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An Evidential Reasoning Approach for Multiple- 

Attribute Decision Making with Uncertainty 
Jian-Bo Yang and Madan G. Singh, Fellow, IEEE 

Abstract-A new evidential reasoning based approach is pro- 
posed that may be used to deal with uncertain decision knowl- 
edge in multiple-attribute decision making (MADM) problems 
with both quantitative and qualitative attributes. This ap- 
proach is based on an evaluation analysis model and the evi- 
dence combination rule of the Dempster-Shafer theory. It is 
akin to a preference modeling approach, comprising an eviden- 
tial reasoning framework for evaluation and quantification of 
qualitative attributes. Two operational algorithms have been 
developed within this approach for combining multiple uncer- 
tain subjective judgments. Based on this approach and a tra- 
ditional MADM method, a decision making procedure is pro- 
posed to rank alternatives in MADM problems with 
uncertainty. A numerical example is discussed to demonstrate 
the implementation of the proposed approach. A multiple-at- 
tribute motor cycle evaluation problem is then presented to il- 
lustrate the hybrid decision making procedure. 

I. INTRODUCTION 
ULTIPLE-ATTRIBUTE decision making problems M with both quantitative and qualitative attributes are 

common in practice [6], which we simply call hybrid 
MADM problems in this paper. At the concept design 
'stage in engineering design, for example, alternative de- 
signs for a large engineering product need to be zanked or 
sorted by taking into account many technical and econom- 
ical performances which are usually measured or evalu- 
ated using either numerical values with certain units or 
subjective judgments with uncertainty based on a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori 
experience. The aim of design is then to select from the 
existing alternative designs the best compromise alterna- 
tive which attains these performances as closely as pos- 
sible. 

To solve a hybrid MADM problem, the first step is to 
evaluate and quantify the state of a qualitative attribute at 
each alternative. One of the simplest ways is to define a 
few evaluation grades for the attribute, which are quan- 
tified using a certain scale. The state of the attribute at an 
alternative may be evaluated to one of the grades. The 
scale of the confirmed grade may then be used as a nu- 
merical value for measuring the sate of the attribute at the 
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alternative [6]. This approach is conceptually clear and 
easy to understand. However, it may be difficult to apply 
in practice because of two main reasons. 

First of all, in a MADM problem, a qualitative attribute 
often represents an abstract concept representing an ag- 
gregated technical or economical performance compara- 
ble with other attributes. Such a qualitative attribute is 
generally difficult to assess directly, but may be possible 
to evaluate indirectly through a number of factors, which 
detail the attribute and are easier to assess directly. Sec- 
ondly, it is improper to assume that subjective judgments 
for such evaluations might always be deterministic, even 
for the assessments of a factor. In other words, the deci- 
sion maker may not always be 100% sure that the state of 
a factor is exactly confirmed to one of the evaluation 
grades. In fact, one or more grades may be confirmed at 
the same time with total confidence of exact or smaller 
than 100%. In the new approach to be reported in this 
paper, uncertain subjective judgments for the evaluation 
of qualitative attributes through multiple relevant factors 
will be accommodated within a framework based on the 
concept of preference degree and an evaluation analysis 
model [35]. 

Several tools are available for reasoning with uncertain 
decision knowledge. The Dempster-Shafer theory (sim- 
ply D-S theory) is selected for the development of the 
new approach because of  1) its powerful evidence com- 
bination rule, and 2) its reasonable requirement for the 
basic probability assignments that given a piece of evi- 
dence, the commitment of belief in a hypothesis does not 
necessarily mean that the remaining belief must be as- 
signed to the complement of the hypothesis, but to the 
whole sample space [l], [19]. 

The second advantage of the D-S theory [i.e., 2)] in- 
dicates that the theory is well suited for handling incom- 
plete uncertainty. This is particularly important and use- 
ful for dealing with uncertain subjective judgments when 
multiple factors need to be considered simultaneously. 
This is because even though each uncertain subjective 
judgment for the evaluation of a single factor provides a 
complete commitment to the evaluation grades (i.e., with 
the total confidence of exactly loo%), the total support 
from the factor for evaluation of its associated attribute 
may still be incomplete as each factor may have a differ- 
ent relative importance or a different role in evaluation of 
the attribute, as will be shown in the application examples 
in Section V. In other words, the total support from a 
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single factor could only be 100% if the factor absolutely 
dominated all other factors. However, this is not always 
the case. Otherwise, a single-factor analysis should be 
enough, which actually means that the attribute could be 
assessed directly. The D-S theory is so great that it can 
deal with such incomplete uncertainty in a more rational 
way than other tools in that given a piece of evidence, the 
unassigned belief in a hypothesis is just supposed to de- 
note the unknown uncertainty, which instead of being 
necessarily assigned to the complement of the hypothesis, 
may eventually be assigned to any hyperthesis in the sam- 
ple space when more evidence is gathered. This is the 
main reason why we have chosen the D-S theory to han- 
dle uncertainty for multiple factor analysis. Some con- 
cepts and the evidence combination rule of the D-S theory 
are introduced to develop evidence combination algo- 
rithms for combining uncertain decision knowledge. 

In this paper, we will focus on developing the eviden- 
tial reasoning approach. A decision making procedure for 
ranking alternatives in a hybrid MADM problem with un- 
certainty is also proposed, which is composed of the new 
approach and a traditional MADM method. In Section 11, 
necessary basics are briefly discussed about hybrid 
MADM with uncertainty, the concept of preference de- 
gree, the evaluation analysis model, and the evidence 
combination rule. The new evidential reasoning approach 
is then explored in detail. In Section IV, the procedure for 
alternative ranking is proposed. Section V first presents a 
numerical example to demonstrate the implementation 
process of the new evidential reasoning approach. A mul- 
tiple-attribute motorcycle evaluation problem is then pre- 
sented to illustrate how to use the approach to deal with 
a real-world hybrid MADM problem with uncertainty. 

11. BASICS ABOUT HYBRID MADM WITH 

UNCERTAINTY 

A. Hybrid MADM Problems with Uncertainty 

A hybrid MADM problem may be expressed using the 
following formula (1) or by an extended decision matrix, 
such as Table I .  

optimize y ( a )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [ y l ( a )  - * * Yk(a) - * * 
Y k !  + k2 

a c Q  

(1) 

is a discrete set of alternatives. In Table I ,  yo 
is a numerical value of y, at a; ( i  = 1, . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; j = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 
. . .  , k , )  and SJii are subjective judgments with uncer- 
tainty for evaluation of the states of Yk,  + j  at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai ( i  = 1, 
* - , k2) .  The problem is to rank these 
alternatives or to select the best compromise alternative, 
with both quantitative and qualitative attributes being si- 
multaneously satisfied as much as possible. 

