Experts tend to show a conservative response bias in these experiments, such that they err on 

the side of making more errors that could allow a guilty person to escape detection than errors 

that could falsely incriminate an innocent person (Thompson et al., 2013a).  

Other experiments on the nature of fingerprint expertise have revealed that fingerprint 

experts can make quick and relatively accurate decisions in noise and under time pressure 

compared to novices (Thompson & Tangen, 2014). They can also maintain this expertise 

across different fingerprint tasks that bear less of a resemblance to their daily work. For 

example, they can tell if two prints were left by different fingers of the same individual more 

accurately than novices (Searston & Tangen, 2017a), and they show even greater expertise in 

distinguishing common fingerprint patterns such as “loops” and “whorls” in a search task 

(Searston & Tangen, 2017b). However, their expertise also appears to be constrained by their 

specific set of experiences. For example, a longitudinal investigation of the development of 

fingerprint expertise revealed that examiners’ performance on a range of fingerprints tasks 

improved as they accumulated 12 months of formal training with fingerprints, but their 

performance on a series of analogous tasks with inverted face stimuli did not improve 

(Searston & Tangen, 2017c). 

Signal detection models have been the predominant class of model used to understand 

decisions in these fingerprint discrimination experiments (Thompson et al., 2013a; Searston, 

Tangen & Eva, 2016). These models have allowed researchers to examine factors that 

influence decision parameters such as response bias (i.e., whether people are biased toward 

responding “same” vs. “different”) and discriminability (i.e., the ability of the decision maker 

to discriminate same fingers vs. different fingers) separately. For instance, trainees with five 

weeks to six months experience can be more conservative in their responding (i.e., tended to 

say “different” more frequently) than novices, who displayed a liberal bias when comparing 

fingerprints (i.e., tended to say “same” more on the same task; Thompson et al., 2013b). 

Fingerprint experts demonstrate superior discriminability compared to novices irrespective of 
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their response bias (Searston & Tangen 2017a; Searston & Tangen, 2017b). These models 

have also been used to show how contextual information (e.g., case reports of crimes that vary 

in severity) can influence response bias without necessarily reducing the discriminability of 

prints from the same individual (Searston, Tangen & Eva, 2016).   

The application of signal detection theory to fingerprint discrimination decisions has 

provided insights into how experts differ from novices, how context can sway people’s 

decisions, and how people’s discriminability can vary with experience. Despite the value of 

this model for helping to understand fingerprint discrimination, there are aspects of the 

underlying decision process that remain obscured. That is, signal detection models are static 

models that do not make use of the response time distribution and so they do not account for 

the dynamics of the decision process. An increase in hits together with a decrease in false 

alarms, for example, is typically interpreted as an increase in discriminability. This pattern of 

results, however, could also be caused by increases in the response threshold that determines 

when the evidence for a response alternative is sufficient to trigger an overt response (e.g., 

Rae, Heathcote, Donkin, Lee, & Brown, 2014). These two processes can be disentangled 

using evidence accumulation models, which consider both response times and accuracy.  

Evidence Accumulation Models  

The term ‘evidence accumulation model’ refers to a class of cognitive model that describes 

the process underlying rapid human decision making. These models share the basic 

assumption that the decision maker accumulates evidence for response alternatives until a 

threshold amount of evidence is reached, at which point an overt response is triggered. 

Although modern evidence accumulation models often yield similar conclusions about the 

decision process regardless of which model is considered, the models make different 

assumptions about the underlying architecture (Donkin, Brown, Heathcote, & Wagenmakers, 

2011).  
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Evidence accumulation models have developed over the last 50 years with architectural 

extensions added over time to account for more complex empirical observations (see Donkin 

& Brown, 2018 for a more detailed review). Early models assumed that a single accumulator 

indexed the difference in evidence for each choice followed a random walk process; response 

time variability was captured by the moment-to-moment change in evidence (Stone, 1960). 

Subsequent models used a continuous accumulation process, or a diffusion process, and added 

trial-to-trial variability in the evidence accumulation start point and the mean rate of evidence 

accumulation. These added sources of variability captured differences in response times for 

correct and error response times (Laming 1968; Ratcliff, 1968). The current diffusion model 

has also added trial-to-trial variability in non-decision processes to account for variability in 

the fastest response times across conditions (Ratcliff & McKoon, 2008). Multiple accumulator 

models have also been proposed, which assume that evidence accumulates independently for 

each response alternative(s). The leaky accumulator model (Usher & McClelland, 2001) 

assumed response competition between accumulators and within-trial randomness. The latter 

assumption was subsequently omitted in the simplified ballistic accumulator model (BA; 

Brown & Heathcote, 2005). The linear ballistic accumulator (LBA; Brown & Heathcote, 

2008) is a further simplification of the BA model, as it assumes linear evidence accumulation 

(Brown & Heathcote, 2005).  

The success of evidence accumulation models stems from their ability to provide 

insights into the latent cognitive processes that underlie choice. The models are typically 

applied to tasks using simple stimuli that produce rapid decision times (<1.5s), such as 

memory recognition (“was it recently encountered?”), motion discrimination (“is it moving to 

the left or right?”) and lexical decisions (“is it a word or non-word?”). The pairing of evidence 

accumulation models with these types of tasks has facilitated our understanding of a range of 

issues, including sleep deprivation (Ratcliff & Van Dongen, 2011), schizophrenia (Heathcote 

et al., 2015), and anxiety (Ho et al., 2014).  
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There is recent evidence that the LBA can be used to account for decisions in tasks that 

are inspired by applied domains and produce extended mean response times (~2.5s; e.g., 

Palada et al., 2018). For example, Strickland et al. (2019) and Boag et al. (2019) used the 

LBA to understand the processes underlying prospective memory in a maritime surveillance 

task and air traffic control task, respectively. The LBA has also been used to understand how 

individuals adapt to time pressure in an applied multi-stimulus environment (Palada et al., 

2018), and in a dual-task environment with multiattribute stimuli (Palada et al., 2016; Palada, 

Neal, Strayer, Ballard & Heathcote, 2019). However, these studies used artificial or controlled 

stimuli which were quite removed from their inspirations in the field. That is, these studies 

opted for a high level of control to ensure that the tasks were amenable to evidence 

accumulation models. For example, the maritime surveillance task used by Strickland et al. 

(2019) used basic target features and classification rules, and the air traffic control task used 

in Boag et al. (2019) only presented one pair aircraft pair per trial. In this paper, we examine 

whether the LBA can provide a coherent account of decisions in the domain of fingerprint 

discrimination using a task which bears a strong resemblance to the task in the field where the 

stimuli are far less controlled.   

The LBA model architecture is shown in Figure 1. In fingerprint discrimination, a 

person must decide whether pairs of fingerprints come from the same finger or from different 

fingers. In this case, the model includes two evidence accumulators, each corresponding to a 

different response alternative (“same” finger vs. “different” finger). The LBA assumes that 

the level of evidence in each accumulator at the start of the decision process is sampled from a 

uniform distribution with a lower boundary of zero and an upper boundary of A. The rate of 

evidence accumulation within a trial is sampled from a normal distribution with mean v and 

standard deviation sv. The rate of evidence accumulation for each accumulator depends on the 

stimulus. For example, in cases where the two fingerprints come from the same finger, the 

mean rate of evidence accumulation will be higher for the accumulator corresponding to the 
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“same” finger response than for the accumulator corresponding to the “different” finger 

response. All else being equal, this means that the “same” finger response is more likely to be 

triggered. A response is triggered when level of evidence in an accumulator breaches the 

threshold (b) associated with that response alternative. As the two accumulators race towards 

their respective response threshold, the winning accumulator will make the corresponding 

response (i.e., a “same” finger response in Figure 1). The response threshold may be the same 

between the different alternatives (as in Figure 1), or it may differ. Finally, the model includes 

a non-decision time parameter (Ter). Observed response times are accounted for by first 

partitioning the response times into non-decision time and decision time components. Non-

decision time reflects the sum of times for stimulus encoding and response production. The 

decision time, and observed responses, are reflected by the inputs and operation of the 

evidence accumulation model; hence, the two evidence accumulators racing towards the 

threshold. 

  

Figure 1. The standard Linear Ballistic Accumulator model applied to fingerprint 

identification and associated parameters: Response threshold (b), mean rate (v), rate 

variability (sv), start-point (A), and non-decision time (Ter).  

  
The LBA can be used to quantify the latent cognitive processes underlying decision 

making. The model captures response caution (i.e., the amount of information required to 
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reach a decision) and response bias via the response threshold parameter. Lower response 

thresholds produce quicker, more error prone responses, because less evidence is feeding into 

the final decision. Higher response thresholds produce slower, but more accurate responses, 

because more evidence is being considered. Differences in thresholds between response 

alternatives produce a bias in favor of the response with the lower threshold, because less 

evidence is required to trigger that response than the competing response(s). The LBA 

captures the discriminability of the stimulus via the rate parameters. The mean rate between 

the two evidence accumulators can be used to account for changes in the speed of information 

processing and the rate variability parameters captures the heterogeneity in the quality of the 

stimulus and attention (Palada et al., 2018; Ratcliff, 1978). 
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Modeling Fingerprint Discrimination 

We use three experiments to test the ability of the LBA to account for fingerprint 

discrimination decisions made by novices. Experiment 1 provides an initial test of whether the 

LBA is able to account for the patterns of choices and response times using an experiment in 

which the only manipulation is whether the stimuli were from the same finger versus different 

fingers. Experiment 1, to our knowledge, provides the first application of evidence 

accumulation models to fingerprint discrimination. Experiment 2 examines whether the 

parameters of the LBA are sensitive to manipulations of speed-accuracy emphasis and 

stimulus noise. We use these traditional benchmark manipulations to test whether the 

parameters of the model can be interpreted in a meaningful way, consistent with the 

interpretations made in studies involving other types of decisions (Donkin & Brown, 2018). 

Experiment 3 uses the LBA to examine the cognitive processes underlying the effects of 

training on fingerprint discrimination.  

Experiment 1 

In Experiment 1, we take the first step in examining how the LBA can be used to understand 

fingerprint discrimination decisions. Specifically, we test whether the model can account for 

the empirical patterns of choices and response times when individuals are faced with the task 

of discriminating pairs of fingerprints from the same finger versus different fingers.  

Method 

Participants & Stimuli 

Thirty-six psychology undergraduate students (28 female and 8 male; mean age = 20.19 

years, SD = 4.61) from The University of Queensland participated in this experiment for 

course credit. The experiment was approved by the University of Queensland Human 

Research Ethics Committee. The stimuli included 195 fingerprint trios, each consisting of a 

simulated crime scene print, a fully-rolled print from the same finger, and a fully-rolled print 
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from a different finger. The “different” prints were sampled randomly for each participant 

from a pool of 195 prints collected from different individuals. The images were sourced from 

the Forensic Informatics Biometric Repository (Thompson et al., 2013a), and we cropped 

them to 512×512 pixels, isolating the print in the center of the image. Ninety-six fingerprint 

pairs (48 same-finger prints and 48 different-finger prints) were generated for each 

participant. A random sample of 48 crime-scene prints, sampled from the pool of 195, were 

paired with their corresponding “same” print, and a separate set of 48 crime-scene prints, 

sampled randomly from the remaining pool of 147, were paired with their corresponding 

“different” print. 

Procedure 

After reading an information sheet about the experiment and watching an instructional video 

with an example same-finger and different-finger trial, we presented participants with 96 

fingerprint pairs, one pair at a time. Participants were instructed to judge whether the two 

prints belong to the same finger, or two different fingers. They provided their judgments by 

pressing the “Z” or “/” key.  On pressing one of the two response keys or after 10 seconds, the 

two prints disappeared, with a 1 second interval before the next pair were displayed. 

Participants were encouraged, in the instructional video, to respond within 10 seconds; not 

doing so recorded an “NA” response. We collected participants’ keypresses and time to 

respond on each trial. 

We randomly varied whether a “Z” keypress indicated a match (i.e., same-finger prints) 

or mismatch response (i.e., different-finger prints). A random selection of participants were 

instructed to respond by pressing “Z” if they thought the two prints were from the same finger 

(and “/” if they thought they were from different fingers), and the remaining participants 

responded by pressing “/” if they thought the two prints were from the same finger (and “Z” if 

they thought they were from different fingers). Each participant’s particular response-key 

arrangement was reflected in the instructional video they viewed at the beginning of the 
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experiment. We also displayed a 1376×848 image of the keyboard at the bottom center of the 

computer screen throughout the experiment with the labels “Same” and “Different” in bold, 

black text above the two corresponding response keys. The keyboard image was 

semitransparent, other than the two response keys and the labels (see Figure 2 for a screenshot 

of what participants’ see on a given trial).  

 

Figure 2. A screenshot of a single trial.  Participants in all three experiments were presented 

with the same basic visual display of two fingerprints (same-finger prints in this instance) and 

a keyboard response map on each trial. 

Results 

Censoring of rapid RTs was not required as the fastest observed RT (311ms) was sufficient to 

make a valid decision. Extended RTs (<10s) were not censored so that we could account for 

the entire distribution of RT performance. We removed three participants with a high non-

response rates (>10%), where one participant had a 20% non-response rate, and two 

participants both had a 27% non-response rate. The remaining participants had 10% or less 

missing data.  
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Discrimination Performance 

We examined the effect of the stimulus type manipulation on the RTs for correct responses, 

the RTs for incorrect responses, and accuracy. These analyses were run using R (R 

Development Core Team, 2016), using the brms package to conduct Bayesian generalized 

linear mixed-models (GLMM; Bürker, 2017). Priors were consistent across outcomes 

variables (Cauchy prior; location = 0, scale = 2) for fixed effects and random intercepts; the 

latter was zero-truncated. Other priors used the default specifications in brms. We present the 

posterior estimates of regression coefficients (b) with two-tailed 95% credible intervals (CIs) 

presented in square brackets. We infer credible effects where the CI does not cross zero 

(Kruschke, 2014).  

Correct and incorrect RTs quantiles (0.1, 0.5, and 0.9), and mean accuracy are shown in 

Figure 3. Stimulus type did not have a credible effect on correct RTs (b = -0.02 [-0.04, 0.00]; 

same-finger = 3.15s vs. different-finger 3.27s) or on incorrect RTs (b = 0.03 [0.00, 0.06]; 

3.64s vs. 3.43s). There was a credible effect of stimulus type on accuracy, such that 

participants were less accurate when responding to same-finger prints compared to different-

finger prints (b = -0.11 [-0.19, -0.04]; 67% vs. 71%).  

LBA Modeling and Analysis 

To apply the LBA, the researcher must specify which model parameters should be allowed to 

vary with experimental factors and accumulator related factors. Table 1 outlines the model 

parameterizations and the total number of parameters for the three experiments. For 

Experiment 1, mean rate (v) is allowed to vary depending on the stimulus factor (“same” 

finger vs. “different” fingers). We allow mean rate to vary with a “match” factor, which 

reflects whether the response that the accumulator triggers “matched” the stimulus presented 

in the trial. In other words, the match factor indicates whether the accumulator corresponded 

to the correct response for the presented stimulus. The accumulator for the correct response is 

referred to as the “matching” accumulator, because the response it triggers “matches” the 
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stimulus. The accumulator for the incorrect response is referred to as the “mismatching” 

accumulator, because the response it triggers “mismatches” the stimulus. We allow rate 

variability (sv) to vary by the match and stimulus factors, with the latter hypothesized to 

account for heterogeneity in the features between same prints and different prints. We allow 

threshold (b) to vary by the response factor (“same” finger vs. “different” fingers) so that we 

can account for any biases in responding. As is common practice (e.g., Brown & Heathcote, 

2008), we express response caution as the difference between the raw threshold and the 

maximum starting point of evidence (denoted B). This provides a pure measure of caution that 

is not contaminated by individual differences in starting point variability. Starting point 

variability (A) and non-decision time (t0) are constrained to a single estimated value. To 

ensure that the model is identifiable, we constrain the rate variability for the mismatching 

accumulator of the “different” finger pairs to one (Donkin, Brown, & Heathcote, 2009).  
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Table 1.  

Linear ballistic accumulator model parameterization for the three experiments.  