It is therefore fundamental to evaluate and quantify 
qualitative attributes so that the extended decision matrix 
can be transformed into an ordinary decision matrix, and 
then a traditional MADM method may be used for ranking 
alternatives. A simple method for the evaluation and 
quantification is to define a few evaluation grades such 

In ( l ) ,  

, l ; J  = 1, - 

that the state of an attribute at an alternative could be eval- 
uated to one of the grades. Then, these grades may be 
quantified using certain scales zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6].  This method may be 
practical if the decision maker is able to evaluate quali- 
tative attributes synthetically and deterministically using 
only a few discrete evaluation grades. 

In a hybrid MADM problem, however, a qualitative 
attribute may represent an aggregated technical and eco- 
nomical concept so that it is comparable with other attri- 
butes. Such an attribute may only be evaluated through a 
number of relevant factors which detail the attribute and 
are easier to evaluate directly. In addition to this, the 
evaluations of a factor may not always be deterministic. 
Rather, uncertain subjective judgments may often be pro- 
vided by the decision maker. 

In a problem of evaluating different types of motorcy- 
cles, for example, the following type of uncertain subjec- 
tive judgments was frequently used [7 ] .  

Statement i > The responsiveness of the engine of 
“Yamaha” is evaluated to be good 
with a confidence degree of 0.3 and to 
be excellent with a confidence degree 
of 0.6. 

In the statement, “Yamaha” is an alternative motor 
cycle, engine a qualitative attribute comparable with other 
attributes such as price, responsiveness a factor for the 
evaluation of engine, good and excellent are evaluation 
grades representing distinct states of engine, and the con- 
fidence degrees 0.3 and 0.6 represent the uncertainty in 
the evaluation. Note that the total confidence degree in 
Statement i > is 0.9, smaller than one. 

To evaluate engine of a motorcycle, other factors such 
asfuel economy and quietness may need to be considered 
as well. In this case, similar statements may also be used 
to evaluate the fuel economy and quietness of the engine 
of “Yamaha.” It is then essential to combine these mul- 
tiple uncertain judgments to produce an aggregated eval- 
uation for engine. The following sections are therefore 
focused on the development of an approach, comprising 
multiple-factor analysis and evidential reasoning, SO that 
qualitative attributes may be evaluated and quantified. As 
a result, a decision making procedure will be proposed 
for ranking alternatives in a hybrid MADM problem with 
uncertainty. 

B. Evaluation Analysis Model 

In [27], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[35], an evaluation analysis model was pro- 
posed to represent uncertain subjective judgments, such 
as Statement i > . The model is shown in Fig. 1. 

In the attribute level of the model, the state of an at- 
tribute (such as engine) at each alternative a (such as 
“Yamaha”) is required to be evaluated. In the evaluation 
grade level, H,, is called an evaluation grade (such as 
good) (n = 1, * * , N). A set of evaluation grades for 
an attribute Y k  is denoted by 

H = { H I  H2 H,, HN} (2) 

where N is the number of evaluation grades. H,, represents 
a grade to which the state of Y k  may be evaluated. HI and 
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TABLE I 
AN EXTENDED DECISION MATRIX 

Quantitative Attributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy k )  Qualitative Attributes ( y k )  

Y k i  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2 
. . .  (a,) YI Y Z  Y k i  Y k i  + I Y k t  + 2 

. . .  Alternatives 

s l k ,  

s12k2 

. . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a1 YII Y 1 2  Y I k i  SJi I SJ,2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a2 Y 2 1  Y 2 2  Y 2 k i  SJZ I s J 2 2  

a1 Y I I  Y 1 2  Y l k i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASJI I SJI 2 

. . .  
. . .  . . .  

. . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .  
s l k ,  

. . .  . . .  

ykl+l ”’ yk ”’ Yk,+$ - Attribute level 

HI ... H,, ... H, Evaluation grade level 

Factor level kz 
E E 1 ...’ “‘. 

Fig. 1 .  An evaluation analysis model. 

HN are set to be the worst and the best grades, respec- 
tively, and H,,, is supposed to be preferred to H,. It 
should be kept in mind that an attribute may have its own 
set of evaluation grades different from those of other at- 
tributes, although Fig. 1 only lists one set and H of (2) is 
not defined as H k  in order to simplify the following dis- 
cussion. 

In the model, the concept of preference degree was in- 
troduced, which may be used to quantify these waluation 
grades and eventually to quantify subjective judgments 
with uncertainty. A preference degree takes values from 
the close interval [ - 1 11, which may be called the pref- 
erence degree space. The set of evaluation grades may 
thus be quantified by 

where p (H,,) is the scale of H,, and satisfies the following 
basic conditions: 

P W , )  = - 1 ,  P W , )  = 1;  

P(Hn.1) > P ( H J ,  n = 1 ,  * * , N - 1 .  (4) 

Besides, p(H,,)  (n  = 2, * - * , N - 1) should be so as- 
signed that an additional consistence condition, defined 
by (21 )  in the next section, can be satisfied. 

Suppose N = 7, for example, H may be defined as fol- 
lows: 

= H2 H3 H4 H5 H6 H71 

= {the most unsatisfactory, very unsatisfactory, 

unsatisfactory, indifferent, 

satisfactory, very satisfactory, the most satisfactory}. 

(5 )  

Without loss of generality, we may scale H,, (n = 1, 
7 )  by using real numbers in [ - 1 1 1 ;  for example, 

, 

P W )  = [ P ( H l )  PW2)  P(H3) P(Hd  q ( H 5 )  

P (H6)  P (&)IT  

= [ - 1  -0.8 -0.4 0 0.4 0.8 1IT. (6) 

In the factor level, Ek represents a Set of factors which 
are associated with the evaluation of the attribute Y k  (a) 
and denoted by 

Ek = { e :  e:  * * * e?} - , kl  + k2 k = k ,  + 1,  

(7) 

where e l  ( i  = 1 ,  , Lk) are factors (such as respon- 
siveness) influencing the evaluation of yk(u). The state of 
e ;  can be directly evaluated at an alternative a, that is, 
e ;  = e; (a) .  

The new approach developed in this paper is then de- 
voted to generating the preference degree for the state of 
an attribute yk(u) at each alternative u through the direct 
evaluations of the relevant factors e t  (i = 1 ,  - * , Lk). 
The generated preference degrees for the attribute have to 
satisfy certain rational assumptions such as the monoton- 
icity of its marginal utilities. 

If there is only one factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe: associated with Yk(a) and 
its state at a is exactly confirmed to one of the evaluation 
grades in H ,  such as H,,, the procedure for evaluation of 
yk(a) through e: may be as simple as to use the scale of 
the confirmed evaluation grade as the preference degree 
of Y k  (a)  denoted by P ( Y k  (a)) 9 Or P ( Y k  (a) )  = P (e (a) )  = 
p (H,,) where p (e:(a)) denotes the preference degree of 
e: at a. A more general evaluation procedure is to be ex- 
plored based on the evaluation analysis model and the evi- 
dence combination rule of the Dempster-Shafer theory. 

- 

C. Evidence Combination Rule 

The D-S theory is one of the powerful tools to deal 
with uncertainty. We do not attempt to discuss all of its 
details in this paper, but we will only use its evidence 
combination rule to develop evidence combination algo- 
rithms for the new approach. 