Experiment Model 
Start 
point  
(A) 

Threshold 
(B) 

Rate 
(v) 

Rate 
variability 

(sv) 

Non-
decision 

time  
(ter) 

 Total 

Experiment 1 

Factors - R S, M S, M -  

11 

NF 1 2 4 3 1  

Experiment 2 
Factors - SA, R SA, N, M, S S, M -  

25 

NF 1 4 16 3 1  

Experiment 3 
Factors - F, B, R F, B, M, S F, B, S, M -  

21 

NF 1 4 8 7 1  

Note. Experimental factors are stimulus type (S), speed-accuracy emphasis (SA), noise (N), 

feedback (F) and block (B). Accumulator factors are match (M) and response (R). “Total” refers 

the total number of parameters in the model; NF = number of factors. Note: In Experiment 3, 

feedback was manipulated between-person; we fit the two feedback groups separately, therefore 

feedback factor (F) does not contribute to the number of model parameters.  

 

We implemented the LBA using a hierarchical Bayesian framework, which assumes 

that parameters vary across individuals but are drawn from common population distributions. 

The individual-level parameters were modeled using normal or truncated normal distributions. 

The A, B, and sv, parameters had a lower bound of 0 and no upper bound. The t0 parameter 

had a lower bound of 0.1 and an upper bound of 1. The v parameters were unbounded. The 

population distribution for each individual-level parameter requires two population-level 

parameters: location and scale. The priors of the location and scale parameters were modeled 

using normal or truncated normal distributions. The details of the priors are provided in 

supplementary materials. The posterior distributions were estimated using the differential 

evolution MCMC algorithm (Turner, Sederberg, Brown, & Steyvers, 2013), as implemented 

by the Dynamic Models of Choice package in R (Heathcote, Lin, Reynolds, Strickland, 

Gretton, Matzke, 2018; see supplementary materials for information about the number of 

chains and assessing convergence).  
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As can be seen in Figure 3, the model provides a good fit to mean accuracy for both 

types of stimuli. The model also provides a good fit to the RT distribution for correct and 

incorrect responses. There is some evidence of underestimation of RTs for the 0.9 quantile, 

with data falling just outside of the credible interval of the model predictions. However, such 

overestimation at the higher quantiles is common when modeling complex tasks (e.g., Palada 

et al., 2016 & Palada et al., 2018).  

 

Figure 3. Experiment 1: Fits of the LBA to mean accuracy (left graph), and quantiles of 

correct (middle graph) and incorrect response times (right graph) of the fingerprint 

discrimination task. The bars show the 95% quantiles of the posterior predictives. 

We next examined the posterior estimates of model parameters to examine how they 

accounted for the patterns observed in performance data, which are illustrated in Figure 4. To 

make inferences about parameters, and account for the uncertainty in posteriors, we create 

group-averaged posterior distributions by averaging every posterior sample across 

participants. To test for differences between parameters, we calculated the difference between 

parameters for each condition, posterior sample, and participant, and then averaged over 

participants to produce a group average posterior distribution on the difference in parameters. 

To test for an interaction between two factors with two levels each, we calculated the 

difference between levels for one factor for each of the two levels for the other factor, thus 

producing two contrasts. We then calculated the difference between the two contrasts 

(Heathcote et al., 2018; Palada et al., 2019).   
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There was a credible difference in the threshold for the two response types, 0.25 [0.14, 

0.37], with participants setting a lower threshold for the “different” response than the “same” 

response. The differences between mean rate for the matching and mismatching accumulators 

was credibly greater for different-finger than same-finger print pairs, 1.30 [1.10, 1.51]. There 

was a credible interaction between stimulus type and match factor on variability in the rate of 

evidence accumulation, -0.99 [-1.13, -0.84], such that for same-finger prints, the rate 

variability for the matching (i.e., correct) accumulator was greater than the rate variability for 

the mismatching (i.e., incorrect) accumulator, whereas the opposite occurred for different-

finger prints, though to a lesser extent. In the LBA, greater rate variability for the matching 

accumulator can account for the typically observed slow error response times. In contrast, 

greater variability in the mismatching accumulator compared to the matching accumulator can 

account for relatively fast errors (Heathcote & Love, 2012), and as shown in Figure 3, errors 

were relatively faster for different-finger pairs compared to same-finger pairs.  

Under the LBA architecture, greater evidence quality can be driven by a greater 

difference between mean rates between the two accumulators, differences in rate variability, 

or both. Figure 5 plots the rate of evidence accumulation using the median of the posterior 

estimates of mean rates and rate variability. The distributions illustrate the analogues of signal 

and noise distributions from SDT, and therefore allows for a inferences of the analogues of 

sensitivity (i.e., d’), as well as the causes of any differences in sensitivity. The graph 

illustrates how sensitivity was greater for different-finger pairs compared to same-finger pairs 

due to the greater differences in means, and the lesser variability for the matching 

accumulator, though this was slightly offset by having greater variability for the mismatching 

accumulator.  

Overall, the greater accuracy for different-finger compared to same-finger pairs was 

driven by the greater difference between the two accumulators, as well as the bias to respond 

“different”. While the bias to respond “different” would typically result in faster response 



   19 

 

times for different-finger prints than same-finger prints, as the accumulator has a shorter 

distance to reach the threshold, this appeared to be offset by two separate factors. First, in the 

case of the correct response times, the matching (i.e., correct) accumulator of the different-

finger pairs had a less variable rate than the accumulator of the same-finger pairs. Secondly, 

in the case of error response times, the mismatching (i.e., incorrect) accumulator of the 

different-finger pairs had a mean rate that was lower than the accumulator of the same-finger 

pairs.  

 

 

Figure 4.  Experiment 1: Median parameters estimates for the LBA model, including response 

caution (left panel), mean rate (middle panel) and rate variability (right panel). The bars 

show the 95% credible intervals. 
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Figure 5. Experiment 1: Distribution plots of rates of evidence accumulation for matching 

and mismatching accumulators. Columns refer to stimulus type. Distributions were generated 

using posterior medians. Vertical line reflects zero truncation of rate sampling.  

 
Discussion 

To our knowledge, this experiment was the first application of the LBA to examine 

performance observed in a fingerprint discrimination task. We found that the model provided 

a good fit of the observed accuracy and full distribution of correct and incorrect RTs. 

Moreover, the LBA revealed aspects of the decision-making processes that could not be 

inferred from the performance data alone.  

Participants required more evidence before deciding that prints were left by the same 

finger, compared to deciding they were left by different fingers, indicating that participants 

were biased towards responding “different”. The bias to respond “different” is contrary to 

previous studies applying signal detection theory to fingerprint discrimination (Thompson et 

al., 2013a; Searston, Tangen, & Eva, 2015). However, this prior research used highly similar 

different-finger pairs that were intended to be challenging for both novices and expert. We did 

not use highly similar different-finger pairs. Rather, we used dissimilar different-finger pairs 

by randomly pairing fingerprints so that we would have a sufficient number of different-finger 

trials for model fitting. As a result, the different-finger pairs appeared more different than 

pairs used in previous research. We also used simulated crime scene prints which result in 

considerable variability among same-finger pairs due to distortion, pressure, partial contact 

and surface type. Therefore, our same-finger pairs tended to appear different due to the 

different features that were visible. These features of our design together may have 

contributed to the “different” response being more salient in our paradigm. 

 The model revealed that participants had greater discriminability for different-finger 

pairs than same-finger pairs. The model also revealed greater variability in the rate of 

evidence accumulation of the matching accumulator for same-finger pairs compared to 
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different-finger pairs, which suggests that the processing of same-finger pairs was more 

heterogenous than different-finger pairs. Our use of dissimilar different-finger pairs and 

crime-scene prints may explain why we observed these effects. Specifically, identifying 

different-finger pairs can be done effectively and with little variability because the individual 

could easily identify dissimilar pairs of fingerprints. In contrast, identifying same-finger pairs 

could require additional and more variable processing because the individual needs to conduct 

an exhaustive evaluation of the within-finger differences in order to rule them out as merely 

contextual differences that resulted from them being crime-scene prints.   

Experiment 2 

Experiment 1 provided initial evidence that the LBA can account for performance in a 

fingerprint discrimination task. However, adequate model fit to observed data is insufficient 

to establish model validity. To build stronger evidence that the LBA can be used to 

understand fingerprint discrimination, we next examine whether the model parameters change 

in predictable ways in response to experimental manipulations and our theoretical 

understanding of their effects (Donkin & Brown, 2018). In Experiment 2, we examine the 

interpretability of model parameters by manipulating emphasis type (speed vs. accuracy) and 

noise (no noise vs. noise). We expect that emphasis type will affect parameters associated 

with the termination of the decision process itself (i.e., response threshold), whereas noise will 

affect parameters associated with the inputs to the decision process (i.e., rate of evidence 

accumulation). However, as we describe in the LBA modeling and analysis section, and 

consistent with current modeling procedures, we test for the possibility that emphasis type 

also affects the rate of evidence accumulation (Rae et al. 2014; Palada et al., 2016).   

 Method 

Participants & Stimuli 

A second group of 70 psychology undergraduates (36 female, 34 male) with an average age of 

19.71 (SD = 5.01) from The University of Queensland participated in Experiment 2 in return 
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for course credit. The image-set was the same used in Experiment 1. We duplicated this entire 

set of images and added 20% of artificial noise or ‘speckle’ to the duplicates, such that there 

was a noise and no noise ‘twin’ of every image in the set (see Figure 6). For each participant, 

we then randomly sampled a total of 192 fingerprint trios, with a random half of these (96 

trios) taken from the no noise set, and the other half taken from the duplicated noisy set. That 

is, the fingerprints were randomly and equally sampled from the noise or no noise sets for 

each participant. For each of the noise and no noise image sets, a random 48 crime-scene 

prints were paired with their corresponding same-finger print, and 48 crime-scene were paired 

with their corresponding different-finger print.  

 

 Figure 6. An example same-finger prints as original without any noise (top), and with 20% 

noise added to the images (bottom).  

Procedure 

Original

Noise
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The pre-experiment procedure was the same as in Experiment 1 with participants watching an 

instructional video describing the task and walking through an example same-finger and 

different-finger trial. We then presented participants with the 192 fingerprint pairs, one at a 

time, split into four blocks: Noisy print pairs with speed prompts, noisy print pairs with 

accuracy prompts, no noise print pairs with speed prompts, and no noise print pairs with 

accuracy prompts. We presented these blocks in a randomized order for each participant. For 

the two blocks emphasizing speed, we presented participants with “Speed Up” in black text 

during the inter-trial interval when they responded after five seconds of exposure to the prints. 

Participants also viewed a short video before each of the speed blocks instructing them to 

respond as quickly as possible for the next series of cases. For the two blocks emphasizing 

accuracy, participants were instructed to respond as accurately as possible, and were 

presented with “Slow Down” in black text during the inter-trial interval each time they 

responded before five seconds had elapsed. As in Experiment 1, participants were instructed 

to judge whether the two prints belong to the same finger or two different fingers using “Z” 

and “/” as response keys. The procedure for advancing through the trials was also the same as 

Experiment 1, with a 10 second response window and a 1 second interval between trials. 

Results 

We removed one participant with a non-response rate of 17.28%. The non-response rates for 

the remaining 69 participants ranged between 0.00% and 8.85%. Consistent with modeling of 

simple-choice tasks, we censored RTs less than 250ms (0.75% of the data); more rapid RTs 

would be insufficient to make a valid decision.  

Discrimination Performance 

We used the same statistical procedures as outlined in Experiment 1 to analyze discrimination 

performance (correct and incorrect RTs, and accuracy). Predictors included stimulus type, 

noise (no noise vs. noise) and emphasis type (speed vs. accuracy). Statistical results are shown 
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in Table 2. Correct and incorrect RTs quantiles (0.1, 0.5, and 0.9), and mean accuracy are 

shown in Figure 7. 

As expected, there was a credible main effect of emphasis type on correct RTs and 

incorrect RTs, such that responses were considerably faster under speed emphasis compared 

to accuracy emphasis (correct: 2.10s vs 5.31; incorrect: 2.20s vs. 5.60s). While there was a 

credible two-way interaction between noise and emphasis type on correct RTs, the effect was 

not substantial; the difference in correct RTs between no-noise and noisy prints under speed 

emphasis was 0.14s, whereas the difference under accuracy emphasis was 0.08s. Incorrect 

RTs were credibly faster for different-finger prints compared to same-finger prints (3.77s vs. 

3.90s). There was a credible interaction between stimulus type and noise on accuracy; for 

same-finger prints, accuracy declined for prints with noise compared to print without noise, 

whereas noise did not affect accuracy for different-finger prints. Finally, there was a credible, 

but weak interaction between stimulus type and emphasis-type on accuracy; whereas accuracy 

did not differ between emphasis types for same-finger prints, accuracy slightly improved for 

different-finger prints under accuracy emphasis compared to speed emphasis.  

 

Figure 7. Experiment 2: Fits of the LBA to mean accuracy (left graph), and quantiles of 

correct (middle graph) and incorrect response times (right graph) of the fingerprint 

discrimination task. The bars show the 95% quantiles of the posterior predictives. 
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Selective influence – the idea that the effect of an experimental manipulation is captured by a 

single model parameter – has been important for the benchmarking of evidence accumulation 

models. A fundamental assumption of selective influence is that the effects of speed-accuracy 

emphasis is captured by the changes in the response caution (i.e., threshold). However, this 

assumption has recently been challenged. Using basic laboratory tasks, for example, Rae et al. 

(2014) found that as expected, individuals reduced their response threshold under a speed 

emphasis. They also found an increase in mean rate under accuracy emphasis and concluded 

that prioritizing accuracy produces an increase in the quality of information accumulated from 

the stimulus. Palada et al. (2018), however, have found some evidence for selective influence 

in complex tasks. They show that distinct determinants of time pressure had selective 

influence on cognitive processes; for example, in Study 2 the number of stimuli influenced 

threshold, whereas the time available influenced the rate at which information was 

accumulated.  

In Experiment 2 we test whether the parameters respond to the experimental 

manipulations in a theoretically coherent way. We allow emphasis type to influence both 

threshold and mean rate. Initially, we also sought to test whether noise would affect threshold 

and mean rate. However, this model was unstable, so we had to simplify the model by 

constraining threshold across levels of the noise manipulation. We believe this assumption is 

reasonable because previous research has found that noise does not influence threshold. For 

example, Palada et al. (2016) used a similar noise manipulation and found that it affected 

inputs to the decision process (i.e., mean rate), but not the response threshold. The fit of the 

model after making this simplifying assumption was still very good. The model 

parameterization was otherwise consistent with Experiment 1, such that rate variability was 

influenced by the match factor and stimulus type, where non-decision time and start point 

variability were estimated across experimental conditions (see Table 1).  
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We used the same modeling approach as Experiment 1. First, the model provided a 

good fit to mean accuracy and the distribution of correct and incorrect RTs (see Figure 7). 

Second, we examine the posterior estimates of model parameters to understand how the 

model explains the effects of noise and emphasis type manipulations on discrimination 

performance. The parameter estimates are shown in Figure 8. Table 3 presents the effects of 

the experimental manipulations and the accumulator related factors on model parameters.  

  



   27 

 

Table 2.  

Experiment 2: Bayesian generalized linear mixed-model coefficients for discrimination task 

performance measures.  

Effect Correct RT Error RT Accuracy 

S 
-0.01  

[-0.02, 0.00] 
0.02  

[0.01, 0.03] 
-0.13  

[-0.17, -0.10] 

N 
0.01  

[0.00, 0.02] 
0.00  

[-0.01, 0.01] 
-0.10  

[-0.14, -0.07] 

SA 
-0.48  

[-0.49, -0.47] 
-0.50  

[-0.51, -0.49] 
-0.04  

[-0.07, 0.00] 

S.N 
0.01  

[0.00, 0.02] 
-0.01 

[-0.02, 0.01] 
-0.08 

[-0.11, -0.04] 

S.SA 
-0.01  

[-0.02, 0.00] 
0.00  

[-0.01, 0.01] 
0.04  

[0.00, 0.07] 

N.SA 
0.02  

[0.01, 0.02] 
0.01  

[0.00, 0.03] 
0.02  

[-0.02, 0.05] 

S.N.SA 
0.01  

[0.00, 0.02] 
-0.01  

[-0.02, 0.01] 
-0.01  

[-0.05, 0.03] 

 

Note. Experimental effects are stimulus type (S), noise (N), and emphasis type (SA); 95% CIs 

are in square brackets. 