In the D-S theory, a sample space is called a “frame 
of discernment,” defined as 8. A basic hyperthesis (sin- 
gleton) in 8 is denoted by H,, Le., H, C 8. In 8, all 
basic hypertheses are required to be mutually exclusive 
and exhaustive. A probability mass to every subset of 
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8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 8) can be assigned, denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm (9). The prob- 
ability mass is called the basic probability assignment, 
which is a number in the interval [0 11 to indicate belief 
in a hypothesis given a piece of evidence, or the degree 
to which the evidence supports the hypothesis. 

A basic probability assignment satisfies the following 
condition [19]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* & e  C m ( 9 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, m ( 0 )  = 0;  

0 I m ( 9 )  5 1, for all 9 G 8. (8) 

m (9) indicates that portion of the total belief exactly 
committed to hypothesis 9 given a piece of evidence. In 
other words, m(9) represents the direct support of evi- 
dence on 9. This portion of belief cannot be further sub- 
divided among the subsets of 9, and does not include the 
portion of belief committed to subsets of 9. 

The quantity m ( 8 )  is a measure of that portion of the 
total belief that remains unassigned after commitment of 
belief to all subsets of 8. If m ( q )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ( 9  C 8)  and no 
belief is assigned to other subsets of 8, for example, then 
m ( 8 )  = 1 - s. Thus, the remaining belief is assigned to 
8, but not to the negation of the hypothesis 9 (the com- 
plement of 9). 

Suppose there exist two pieces of evidence in 8, and 
that they provide two basic probability assignments to a 
subset 9 of 8, Le., ml (9) and m2 (9). The problem is to 
obtain a combined probability assignment m12 (9) = 
ml (9) e m2 (9). The D-S theory provides an evidence 
combination rule defined below [19]: 

K = ml(A)m2(B) .  
A n B = 0  

In the rule, mI2 (9) for hypothesis 9 (C 8)  is computed 
from ml and m2 by adding all products of the form 
ml (A) m2 (B)  where A and B are selected from the subsets 
of 8 in all possible ways such that their intersection is 9. 
K reflects the conflicting situations where both m ,  (A)  and 
m2(B) are not zero, but the intersection A n B is empty. 
The commutativity of multiplication in the rule ensures 
that the rule yields the same value regardless of the order 
in which the two pieces of evidence are combined. 

It is easy to show that the direct use of the combination 
rule will result in an exponential increase in computa- 
tional complexity [ 13. This is due to the need to enumer- 
ate all subsets or supersets of a given subset 9 of 8. The 
following section is therefore intended to develop opera- 
tional algorithms for evidence combination which reduce 
the computational complexity to linear time by utilizing 
the characteristics of the evidence combination process 
based on the evaluation analysis model. 

probability assignment may be obtained from a con- 
fidence degree. To apply the evidence combination rule, 
however, the mutual exclusiveness and exhaustiveness of 
all basic hyperthesis have to be satisfied. It is therefore 
necessary that all the evaluation grades in H be defined as 
distinct grades. In other words, if one of the evaluation 
grades is absolutely confirmed, that is, the confidence de- 
gree is one, all the other grades must not be confirmed at 
all; if more than one grade is confirmed simultaneously, 
the total confidence degree must be one or smaller than 
one. In addition to this requirement, the evaluation grades 
defined in H must cover all possible grades the decision 
maker may use for evaluation of an attribute at all alter- 
natives. Then, the frame of discernment may be defined 
by 

e = H =  { H ,  H,, - - .  HN). (1  1) 

Let m (H, , / e i (a ) )  express a basic probability assign- 
ment to which eb supports a hypothesis that the state of Yk 
at an alternative a is confirmed to H,,. Let PH,,(ei(u)) be a 
confidence degree to which the decision maker considers 
that the state of e ;  at an alternative a is confirmed to H,,. 
m ( H , , / e i ( a ) )  may be obtained from PHn(e; (a) ) .  For a ra- 
tional decision maker, we assume that he only provides 
uncertain subjective judgments satisfying the following 
rationality assumption. 

Rationality Assumption: If a ,  decision maker recog- 
nizes that the state of a factor e ;  has to be confirmed to 
an evaluation grade H,, to some extent, then he may ex- 
press his uncertain subjective judgments only in one of 
the following three manners. 

1) e i is only confirmed to H,, to the extent of PHn (e i (a)) 
while 0 < PHn(e; (a) )  I 1 .  

2) e ;  may be confirmed to H,, and to H,, + at,the same 
time to the extents of PH,(e i (a ) )  and PH,+I(e;(u)), re- 
spectively, while 0 < flH,(eb(a)), pH,+ I (e:(a)) I 1, and 

3) e ;  may be confirmed to H,! - and to H,, at,the same 
time to the extents of /3Hn-l(e;(u)) and PHn(e;(a)),  re- 
spectively, while 0 < P H , - l ( e ; ( u ) ) ,  PHn(e; (u) )  I 1, and 

This assumption, however, is only made based upon 
our experience and may not be universally satisfied. In 
the extensions of the approach reported in [31], [32], this 
assumption has actually been abandoned, although the 
newly developed approaches need more computational ef- 
fort. Obviously, Statement i > satisfies the rationality as- 
sumption. From the rationality assumption, we can clas- 
sify the set of factors Ek = [ e :  e :  - - - e?] into N - 1 
subsets S,,, defined by 

PHn(ei(a)> + PH,+l(ek(a)) I 

6 H n - ~ ( e ; ( a ) )  -k PHn(ei(a)) I 1. 

3 eh,n+Iy * * 3 e!?n+d . . .  
s n  = { e : , ,+  1, 

111. EVIDENTIAL REASONING APPROACH n =  1, - - -  , N -  1 (12) 

A. An Evidential Reasoning Framework 

In the evaluation analysis mode, an evaluation grade H,, 
may be considered as a basic hypothesis (singleton) in the 
D-S theory, a factor e ;  as a piece of evidence, and a basic 

where e t , ,  + is a factor in Ek, the state of which is con- 
firmed to H,, andlor to H,, + 

+ RN - Because the evidence combination rule defined 
in (9) and (10) is independent of the order in which factors 

and Lk = R1 + R2 + * - 
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are gathered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 191, such classification will be useful to de- 
velop operational algorithms for evidence combination. 

We are now in a position to summarize an evidential 
reasoning framework. The basic probability assignments 
of all hypothesis (subsets of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8) are first generated from 
the confidence degrees. Suppose the basic probability as- 
signment of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH,, with respect to e:, , ,+ is denoted by 
m ( ~ f l / e ~ , f l + ~ ) ,  simply mi,',, that of H , + ,  by 
m ( H f l + l , / e : , n + l ) ,  simply and that of 8 by 
m ( 8 / e ; , , , + l ) ,  simply m z ' .  