 

 

Emphasis type had a credible effect on threshold, such that participants had a 

considerably higher threshold under accuracy emphasis compared to speed emphasis. There 

was a credible three-way interaction between stimulus type, noise and emphasis type on the 

differences between mean rate for the matching and mismatching accumulators. Under 

accuracy emphasis, the difference in mean rates was greater for different-finger prints 

compared to same-finger prints, and this effect was stronger for prints without noise 

compared to prints with noise. The same effect was observed under speed emphasis for prints 

with noise. For prints without noise, there was no difference in mean rates between same-

finger prints and different-finger print.  Finally, there was a credible two-way interaction 

between stimulus type and the match factor on the variability in the rate of evidence 

accumulation. Rate variability for the matching (i.e., correct) accumulator was greater than 
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the rate variability for the mismatching (i.e., incorrect) accumulator for same-finger prints, 

whereas opposite effect occurred for different-finger prints.  

The distribution of rates of evidence accumulation is shown in Figure 9. The graph 

shows how sensitivity did not appear to vary across emphasis and noise conditions for 

different-finger pairs. Unexpectedly, for same-finger prints presented without noise, 

sensitivity was greater for prints in the speed condition compared to the accuracy condition; 

this was driven by the difference in mean rates between the two accumulators. From the 

graphs it is clear that the decrease in sensitivity for same-finger pairs presented with noise 

compared to prints without noise was driven by the decrease in the differences between the 

two accumulators.  

Overall, different-finger prints had greater accuracy compared to same-finger prints 

when prints were presented with noise, or when prints were presented without noise and under 

accuracy emphasis. The model captures this by the greater difference in mean rates between 

the two accumulators for different-finger prints compared to same fingerprints. However, the 

stimuli had comparable accuracy when presented without noise and under speed emphasis. 

The model also captures this by the comparable difference in mean rates between the two 

accumulators for both stimulus types. Emphasis type mainly affected response times and had 

a weak effect on accuracy. The considerably faster response times under speed emphasis 

compared to accuracy emphasis was captured by two mechanisms: The lower threshold under 

speed emphasis, as well as the greater overall rate of evidence accumulation.  
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Figure 8. Experiment 2: Median parameters estimates for the LBA model, including response 

caution (top left panel), mean rate (right panel) and rate variability (bottom left panel). The 

bars show the 95% credible intervals. 
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Figure 9. Experiment 2: Distribution plots of rates of evidence accumulation for matching 

and mismatching accumulators. The top four quadrants correspond to speed, while the 

bottom four quadrants correspond to accuracy emphasis. Rows alternate between prints 

without noise and with noise. Columns refer stimulus types. Distributions were generated 

using posterior medians. Vertical line reflects zero truncation of rate sampling. 
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Table 3.  

Experiment 2: Contrasts for experimental, response and match factor effects on LBA model 

parameters  

 

Effect 
Threshold  

(B) 
Difference in Mean Rates  

(vmatch – vmismatch) 
Rate Variability 

(sv) 

S        - 
-0.38 

[-0.51, -0.25] 
-0.16 

[-0.19, -0.12] 

N - 
0.27 

[0.17, 0.37] 
- 

SA 
-4.02 

[-4.20, -3.85] 
-0.38 

[-0.54, -0.23] 
- 

R 
-0.17 

[-0.35, 0.01] 
- - 

M - - 
-0.05 

[-0.09, -0.02] 

S.N        - 
0.13 

[-0.01, 0.28] 
- 

S.SA - 
-0.61 

[-0.85, -0.36] 
- 

S.M - - 
0.32 

[0.24, 0.40] 

N.SA - 
-0.28 

[-0.48, -0.20] 
- 

R.SA 
-0.01 

[-0.33, 0.31] 
- - 

S.N.SA      - 
-0.48 

[-0.77, -0.09] 
- 

 

Note. Factors are stimulus type (S), noise (N), emphasis type (SA), response type (R) and 

match type (M); 95% CIs are in square brackets; vmatch and vmismatch refer to the values of the 

matching and mismatching accumulators, respectively. Dashes reflect cases where the model 

parameter was not allowed to vary by the effect (see Table 1 for model parameterisation) 

 

Discussion 

In this experiment, our aim was to determine whether the LBA could provide an accurate 

description of the effects of emphasis type (speed or accuracy) and visual noise (no noise vs. 

noise) on fingerprint discrimination decisions. We examined whether the relationships 

between model parameters and experimental manipulations would coincide with findings 

from simpler choice tasks. We hypothesised that emphasis type would influence parameters 
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concerned with the termination of the decision process itself (i.e., threshold), whereas visual 

noise would influence the inputs to the decision process (i.e., the rate of evidence 

accumulation). Our hypothesis regarding noise was supported. Our hypothesis regarding 

emphasis type was partially supported – in line with recent evidence (e.g., Rae et al., 2014), 

we found that emphasis type affected mean rate in addition to affecting threshold.  

We found that emphasis type affected response caution, or the quantity of evidence 

required to reach a decision. Participants reduced their response caution under speed emphasis 

compared to accuracy emphasis in order to accelerate the decision process, as the accumulator 

has a shorter distance to travel and reaches the threshold sooner. Contrary to Experiment 1, 

we did not find evidence of a bias to respond “different”. We suspect that participants were 

not willing to adopt a “different” response bias under the experimental conditions as the bias 

would exacerbate the relatively poor performance for same-finger prints in this experiment, 

which was worse than in Experiment 1.   

In line with recent studies (Rae et al., 2014), emphasis type also influenced mean rate. 

The overall mean rate of evidence accumulation, as indexed by the mean of the matching and 

mismatching accumulators was considerably higher under speed emphasis compared to 

accuracy emphasis. This suggests that participants processed evidence faster under the speed 

emphasis. This finding is consistent with Palada et al. (2018) who found that individuals 

increased their rate of evidence accumulation under tighter deadlines. Contrary to Rae et al. 

(2014), we did not find evidence that the quality of evidence, as indexed by the difference 

between the two accumulators, increased under accuracy emphasis compared to speed 

emphasis. However, we provide evidence for Rae et al.’s conclusion that whether emphasis 

type primarily affects the speed or quality of evidence accumulation depends on whether the 

manipulation largely affects responses times or accuracy, respectively.  

As expected, we found that noise negatively influenced discriminability, though this 

only occurred for same-finger prints. The decrease in discriminability was driven by the 
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difference in mean rates between the two accumulators and captured the decline in accuracy 

for same-finger prints presented with noise compared to prints presented without noise. In 

contrast, noise did not affect the discriminability of different-finger pairs, which explains why 

no change in accuracy was observed between noise conditions. In line with our interpretation 

of the results from Experiment 1, we suspect that the between-finger differences inherent in 

the materials used in this experiment explain why we did not observe an effect of noise on 

different-finger discriminability. Specifically, the asymmetrical effects of noise on 

discriminability may have resulted from the noise manipulation being sufficiently strong to 

obscure similarities among same-finger prints (thereby decreasing discriminability for these 

pairs), but not sufficiently strong to obscure differences between different-finger prints 

(thereby failing to reduce discriminability for these pairs). 

 Overall, Experiment 2 suggests that the LBA model parameters can be interpreted 

meaningfully in the context of fingerprint discrimination. Consistent with studies using basic 

tasks (e.g., Rae et al. 2014), emphasis type influenced both response caution and rate of 

evidence accumulation (albeit in the opposite direction to what some previous research has 

found), whereas noise selectively influenced discriminability.  

Experiment 3 

In Experiment 1 and 2, we showed that the LBA can accurately capture fingerprint 

discrimination performance, and that model parameters can be mapped meaningfully to the 

underlying cognitive processes they are thought to reflect. In particular, speed-accuracy 

emphasis influenced response caution in a manner consistent with theory and previous 

research. Noise also reduced discriminability, but only for same-finger pairs. In Experiment 3, 

we examine how novices’ decision-making processes evolve over time by using the LBA to 

quantify any change in decision processes after a feedback training intervention. There are a 

number of ways that training could affect decision processes. First, feedback may alter 

response biases as participants learn to adjust their prior expectations of stimuli. Second, 
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feedback may improve accuracy by leading to increased response caution. Alternatively, 

feedback may improve accuracy by enhancing the quality of evidence that is accumulated as 

the participants learn to attend to more diagnostic print features—an effect that would be 

mediated by the rate parameters (i.e., the mean or variability in the rate of evidence 

accumulation). In this experiment, we test for these possible effects by allowing model 

parameters to vary with group type (training vs. no training) and block (pre- vs. post-training).  

Method 

Participants & Stimuli 

A third group of seventy psychology undergraduates (21 male and 48 female) with an average 

age of 20.13 (SD = 3.88) from The University of Queensland participated in Experiment 3 in 

return for course credit. The image-set was identical to Experiment 1, and we generated 192 

fingerprint pairs (96 same-finger pairs and 96 different-finger pairs) for each participant using 

the same method. There were 32 same-finger pairs and 32 different-finger pairs print pairs in 

each of the pre-test, training, and post-test conditions. 

Procedure 

Participants were randomly assigned to either the feedback or no feedback condition. The pre-

experiment procedure was the same as in Experiment 1 and Experiment 2; participants 

watched an instructional video, which consisted of the task description and an explanatory 

example of both same-finger and different-finger pairs.  Participants were then presented with 

192 pairs of fingerprints, one at a time, in three blocks of trials. In the first block, the pre-test 

phase of the experiment, 64 pairs of fingerprints were presented. In the second block, the 

training phase a new set of 64 fingerprints were presented; feedback participants were 

presented with “Correct” in green text, or “Incorrect” in red text, corresponding to whether 

they correctly classified the pair of fingerprints and no feedback participants viewed a blank 

screen between trials. In the third block, the post-test phase, a new set of 64 fingerprints were 

presented without feedback.  As in Experiments 1 and 2, participants were instructed to 
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classify the prints as originating from the same finger with the “Z” key, or from different 

fingers using the “/” key. 

Results 

Non-response rates across participants ranged between 0.00% and 5.21%. No participants 

were removed from analyses because none had a non-response rate greater than 10%. 

However, five responses less than 250ms were censored. 

Discrimination Performance 

We used the same procedure as Experiment 1 to analyze Experiment 3 performance. The 

experimental factors included stimulus type, block (pre-training vs. post-training) and 

feedback group (feedback vs. no feedback). Results are shown in Table 4 and Figure 10. 

There was a credible three-way interaction on accuracy. For those in the no-feedback group, 

accuracy was stable across blocks for both stimuli. In contrast, for those in the feedback 

group, accuracy improved for same-finger prints after receiving training, whereas accuracy 

slightly decreased for different-finger prints. There was a credible effect of block on correct 

and error RTs, such that RTs were faster at post-test compared to pre-test (correct RTs: 2.74s 

vs 3.57s; error RTs: 3.30s vs 4.10s). Error RTs were also faster for different-finger prints 

(3.59s) than same-finger prints (3.80s).  
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Table 4.  

Experiment 3: Bayesian generalized linear mixed-model coefficients for task performance  

 

Effect Correct RT Error RT Accuracy 

S 
0.01 

[ 0.00, 0.03] 
0.04 

[ 0.02, 0.06] 
-0.14 

[-0.19, -0.09] 

B 
-0.15 

[-0.16, -0.13] 
-0.13 

[-0.15, -0.11] 
0.03 

[-0.01, 0.08] 

G 
-0.06 

[-0.12, 0.01] 
-0.05 

[-0.13, 0.03] 
0.01 

[-0.05, 0.08] 

S.B 
0.00 

[-0.02, 0.01] 
0.01 

[-0.01, 0.03] 
0.08 

[0.03, 0.12] 

S.G 
0.00 

[-0.01, 0.02] 
0.00 

[-0.02, 0.02] 
0.04 

[-0.01, 0.08] 

B.G 
-0.01 

[-0.03, 0.00] 
0.01 

[-0.01, 0.03] 
-0.01 

[-0.06, 0.03] 

S.B.G 
-0.01 

[-0.02, 0.00] 
0.00 

[-0.01, 0.02] 
0.10 

[ 0.05, 0.14] 

 

Note.  Experimental effects are stimulus type (S), block (B) and group type (G); 95% CIs are 

presented in square brackets.  

 

 

 Figure 6. Experiment 3: Fits of the LBA to mean accuracy (left graph), and quantiles of 

correct (middle graph) and incorrect response times (right graph) of the fingerprint 

discrimination task. The bars show the 95% credible intervals of the posterior predictives.  
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LBA Modeling and Analysis 

We used the LBA to examine how the processes underlying fingerprint discrimination change 

over time and in response to feedback. The model parameterisation is shown in Table 1. We 

allow threshold and mean rate to vary with block and training, and also allow mean rate to 

vary between stimuli. As we are interested in the general effects of training on the inputs to 

the decision processes (i.e., rate parameters), we also allow rate variability to vary with the 

experimental factors.  The estimates of non-decision time and start point variability were 

constrained across experimental conditions, such that only a single value was estimated for 

each parameter (see Table 1). We used the same modeling approach as in Experiments 1 and 

2. However, since we fit models separately for each feedback group (as feedback group was 

manipulated between participants), non-decision time (t0), start point variability (A), and rate 

variability (sv) also varied across feedback conditions. As can be seen in Figure 10, the model 

provides an excellent fit to the data for both feedback groups.   

Figure 11 displays the estimates of response caution, mean rates, and variability in the 

rate of evidence accumulation. We used the same procedure as Experiments 1 and 2 to 

analyze the results, with experimental and accumulator related effects shown in Table 5. For 

response caution, all two-way interactions were credible, though there was an interesting 

trend when considering all three factors (group, block, and response type). At pre-test, both 

groups set a lower threshold to respond “different” compared to the threshold to respond 

“same”. For the no-feedback group, the strength of this effect weakened at post-test, such that 

the threshold became more similar between the response options. For the feedback group, the 

effect reversed, such that participants set a higher threshold to respond “same” compared to 

the threshold to respond “different”. At post-test, the feedback group was also generally more 

cautious than the no-feedback group.  

There was a credible three-way interaction between block, group, and stimulus type on 

the difference in mean rates. At pre-test, both groups had a difference in mean rates that was 
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higher for different-finger prints compared to same-finger prints. At post-test, after having 

received feedback, the difference in mean rates became more similar between the two types of 

stimuli, as the difference between mean rates improved for same-finger prints. For the no-

feedback group, the difference in mean rates for same-finger prints did not change from pre-

test to post-test, whereas the difference for different-finger prints increased.  

There were credible main effects of block, stimulus, and match factor on the variability 

in rate of evidence accumulation. Rate variability was higher at post-test compared to pre-test, 

for different-finger prints compared to same-finger prints, and for the matching (i.e., correct) 

accumulator than for the mismatching (i.e., incorrect accumulator). The four-way interaction 

was not credible. However, Figure 11 shows that the patterns in rate variability were similar 

between groups at pre-test, whereas there was some evidence of group differences at post-test. 

We tested for this by comparing post-test rate variability between accumulators for each 

stimulus type. For same-finger pairs, the difference in rate variability between accumulators 

did not differ between groups (-0.05 [-0.71, 0.58]). For different-finger pairs, the difference in 

rate variability between accumulators was greater for the feedback group compared to the 

non-feedback group due to the greater match variability for the feedback group (-1.00 [-1.67, -

0.34]).   

The distribution of rates of evidence accumulation is shown in Figure 12. The graph 

shows how sensitivity was similar across groups at pre-test. At post-test, any improvement in 

sensitivity afforded by the greater difference in means between the distributions was offset by 

the increase in variance. As a result, training did not appear to influence overall sensitivity. 

Therefore, the improvement in accuracy for same-finger prints and drop in accuracy for 

different-finger prints for the feedback group resulted from the reversal in response bias from 

pre-test to post-test. The generally faster response times from pre-test to post-test was 

captured by the increase in mean rates, as the accumulators travel fasters towards the 

threshold.  
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Table 5.  