Secondly, combine the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,, factors which confirm H,, 
and/or H,, + 1. At this step, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(13) 
e &) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n , n + l  - { e A , n + l ,  e ; ,n+I?  . * 3 e; , , ,+  I }  

m F )  = m ( H n / e i ( ! i + l ) ,  m? i l  = m ( H , , + I / e ~ , ' ~ + l ) ,  

m g )  = m ( w : : i + I ) .  (14) 

Therefore, e;(>; = {e:,,,+ * * , e:; , ,+,}  = S,,, and 
m;R"), mi(:),, and mgRn) (n = 1, . . * , N - 1) are called 
the local probability assignments partially combined from 
the R,, factors. 

Then, combine all factors in Ek. At this step, define 

(15) e C ( j )  - { , ~ R I )  . . . 
I , j +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - 1.2 7 2,3 7 ' e,,j + 11 

bf(" = m ( H , , / e t ( j L l ) ,  n = 1, - . 7 N .  (16) 

These symbols defined in (13)-(16) will be used to de- 
velop our partial and overall evidence combination algo- 
rithms, and they are expected to make it clearer to de- 
scribe the computational procedures of the algorithms 
separately. 

{ e :  . . * e p }  = Ekandbf"- l )  = m (H,, / E k ) ,  where 
m (H, , /&) is the overall probability assignment to which 
the state of an attribute yk(u) at an alternative a is con- 
firmed to H,,. Suppose 'k is a subset of 8. Then, m ('k / E k )  
is defined as the overall probability assignment to which 
the state of yk(u) at a is confirmed to 'k. Let p ( ' k )  stand 
for the scale of 'k, which is defined as the average of the 
scales of the singletons involved in \k. 

It is possible that the state of yk at a, may be confirmed 
by the factor set Ek to any subset 'k of 8 to an extent of 
m ( ' k / E k ( a , ) ) .  The state of yk(a,)  may therefore be de- 
noted by the following expectation: 

S(Yk(ar)) = { (m( 'k /Ek(ar) ) ,  *), for all * HI. 

From (15), it is obvious that e: ( : - ' )  - - 

(17) 

In (17), each subset 'k of H actually represents a pos- 
sible state (single evaluation grades or their combina- 
tions) into which the state of an attribute may possibly fall 
at a particular alternative and m ('k / Ek (a,)) represents the 
total support by all the factors to the hypothesis that the 
state of Y k  at a, is confirmed to 'k. Thus, (17) actually 
describes the distribution of the state of Y k  at a, among all 
possible states. If the distribution of the state of Yk at a, 
favors good subsets 'k in H more than the distribution at 
ah, S (  yk(a,)) should be better than S(  Yk (ah)). AS L H 

m('k/Ek(a , ) )  = 1, m ( ' k / E k ( a , ) )  may thus be explained 
as a plausible probability that the state of yk at a, falls into 
'k. In this context, let us define p (9) as a numerical value 
to express the relative intensity of the state 'k compared 
with all other possible states and let a larger value repre- 
sent a better state. Then, the intensity of the state of Y k  at 
a, may be defined as the expected value of the intensities 
of each state 'k confirmed at a, with a plausible probabil- 
ity of m('k/Ek(a , ) )  for all 'k !G H .  Let a preference de- 
gree express such an expected value, and the preference 
degree of yk(ar) be denoted by prk = p (yk(a , ) ) ,  quanti- 
fying S( yk (a,)) .  prk is then calculated by 

P r k  m ('k /Ek (a,)) P ('k) * (18) 
B E 0  

It is therefore rational to state that if at an alternative 
a, an attribute Y k  has a larger preference degree than at 
another alternative ah, then the state of yk at a, ought to 
be better than the state of Yk at ah. In other words, for two 
alternatives a, and ah, S( yk(u,)) is preferred to S (  yk(ah))  
if and only if prk > P h k .  A qualitative attribute yk can thus 
be quantified with its marginal utilities being monoto- 
nous, which forms a rational basis for further decision 
analysis. 

B. Acquisition and Representation of Uncertain 
Decision Knowledge 

An uncertain subjective judgment may be acquired us- 
ing a statement such as Statement i >  . It is used to eval- 
uate the state of a factor or an attribute at an alternative, 
indicating to which evaluation grades the state is con- 
firmed and to what extents these evaluation grades are 
confirmed. 

It is assumed that such uncertain subjective judgments 
satisfy the rationality assumption. Suppose a judgment 
states that the state of a factor e ;  at a, is confirmed to H,, 
to the extent of PHn (e;(a,)) and to H,, + to the extent of 
PH, + , (et  (a,)). The state of et (a,) may be represented by 
the following expectation: 

S(ei(ar>> = {(PHn(e;(ar>>, Hn); ( P H , + I ( e t ( a r ) ) ,  Hn+1)} 

(19) 

where PHn ( e ;  (a,)) + BH, + , (e ;  (a,)) I 1. Compared with 
(17) and (1 S),  the state of e Z (a,) may then be quantified 
using the preference degree, defined as the following ex- 
pected scale: 

Pn = P ( e t  (a,)) = PH, ( e ;  (a,)) P ( H n )  

+ PH, + ( e t  (a,)) P (Hn + 1 ) .  (20) 

* , N - 1) 
therefore need to be defined so that in addition to the basic 
conditions defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), the following consistence con- 
dition is also satisfied, that is, for two alternatives a, and 

S(et(a,))  is preferred to S(e;(ah)) 

if and only if p N  > P h f .  

The scales of H,,, i .e., p(H, , ) ,  (n = 2, 

a h ,  

(21) 
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A preference comparison of the state of one factor with 
that of another, such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(e;(ar)) with S(e;(ah)) ,  may be 
provided by the decision maker. If sufficient number of 
such preference comparisons are obtained, p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(H,) (n = 1, 
. . .  , N) may then be assessed by satisfying the con- 
straints defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) and (21). 

By definition, the confidence degree pH, (e h (a)) ex- 
presses the intensity to which the state of a single factor 
e ;  at a is confirmed to an evaluation grade H,,. On the 
other hand, the basic probability assignment m (H,/e;(a)) 
represents the degree to which e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi supports a hypothesis 
that the state of the attribute Y k  at a is confirmed to H,,. If 
there is only one factor e ;  in Ek, m(H,/eb(a) )  should be 
equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPHn(e;(a));  if there are multiple factors in Ek, 
however, they may play different roles in evaluation of 
Y k ,  depending upon their relative importance. Therefore, 
the weighted confidence degree may be used as the basic 
probability assignment. Suppose X i  is the normalized rel- 
ative weight o fe ;  in Ek and hk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[A: Then, 
m (H, / e  i (a)) may be determined by 

(Hn /e6 (a)) = ; (e: (a)).  (22) 

hk may be obtained as follows. Suppose {& = 

{PIT is a uniform weight vector, where {; ex- [S:, - 
presses the relative importance of e ;  and 

the ''intersection tableau" [ 11 with values of probability 
assignments along the rows and columns, respectively, is 
adopted to develop the algorithm. 