Experiment 3: Contrasts for experimental, response and match factor effects on LBA model 

parameters  

 

Effect 
Threshold  

(B) 
Difference in Mean Rates  

(vmatch – vmismatch) 
Rate Variability 

(sv) 

S - 
-0.63 

[-0.91, -0.36] 
-0.13 

[-0.25, -0.02] 

B 
-0.62 

[-0.79, -0.45] 
0.29 

[0.09, 0.49] 
-1.12 

[-1.26, -0.98] 

G 
0.02 

[-0.18, 0.13] 
-0.52 

[-0.88, -0.15] 
- 

R 
0.26 

[0.13, 0.38] 
- - 

M - - 
1.04 

[0.92, 1.17] 

S.B - 
-0.08 

[-0.39, 0.23] 
- 

S.G - 
-0.45 

[-1.00, 0.10] 
- 

B.G 
-1.11 

[-1.45, -0.77] 
-0.76 

[-1.16, -0.37] 
- 

B.R 
0.62 

[0.37, 0.88] 
- - 

G.R 
0.50 

[0.25, 0.75] 
- - 

S.B.G - 
-1.06 

[-1.68, -0.44] 
- 

R.B.G 
-0.24 

[-0.75, 0.25] 
- - 

S.B.G.M - - 
0.69 

[-0.36, 1.75] 

 

Note. Factors are stimulus type (S), block (B), group type (G), response type (R) and match 

type (M); 95% CIs are in square brackets; vmatch and vmismatch refer to the values of the 

matching and mismatching accumulators, respectively. Dashes reflect cases where the model 

parameter was not allowed to vary by the effect (see Table 1 for model parameterisation) 
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Figure 7. Experiment 3: Median parameters estimates for the LBA model, including response 

caution (upper-left panel), mean rate (lower-left panel) and rate variability (right panel). The 

bars show the 95% credible intervals. 
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Figure 8. Experiment 3: Distribution plots of rates of evidence accumulation for matching 

and mismatching accumulators. The top four quadrants show the no feedback group, while 

the bottom four quadrants show the feedback group. Rows alternate between pre and post 

training trials. Columns refer stimulus types. Distributions were generated using posterior 

medians. Vertical line reflects zero truncation of rate sampling. 
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Discussion 

In this experiment, we used the LBA to understand the cognitive processes underlying the 

effects of a training intervention on fingerprint discrimination. The behavioral data revealed 

that training improved same-finger pair accuracy compared to baseline irrespective of the 

considerable decrease in response times, whereas different-finger pair accuracy slightly 

decreased after receiving training. As expected, accuracy did not improve over trial phases for 

the no-feedback group, though response times decreased. Our modeling suggests that the 

effects of feedback on performance is mediated by a number of cognitive processes, including 

response caution and rate variability.  

In line with Experiment 1, at pre-test, both groups had a bias to respond “different” by 

setting a lower response threshold than the “same” response threshold. The no-feedback group 

maintained this response bias at the post-test phase, though to a much lesser extent. We 

suspect that this decline in response bias for the no-feedback group may have occurred as, 

over the course of the experiments, participants may have become aware of the relative 

frequency with which they responded “different” compared to “same” and sought to balance 

their response frequency between the response alternatives. The feedback group, by contrast, 

reversed their response bias after having received training. In this case, the feedback provided 

in the training phase may have made participants aware of their lower accuracy for same-

finger pairs compared to different-finger pairs. The reversal of the response bias may reflect 

an attempt to compensate for this discrepancy in accuracy. This observation is consistent with 

Palada et al. (2018), who found that individuals adopted a response bias corresponding to the 

choice with poorer accuracy. This observation is also consistent with prior signal detection 

modelling of novices’ fingerprint discrimination decisions (Searston, Tangen & Eva, 2015), 

showing opposite patterns of response bias across experiments with and without feedback.   

There was some evidence that training had an effect on the inputs to the evidence 

accumulation process, more specifically on the variability of evidence accumulation. Rate 
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variability generally increased from pre-test to post-test. There was a trend for this effect 

being stronger for the feedback group. Specifically, the rate variability for the match 

accumulator for different-finger prints increased after having received training, such that it 

became greater than the rate variability for the match accumulator of same-finger prints. It 

seems unlikely that this was an artifact of the stimuli, as heterogeneity was similar across pre-

test and post-test blocks. Rather, this pattern of results suggests that training may have led to a 

strategic change in the information that was attended to when discriminating prints. The 

change in processing appears to have negatively influenced the effectiveness in processing 

different-finger pairs, and this could also explain why participants reversed their response bias 

post-feedback from favoring a “same” finger response to a “different” finger response.  

General Discussion 

Our aim was to model the dynamics of decisions about whether pairs of fingerprints came 

from the same finger or different fingers. To better understand the underlying decision 

process, we modeled choices and response times on a fingerprint discrimination task using a 

standard evidence accumulation model—linear ballistic accumulation (Brown & Heathcote, 

2008). Forensic decision-making about the source of a crime-scene trace, such as a 

fingerprint, relies on the perceptual sensitivity of human examiners to distinguish specimens 

that match from those that do not match. Signal detection models have helped to better 

quantify the conditions that affect forensic examiners’ discriminability separately from their 

response bias (Thompson et al. 2013a; Searston & Tangen, 2017a, 2017b). However, forensic 

science is fundamentally an evidence accumulation process, and forensic examiners report 

taking a great deal of care and time in making their decisions so as to avoid errors. Evidence 

accumulation models offer an opportunity to gain new insights about the underlying cognitive 

processes of experts by accounting for the time course of their decisions. As a first step, we 

sort to test the validity of the LBA as a model of fingerprint discrimination in three 

experiments with novices.  
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The aim of Experiment 1 was to conduct an initial evaluation of the whether the LBA 

could account for the patterns of choice and response times on a fingerprint discrimination 

task. Overall, the model provided a very good account of the data, and yielded insights about 

the underlying decision process that would not have been clear from an inspection of the 

accuracy and response time data alone. Our analysis revealed, for instance, that the observed 

difference in accuracy between our same-finger and different-finger prints is likely due to the 

combination of two processes. First, people were biased toward classifying pairs as having 

originated from different fingers (i.e., they had a lower threshold for the “different finger” 

response). Second, people processed information more effectively when examining prints that 

had originated from different fingers compared to prints from the same finger. This finding 

contrasts with previous studies showing a liberal response bias toward “same” decisions 

among novices (e.g., Tangen, Thompson & McCarthy, 2011; Thompson et al. 2013b; 

Searston, Tangen & Eva, 2016). Since these previous studies used highly similar distractor 

prints resembling those often encountered in operational contexts, this discrepancy in novices’ 

response biases across studies may be explained by our random pairing of different-finger 

pairs. That is, we used dissimilar different-finger pairs as opposed to the similar different-

finger pairs used in previous research, such that our set were more distinctively different. 

The aim of Experiment 2 was to examine how components of the decision process 

change when speed or accuracy are emphasized and when perceptual noise is added to the 

stimulus. As expected, people were more cautious in their responding (i.e., set higher 

response thresholds) when accuracy was emphasized compared to when speed was 

emphasized. We did not observe a “different” response bias as found in Experiment 1 and in 

some conditions in Experiment 3. We took this lack of difference as evidence to suggest that 

the bias may not be robust under more difficult or time pressured contexts, as adopting a 

“different” bias would have decreased accuracy with the same-finger stimuli. Indeed, this 

explanation is consistent with previous findings demonstrating that novice and expert 
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examiners display a neutral response bias when discriminating fingerprints presented for just 

400 milliseconds (Searston & Tangen, 2017b).  

We also replicated the finding in Experiment 1 that discriminability is higher when 

viewing prints that originated from different fingers. This effect was robust to the presence of 

noise. In contrast, and as expected, discriminability for same-finger prints decreased when 

noise was introduced. In line with recent evidence (e.g., Rae et al., 2014), we found that 

emphasis type also influenced mean rate. Because our manipulation of emphasis type affected 

response times considerably more than it affected accuracy, the effects of emphasis type 

manifested through the overall rate at which evidence was accumulated, rather than the 

differences in rates of evidence accumulation between the matching and mismatching 

accumulators.  