At first, combine two factors, e: , ,  + and. e:, ,  + 1. Sup- 
pose the basic probability assignments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm:,' and mi$ (i 
= 1, . . .  , R,) are obtained using formula [22]; then 

mn. i  e '  - - 1 - (m:' + m::l) ( i  = 1, - - - , R,). All these 

basic probability assignments to H,, H, + 1, and 8 with 
- , N -  1) 

may then be expressed by the following basic probability 
assignment matrices M": 

respect to ea,, + (i = 1, * - - , R,; n = 1, 

r m:,' m a 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 { e ! t , n + l }  

m:,2 m:.:l m a 2  

. . . . . . . . . 

( n = l , . . . , N - l ) .  (27) 

If R, = 0, then m:,' = 0, m:*: = 0 and m S i  = 1. Then, 
construct intersection tableau 1. (See Table 11.) 

From the combination rule shown in formulas (9) and 
(lo), we have 

m ; , 2  + , : . lmn,2  
n e {H,}: m f ( 2 )  = K'(2 ) (mn,1  

+ maim:.:i) Let e: be the most important factor in Ek, called the key 
factor, that is, = maxi {{l, - 1 , {h, . * , {P}. Nor- 
malize {k as follows: {e}: m f ( 2 )  = K'(2) ,n, l  m a 2  e 

- .  
{; = {;/{; i = 1, - * 3 Lk. (24) where 

If for the key factor the following relation is true K'(2) = [ I  - (m:,lm:,: ,  + m:':lm:.2)1-1 

m ( H , / e : )  = apPHn(e:) 0 < ak I 1 (25) 

then A; ( i  = 1, * , Lk) may be determined by 

A; = i = 1, - * , Lk. (26) 

ayk may be referred to as a priority coefficient representing 
the importance of the role the most importance factor plays 
for evaluation of the attribute y k .  

In this way, the basic probability assignments required 
in the combination rule can be generated from uncertain 
subjective judgments. The overall probability assignment 
can then be obtained by combining all the basic probabil- 
ity assignments using the operational algorithms explored 
in the following subsections. 

As to e 
ments to other hypothesis in 9 are all zero. 

e:,,, + 

111). From the combination rule, we can obtain 

+ , the partially combined probability assign- 

Now, let us combine ei(,3A+l = 
Similarly, construct intersection tableau 2 (Table 

{H,}: m I ( 3 )  = ~ 1 ( 3 ) ( ~ 1 ( 2 ) ~ ; , 3  + m i ( 2 ) m a 3  
n n 

+ m 2 2 ) m : , 3 )  

+ m $ 2 ) m n  3 

{H,+l}: mfi(yl = K'(3)(m'(2) n+lm;+l  n 3  + m:Y1ma3 

n'+ 1) 

{e}: m&3) = ~ f ( 3 ) ~ W )  n 3 
9 e me' 

where 
K'(3) = [1 - (mi(2) 4 3  + m'(2) n +  1m;,3)1-1. C. Partial Combination Algorithm mn+ 1 

AS mentioned before, the set of factors can be classified 
into N - 1 subsets denoted by S, (n = 1, N - 1). 
In S,,, there are R, factors as defined by formula (12), the 
states of which may be confirmed to H,, and/or to H,, + 

In this subsection, an algorithm will be developed to gen- 
erate the local probability assignments to H, and H, + by 
combining these R,, factors. For computational purposes, + e m:"+') (28.a) 

Since m:') m:, l ,  mi(:) = m:,: and ml$l) = ma' ,  
then it is natural that by combining e::::] = { e ! , ,  + 1, 
. - . , ,,,, + 1} ,  we can obtain the following recursive for- 
mulas: 

, r +  1 

{ H ~ J :  1) = K&r+ l ) (m; ( r )m; , r+  1 + m i ( r ) m a r +  1 
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TABLE I1 
INTERSECTION TABLEAU 1 

TABLE Ill 
INTERSECTION TABLEAU 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{ H ~ + ~ } :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm;(y+ll) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK r ( r + l ) ( m ; ( T l m ; , ; ; I  + m ; ( T l m ; ; r + l  

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm F ) m n . r + l )  n +  1 (28. b) 

(28.c) {e}: m$+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) = KW+l)ml$')m;;.r+ 1 

where 
jy&+l )  = [1 - (mft(r)mn.r+l + mKr) n+lm;"'+ ')I-' 

n + l  

r = l , . . -  , R n  - 1; n = 1, , N - 1. 

(28.d) 

The formulas (28) constitute a partial combination al- 

bined probability assignments to H,, H,, + and 8, re- 
spectively, with respect to efy::] = {e:,, ,  + 1, * * * , 
en,n + l}.  The local probability assignments to H,, H,, + 
and 8 with respect to the subset of factors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,, can be rep- 
resented as mf(?)l, and mZRRn). To represent the re- 
sults of the partial combination of all subsets of factors, 
the following matrix is suggested, called the local prob- 
ability assignment matrix: 

gorithm. ,ft(rf l), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm &r+ + 1) , and ml$' + I )  are the partially com- 

r +  1 

m { ( R ~ )  m i ( R ~ )  m$Ri )  

. . .  . . .  

. . .  
M =  

D. Overall Combination Algorithm 

After the partial combination, the subset of factors S,, 
may be regarded as an aggregated factor, and mft(R") as a 
new basic probability assignment to the hypothesis H,, , 
confirmed by S,,. The problem is then to combine all these 
integrated factors in order to obtain the overall probability 
assignments to all subsets 9 of 8,  including the single- 

tons H,, (n  = 1 ,  * - , N). We still use the intersection 
tableau to develop such an overall combination algorithm. 

First of all, combine et(;) = {e{(,?), e$,q)}. Construct 
intersection tableau 3. (See Table IV.) 

From the combination rule, we have 

{H~}: b C ( 2 )  = 

{ H ~ } :  b;(2) = K C ( ~ ) ( , $ R I ) , $ R ~ )  + m W ) m l $ R 2 )  2 

+ m 4 R ~ ) m i ( R ~ ) )  e 

{ H ~ } :  b$(2) = K W ) ~ $ R I ) , $ R Z )  

{e}: bg(2) = K C ( ~ ) ~ ~ R I R I ) , $ R Z )  

where 
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TABLE IV 
INTERSECTION TABLEAU 3 

TABLE V 
INTERSECTION TABLEAU 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 1  

+ bC( l )m!(Rj+I )  
J + 1  J + 2  )] 

, N - 2 .  ( 3 0 4  j =  1, . . .  
Whenj  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN - 2, the overall probability assignments 

are generated and can be expressed by the following vec- 
tor, called the overall probability assignment vector: 

G = [b C W -  1 )  . . . b,C'N- I ) ,  . . . b g N -  1 )  
1 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 9 

(31) 

Notice that G is obtained by combining e E(:- ' )  while 

,,E(;- 1 )  = {,I(RI) . . . @'n) KRN - I )  
1,2  7 7 e n , n + i ,  * 2 ~ N - I , N ~  

= { e :  6'; ' '  * e p }  = E k .  (32) 

= { S ,  s 2  - - sfl * * *  S N -  1 1  

In other words, b,C'N- ' )  is the overall probability assign- 
ment to which H,, is confirmed by all factors e: ( i  = 1, 

From the above discussion, it is obvious that the overall 
probability assignments are all zero for other hypothesis 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 except for the singletons Hfl (n  = 1 ,  - - - , N )  and 
8. So, it can be proved that the following equation is true: 

7 L k ) .  
. . .  

N 

(33) b,C'N-l) + bC$"l) = 1 
fl= 1 

C(N - 1) Since m ( H n / E k ( a ) )  = b ,  
defined by (1 S), can then be calculated by 

, the preference degree p r k ,  

N 

P r k  = .cl m (Hn l E k  (a,)) p ( H n )  -k (e l E k  (a,)) P (e) 
N 

= fl= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 1 b;:N- l ) p ( ~ f l )  + b;"- l )p(e) .  (34) 

IV. EVALUATION MATRIX AND ALTERNATIVE RANKING 

A. Construction of An Evaluation Matrix 

The evidential reasoning approach explored above is 
actually used to transform the uncertain subjective judg- 
ments about the state of a qualitative attribute yk at an 
alternative a, into the preference degree p r k  = p ( Y k  (a,))  
foral lk = kl + 1,  * * , kl  + k2;  r = 1 ,  - - * , 1. Inthis 
way, all qualitative attributes are evaluated and quantified 
using the values in the interval [ - 1 13. 

The values of quantitative attributes which are gener- 
ally incommensurate may also be transformed into the 
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preference degree space using the following formulas: TABLE VI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

THE EVALUATION MATRIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PUl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ h  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .  for benefit attributes P21 ' . .  P2k1 P2kj+l 

. . .  . . .  . . .  . . . . . . . . . . . .  
P l k ,  + k? 

. . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 PI1 . . .  Plkl PIki + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

k = l ; - . , k l ; r = l ; . . , l ,  

for cost attributes (36) Step 2: For each pair of alternatives (al, ai)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i, j = 1 ,  
, 1; i # j ) ,  construct the concordance set Cij and the . . .  

max { Y l k  * ' ' &k)7 discordance set Dq, based on the evaluation matrix: 
y y  = 

yP = min { Y l k  ' . * ylk}. (37) 
The transformed attribute Y k  may be denoted by a pref- 

erence function p ( Y k ) .  Thus, the original extended deci- 
sion matrix defined by Table I is transformed into an eval- 
uation matrix, an ordinary decision matrix defined by 
Table VI, in which the states of all attributes, either quan- 
titative or qualitative, are represented in the preference 
degree space. The alternatives may then be ranked based 
on the evaluation matrix. 

B. Alternative Ranking 

At this stage, several traditional MADM methods can 
be selected to rank alternatives on the basis of the evalu- 
ation matrix. The CODASID method [21], [30], [33] may 
be one of them, which is based on a complete concor- 
dance and discordance analysis for information aggrega- 
tion and the decision rule of the TOPSIS method for in- 
formation synthesis (alternative ranking). The reasons that 
we have chosen CODASID for alterative ranking are not 
only that it is appropriate to address a MADM problem 
represented by an ordinary decision matrix, but also that 
we have developed software for CODASID so that the 
application examples can be readily tested [21], [33]. Ob- 
viously, the readers are not prohibited from adopting other 
proper MADM methods they prefer to deal with alterna- 
tive ranking based on Table VI. The computational steps 
of CODASID are summarized below. 

Step I: Generate the weighted normalized evaluation 
matrix 2 as follows: 

z = (rij)l x (kl t k 2 )  diag { U l  * Uki f k 2 )  

= (zij)l x (ki + kz) (38) 

* , kl  + where wk is the relative weight of Y k  ( k  = 1, - 
k2) and 

p ,  - p y i n  
z . . = w . r . . '  r . . =  

J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv rl pJmax - , p i n  9 

i = l ; . * , l ; j = l ,  . * , kl + k2 (39) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cq = {klpik 2 pjk, k = 1, * ' ? kl + k2); 

Do = { k l i k  < pjk, k = 1 ,  * * , k1 + k2). (41) 

Step 3: Calculate the preference-evaluation discor- 
dance index dii , the preference concordance index pc ,  , 
and the evaluation concordance index ec,: 

max Jrik - Tjk( 

max lrik - Tjk( 
(42) 

keCij 

k a J  

ecO = 

w h e r e O s d q , p c , , e c , s  l , a n d J = { l ,  * - e  9 kl + k2) 
is the index set of attributes. 

Step 4: For all alternatives, calculate the net prefer- 
ence concordance dominance index p c  (a i ) ,  the net eval- 
uation concordance dominance index ec (a i ) ,  and the net 
preference-evaluation discordance dominance index d (ai ) . 
Then, construct the Judgment-Evaluation (J-E) matrix 
(Table VII): 

1 1 

P C ( U i )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,z pcq - c pcji; 
J = 1  j =  1 
j # i  j # i  

1 1 

ec (a i )  = ,C ecO - C ecji; 
j = 1  j =  1 
j # i  j # i  

1 1 

d(ai) = d, - dj i ,  i = 1, * * * , 1. (43) 

Step 5: p c ( a ) ,  ec(a), and d(a) in Table VI1 are re- 
garded as new composite attributes. p c ( a )  and ec (a )  are 
for maximization and d (a) for minimization. Suppose p l  , 
p 2 ,  and p 3  are tradeoff weights representing the relative 
importance of p c ( a ) ,  ec(a), and d(a). pi may be deter- 
mined as follows [30]: 

j =  1 j = l  
j # i  j # i  

= p2 = 0.25; p 3  = 0.5. (44) 

Step 6: Normalize the three indexes p c  (a), ec (a),  and 
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TABLE VI1 
THE J-E MATRIX 

s; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ ( $ (a i )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+(a-))2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Z(q) - 

(5 1) 
a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPC,  ec, d ,  
a2 P C 2  ec2 d2 Step I O :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe relative closeness index of ai to the ideal 

a1 P C l  eel dl 

. . .  . . .  . . .  . . .  
point is finally defined as 

- 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI u ( q )  I 1 ,  i = 1 ,  - , I; si 
u(a; )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

s i  + s?' d ( a )  as follows: 

,J j =  1 d 2 ( a j )  

yielding the normalized J-E matrix E 

(45) 

Step 7: E is weighted by the tradeoff weight vector p 

= [pl p2 p3IT, resulting in the weighted normalized 
J-E matrix JE: 

(47) 

wherejZ(ai) - = p l j Z ( a i ) ,  E ( a i )  = p 2 E ( a i ) ,  and d(ai) 

Step 8: An ideal point a* and a negative ideal point a-  
= p 3 d ( a i ) ,  i = 1 ,  - * 2 1. 

in the J-E space can then be defined as follows: 

p^E(al)}, 

eT(a , ) } ,  

$(a*) = max { @(al) - 
Z(a*)  = max {Z(al) - 
d(a*) = min {d (a , )  * - d(al ) }  (48) 

and 

j Z ( a - )  = min { +(a , )  * * jZ (a l ) } ,  

Z(c(a-) = min {eY(al) - Z ( a l ) } ,  

d(a-1 = max { d ( a l )  - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(al>}.  (49) 

Step 9: The distance s? between an alternative ai and 
the ideal point a* and the distance s i  between ai and the 
negative ideal point a- are defined as 

s? = [ (+(ai)  - +(a*))2 + ( Z ( U i )  - E(a*))2 

+ (d(ai) - d ( ~ * ) ) ~ ] ' / ~  i = 1 ,  - , I (50) 

u ( a - )  = 0 ,  u(a*) = 1 .  (52) 

A large value of u (a i )  indicates that ai is more favorable 
since it is simultaneously closer to the ideal point and fur- 
ther from the negative ideal point. 