For prints that had originated from the same finger, discriminability decreased under 

accuracy emphasis compared to speed emphasis. This latter result was unexpected and may 

highlight a unique feature of crime-scene prints. The additional processing afforded under 

accuracy emphasis may negatively influence the discrimination of  prints of the same finger 

because the individual further processes contextual information (e.g., distortion or pressure) 

and erroneously takes this as evidence for a different-finger pair. Under speed emphasis, the 

individual may only process information which is at least partially diagnostic of the same-

finger pair, and so accuracy is less affected compared to when accuracy is emphasized. This 

conclusion is consistent with Rae et al. (2014), who suggest that emphasis type may influence 

the kind of information accumulated during the decision process. Speed emphasis, for 

instance, may focus attention on the more global or distributed characteristics of fingerprints 

(e.g., Searston & Tangen, 2017a) that can be gleaned quickly at a glance or in noise (e.g., 

Thompson & Tangen, 2014). Accuracy emphasis, on the other hand, may focus attention 

more on the finer features such as the ‘minutiae’ of a fingerprint. Directly examining the 
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nature of the information that is extracted while processing fingerprints is a promising avenue 

for future research.   

The aim of Experiment 3 was to examine how the components of the fingerprint 

discrimination process change in response to a training intervention where participants are 

given feedback regarding the correct response. The results for the pre-intervention block 

replicated Experiment 1, with people showing a bias toward discriminating pairs as 

originating from different fingers, and also processing information more efficiently when 

pairs came from different fingers. The training intervention had the effect of reversing this 

bias: Those who received the intervention showed a bias toward discriminating pairs as 

originating from the same finger, as opposed to originating from different fingers, during the 

post-intervention block. We suspect that the response bias reversed after training because 

participants attempted to compensate for their poorer accuracy in identifying pairs as 

originating from the same finger. This result is consistent with prior studies on novices’ 

fingerprint discrimination decisions showing a liberal (“same”) response bias in the absence 

of feedback, but a conservative (“different”) response bias in the presence of feedback 

(Searston, Tangen & Eva, 2016). 

Training did not improve overall discriminability. However, there was some evidence 

that training influenced the variability in the rate of evidence accumulation associated with 

making correct decisions, particularly for pairs that came from different fingers. We 

hypothesize that training may have led individuals to change how they processed pairs of 

prints. From training, individuals may have learned that differences in the images due to 

factors such as pressure, distortion, and completeness do not necessarily diagnose prints as 

originating from different sources. As a result, individuals may have attended to a greater 

range of information to inform their decisions, and this would have had a greater impact on 

the decision inputs to the pairs originating from different fingers.     
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 Across all three experiments, we observed an interesting difference in the variability 

of the rate of evidence accumulation between pairs originating from the same versus different 

fingers. In general, the variability in the rate of evidence accumulation for the matching 

accumulator was greater for pairs originating from the same finger than for pairs originating 

from different fingers. We argue that the difference in rate variability is due to inherent 

features of the stimuli. Different-finger pairs can often be identified fairly easily, by seeking 

out particular features that, if found, quickly diagnose the pair as originating from different 

fingers. This makes the rate of evidence accumulation fairly reliable, with less heterogeneity 

across different fingers resulting in lesser variability in the rate of evidence accumulation to 

make a correct decision. Indeed, such an interpretation is consistent with the original notion 

that rate variability captures heterogeneity in stimulus difficulty (Ratcliff, 1978), and recent 

evidence using heterogeneous multi-attribute stimuli (Palada et al., 2018). An experiment 

measuring rate variability across systematic changes in the similarity of same and different 

fingerprint pairs could be an interesting test of this idea in the future. 

Overall, our findings suggest that the LBA can accurately reproduce the empirical 

patterns of choices and responses times observed across the three experiments in the 

fingerprint discrimination task. The effects of the manipulations on the model parameters, 

however, raise questions about the underlying decision process that warrant further research. 

The pattern of results suggests that novices may attend to extraneous information which is not 

diagnostic in deciding whether the prints originated from the same or different fingers. Our 

initial evidence from Experiment 3 suggests that perhaps novices can shift this strategy, 

though future research should attempt to further understand what information is processed in 

fingerprint discrimination. In line with this possibility, our modeling suggests that the LBA 

can be used to describe the effects of training on fingerprint discrimination, which could be 

used to inform training interventions. Our results also point to the idea that the contextual 
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information presented in crime-scene prints can induce biases, which has implications for 

fingerprint discrimination in the field (Dror, 2018).   

We believe the LBA is a fruitful avenue for understanding decisions involving 

naturalistic stimuli because it can model the dynamics of decision making. We have tested the 

model in a decision-making task that bears strong resemblance to the task in the wild, and to 

the materials that fingerprint examiners encounter in practice. The idiosyncratic contextual 

factors of the task and the stimuli did not pose a major issue for the evidence accumulation 

model, in that it was able to provide an accurate description of performance. Overall, our 

experiments continue to extend evidence supporting the wider application of evidence 

accumulation to applied tasks which have a close resemblance to their naturalistic inspiration 

(e.g., Palada et al., 2018). Further application of evidence accumulation models to fingerprint 

discrimination could help us better understand sources of bias in people’s decision making, 

whether they pose a concern for discriminability, and how to calibrate them. Moreover, the 

evidence accumulation framework can help to understand how the decision-making process 

changes as people transition from novice to expert. The application of evidence accumulation 

models to other domains of perceptual expertise, such as forensic facial comparison (White, 

Phillips, Hahn, Hill, & O'Toole, 2015), could inform theory and practice in ways that were 

previously not possible. More broadly, further investigation of whether these models 

adequately characterize the underlying dynamics of all kinds of decision processes may 

provide theoretically meaningful insights about the cognitive processes involved in decisions 

about naturalistic stimuli. 
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Supplementary Materials 

Sampling Procedure 

We ran 33 chains, which is 3 times the number of individual-level parameters (the DMC 

package default). To reduce autocorrelation, we used a thinning interval on sampling procedure. 

For example, a thinning of 10 means that one sample was saved every 10 iterations.  

For Experiment 1, we set a thinning interval of 10. Sampling was done by using 

automated routines enabled by the ‘run.unstuck.dmc’ and ‘run.converge.dmc’ functions, which 

sample until no chains are stuck and until the multivariate potential scale reduction factor is less 

than 1.1 for all participants (Gelman & Brooks, 1998). After convergence, we discarded all 

previous samples and sampled for a further 1500 iterations. In this analysis, there was some 

non-stationarity in the chains even after the automated convergence routine had been 

completed. We therefore discarded the first 1000 of the 1500 final samples in each chain, which 

removed this non-stationarity. Visual inspection of the final 500 samples confirmed that the 

chains were well mixed and stationary. 

For Experiment 2, we initially set a thinning interval of 15, though subsequently increased 

this to 25 to better reduce autocorrelation. We first ran the ‘run.unstuck.dmc’ procedure until 

chains were unstuck. Thereafter, rather than using auto-convergence routines we used the 

‘h.run.dmc’ procedure to run hierarchical sampling iterations. We initially ran the procedure to 

collect 1400 iterations. Visual inspections of the final 500 iterations confirmed that the chains 

were well mixed and stationary. From there, we collected a further 300 samples with a thinning set to 

10; this last step was also run to ensure that the chains did not expand, as this behavior was observed in 

prior attempts to fit the model. For Experiment 3, we set a thinning of 25. We used the procedure as in 

Experiment 2 to ensure that chains were unstuck. Thereafter, we initially collected 1100 iterations and 

then collected a final 500 iterations for analysis.  
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Priors 

 The population-level parameters included two parameters: Location and scale. The prior 

distributions and values for the location parameter is shown in Table 1. After having fit 

Experiment 1, we reviewed the estimates and found that the estimated mean of the start-point 

(A) was 7.16, which is far from the initial prior specified. Therefore, in Experiments 2 and 3 

we updated the location of the start-point to 5.0. All scale parameters were modeling using a 

zero-truncated normal distribution with a mean of 0 and a standard deviation of 1.  

Table 1.  

Priors for location parameter of the population level LBA model parameters 

Model Parameter Distribution Mean Standard Deviation Lower Upper 

Start-point 
(A) 

Truncated normal 1.00/5.00 1.00 0 NA 

Threshold 
(B) 

Truncated normal 1.00 1.00 0 NA 

Rate 
(v) 

Normal 1.00 2.00 NA NA 

Rate Variability 
(sv) 

Truncated normal 1.00 1.00 0 NA 

Non-decision 
(ter) 

Truncated normal 0.30 1.00 0.10 1.00 

 

 