C. A Procedure for  Hybrid MADM with Uncertainty 

As a result of the discussion in the previous subsec- 
tions, we are now in a position to formulate a procedure 
for dealing with a hybrid multiple-attribute decision mak- 
ing problem with uncertainty. This procedure is com- 
posed of the transformation, aggregation, and synthesis 
of information contained in the problem. The procedure 
may be summarized as the following steps. 

Step I: Define a hybrid MADM problem using the ex- 
tended decision matrix as defined by Table I, where un- 
certain subjective judgments for evaluation of a qualita- 
tive attribute may be acquired using statements similar to 
Statement i > and represented by the evaluation analysis 
model. 

Step 2: Transform the numerical value with a certain 
unit of a quantitative attribute at each alternative into the 
preference degree space using (35) or (36). 

step 3: Quantify the state of a qualitative attribute Y k  

at each alternative a, using the evidential reasoning ap- 
proach in order to obtain the preference degree prk = 
P(Yk(a,.)). Let k = 1, r = 1 .  

Step 4: First, calculate the basic probability assign- 
ments from the confidence degrees given in the uncertain 
subjective judgments by using (22), resulting in the basic 
probability assignment matrices M" ( Yk(a,)) (n = 1 ,  * , 
N - 1) defined by (27). 

Step 5: Then, conduct partial combinations for the 
subsets of factors S,, (n = 1, * - * , N - 1) in Ek using 
the algorithm shown in formulas (28), resulting in the lo- 
cal probability assignment matrix M ( Yk (a,)) defined by 
(29). 

Step 6: Conduct overall combination for all factors in 
Ek for Yk using the algorithm listed in formulas (30), yield- 
ing the overall probability assignment vector G( yk (a,)) 
defined by (31). 

Step 7: Using (34), calculate the preference degree of 
yk(a,), i.e., prk. If k 1 kl + k2 and r 1 1, continue. If k 
I kl  + k2 and r < 1, let r = r + 1 and then go to Step 
4. If k < kl + k2 and r 1 1, let k = k + 1 ,  r = 1 ,  and 
then go to Step 4 .  

Step 8: Construct the evaluation matrix as shown in 
Table VI. 
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Step 9: Aggregate the information contained in the 

evaluation matrix using formulas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(38)-(43), resulting in 
the J-E matrix defined in Table VII. 

Step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10: Synthesize the information contained in the 
J-E matrix by formulas (44)-(52), generating the relative 
closeness indexes of all alternatives to the ideal point, that 
is, u(a,), r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ,  * * - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

- , 1. If 
u(a,,) 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(a,), then a,, is preferred to a,, r l ,  r2 = 1, 

Step ZZ: Rank a, based on u(a,), r = 1, * 

* - , 1; rl # r2. 

V. EXAMPLES 

A. A Numerical Example 

A numerical example is discussed in this subsection to 
show how to implement the new evidential reasoning ap- 
proach. The problem is to evaluate and quantify the state 
of an attribute Y k  at an altemative a, within an evidential 
reasoning framework. 

First, define the set of evaluation grades for Y k  as 

= H2 H3 H4 H5 H6 H71 (53) 

which may be interpreted as in formula (5) and scaled as 
in (6) wherep(H) = C;=,p(Hn)/7 = 0. In (53), H,, (n 
= I ,  . . .  ,7) are supposed to be distinct grades. Suppose 
there are ten factors influencing the evaluation of the at- 
tribute yk ,  denoted by 

E k  = {el  e2 e3 e4 e5 e6 e7 e8 e9 e d .  (54) 

The evaluation analysis model can then be depicted as in 
Fig. 2. 

The uniform weights representing the relative impor- 
tance of these factors are given by 

= [0.12, 0.085, 0.095, 0.09, 0.1, 0.14, 0.08, 

0.07, 0.13, 0.091‘. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(55) 

Normalize { k ,  resulting in t k ,  where 

f k  = { k / t :  [0.86, 0.61, 0.68, 0.64, 0.71, 1.0, 0.57, 

0.5, 0.93, 0.641’. (56) 

Note that e6 is the key factor. Suppose the decision maker 
considers that e6 has the absolute pfiority in evaluation of 

The uncertain subjective judgments for evaluation of 
the state of Y k  at a, are acquired and listed in Table VIII. 
These judgments may also be described using statements. 
For instance, it is stated that the state of the factor e6 at 
a, is evaluated to be indifferent (H4) with a confidence 
degree of 0.7 and to be satisfactory (H5) with 0.2. 

From Fig. 2 and Table VIII, we can then obtain the 
following notation: 

y k ( a ) ,  that is, (Yk = 1. so, X k  = ( Y k r k ; .  

R1 = 0;  

e;(,?’ = = e l } ,  R1 = 1; 

Fig. 2.  The evaluation analysis submodel for the numerical example. 

TABLE VI11 
UNCERTAIN SUBJECTIVE JUDGMENTS FOR EVALUATION OF Ya (a,) 

Evaluation Grades 

Confidence 
Degrees ( p )  H,  H2 H3 H4 H, Hs H7 

~ ~ 

e1 
e2 

e4 

Factors e5 

e3 

eb 

el 
e8 
e9 

el0 

0.4 0.2 
0.5 0.4 
0.4 0.5 
0.3 0.6 
0.8 

0.7 0.2 
0.8 
0.5 0.5 
0.6 0.25 

0.5 0.5 

{e: ,4  = e2, 4 4  = e3, 4 4  = e4, ei.4 = e5,> e:?’ = 

R3 = 4; 

e W 4 )  = 2 
4.5 {e i ,5  = e69 e4,5 = e79 ei,5 = e8, et,5 = e91 

R4 = 4; 

e I ( R ~ )  = 
5 , 6  i e : , 6  = e l O > ,  R5 = 1; 

R6 = 0. 

The basic probability assignments can be calculated 
from the given confidence degrees by using formula (22). 
For instance, 

mi*’  = m(H2/e: ,3)  = m ( H 2 / e l )  = 0.4 X A: 

= 0.4 x 0.86 = 0.344; 

m ( H 3 / e : , 3 )  = m ( H 3 / e l )  = 0.2 X A: = 0.172; 

1 - (m$I + m i q 1 )  = 0.484; 

m(H3/e: ,4)  = m(H3/e2) = 0.5 X A: 

m 2 , 1  = 

m 2 , 1  = 

m 3 , 1  = 

3 

e 

3 

= 0.5 x 0.61 = 0.305; 

mi,’ = m ( H 3 / e : , 4 )  = m ( H 3 / e 3 )  = 0.4 X A: 

= 0.4 x 0.68 = 0.272; 

mi33 = m ( H 3 / e : , 4 )  = m ( H 3 / e 4 )  = 0.3 X A i  

= 0.3 x 0.64 = 0.192; 

mi*4 = m ( H 3 / e i , 4 )  = m ( H 3 / e 5 )  = 0.8 X A: 

= 0.8 x 0.71 = 0.568. 
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On the whole, the following basic probability assignment 
matrices are obtained: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [0 0 11 R1 = 0; 

M 2  = [0.344 0.172 0.4841 R2 = 1; 

0.305 0.244 0.451 

0.272 0.34 0.388 

0.192 0.384 0.424 

M 3  = [0.568 0.0 0 . 4 3 1  R3 = 4; 

0.2 

M 4  = [::I56 0.25 0.25 0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:::44] 0.5 R4 = 4; 

0.558 0.233 0.209 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M 5  = [0.32 0.32 0.361 R, = 1; 

M 6  = [o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 11 R6 = 0. 

These ten factors are then combined using the partial 
combination algorithm (28) and the overall combination 
algorithm (30). As a result of the partial combination, the 
following local probability assignment matrix can be pro- 
duced: 

r:l:44 :::72 :::841 

0.609 0.32 0.071 

0.894 0.095 0.011 
M =  I 

1 1 0.0 0.0 1.0 

0.32 0.32 0.36 

As a result of the overall combination, the following 
overall probability assignment vector can be obtained: 

G = [b f ( 6 )  b,C’6) bP6) bF(6) b C ( 6 )  bC(6)  

b 7 6 )  b :(6)1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 

= [O.O 0.001 0.025 0.934 0.036 0.002 

0.0 0.0021T. 

From the above distribution of the overall probability 
assignments, it is obvious that the state of Y k  at a, is con- 
firmed by the whole set of factors to the grade H4 to a 
very high extent of 0.934, although the confidence de- 
grees are almost uniformly distributed among the grades 
H2, H3, H4, H,, and H6. Such a result is quite reasonable 
because the states of eight factors at a, are confirmed to 
H4 to different extents, including those of the two most 
important factors e6 and e9 at a,. This result may dem- 
onstrate the property of the D-S theory that it can model 
the narrowing of the hypothesis set with the accumulation 
of evidence. 

’ Finally, the preference degree of yk (a,), Le., p ( yk(ar)) ,  
can be generated by formula (34): 

I 

p(yk(~1,))  = 2 b$:6’p(H,) + b$(@p(H)  = 0.0052 
n =  I 

(57) 

which means that it is almost certain that the state of Y k  at 
a, is indigerent. 

B. A Motorcycle Evaluation Problem 

A customer intends to buy a motorcycle. Four types of 
motorcycle are available for selection, that is, “Kawa- 
saki,” “Yamaha,” “Honda,” and “BMW.” The tech- 
nical and economical performances of the four types of 
motorcycle are also available [7]. These performances are 
represented by either numerical values with units or sub- 
jective judgments with uncertainty. The customer, how- 
ever, only takes into account six of the performances (at- 
tributes), including both qualitative and quantitative 
attributes. These six attributes are described in Table IX, 
in which the numerical values of the quantitative attri- 
butes and the uncertain subjective judgments for evalua- 
tion of the qualitative attributes are discussed in depth in 

The uncertain subjective judgments listed in Table IX 
are represented in a compact form. In Table X, the un- 
certain subjective judgments for evaluation of the engine 
of ‘‘Kawasaki” are demonstrated. These judgments can 
be described using the following statements. 

1) The responsiveness of the engine of “Kawasaki” is 
excellent with a confidence degree of 0.8, 

2) the fuel economy of the engine of “Kawasaki” is 
absolutely average, and 

3) The quietness of the engine of “Kawasaki” might 
be half indiferent and half average. 

Since no single motorcycle type dominates or is domi- 
nated by the other types from Table IX, the customer has 
to provide his preference information about the relative 
importance of the six attributes. He uses a ten-point scale 
to estimate the relative importance. The relative weights 
of the six attributes are thus estimated as follows: 

r71. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w = [hl h2 h3 h4 h, h61T 

= [9 5 7 7 7 4IT. (58) 

w is then normalized by 

w = @/39 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlW1 w2 - - W61T 

= [0.23 0.127 0.18 0.18 0.18 0.103IT. (59) 

Three sets of factors for evaluation of the three qualitative 
attributes are defined by 

E4 = { e :  e: e:}  

= {responsiveness fuel economy quietness} (60) 
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TABLE IX 
AN EXTENDED DECISION MATRIX FOR EVALUATION OF FOUR TYPES OF MOTORCYCLE 

Types of Motorcycle (Alternatives) 
Types Definition Units 

of of or Kawasaki Yamaha Honda BMW 
Attributes Attributes Factors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a , )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a,) (a,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a4) 

Price 
(YI) 

Displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( Y d  

Top Speed 
( YS) 

Quantitative 

Ib 

cm3 

mi/h 

5199 6199 8220 
6499 

1052 1188 998 987 

160 155 160 145 

Responsiveness 
(e:)  

Fuel Economy 
(e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

Quietness 
(e 2) 

Steering 
(e:)  

Bumping Bends 
(e 3 

E(0.8) 
G(0.3) 
E(0.6) G(l.O) t(1.0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1(0’5) E ( 1.0) A(0 .5 )  

G(0.5) 
E (0.3) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘O) 

1(0’5) E ( 1.0) A(0 .5 )  

G(0.5) 
E (0.3) E ‘O) 

A(1.0) t(1.0) 

l (0 .5)  
A(0.5) A(l.O) 

E(0.9) G(l.O) A(l.O) A(0.6) 

G(0.8) P(0.5) 
E (0.1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt(0.5) 

A(0.5) 
G(0.5) 

A(l.O) 

G(l.O) 

Qualitative Handling ( y5) Maneuverability 
(e 3 

Top Speed 
Stability 

Quality of 
Finish 

(e 3 

(e 2 

E(0.9) l(1.0) P(1.0) 

G(0.6) 
G(l.O) E(0.4) E(l.O) G(l.O) 

P(0.5) 
t(0.5) 

G(0.5) 
E( l .O)  E(0.5) G(l.O) 

General ( y 6 )  
Seat Comfort 

(e 3 
Headlight 

(e 3 

G(0.5) 
E(0.5) G(0.6) E(l.O) G(l.O) 

G(0.5) 
E .’) E (0.5) G(l.O) A(l.O) 

The evaluation grades for the qualitative attributes are defined as P(P)-poor, I( @)-indi$erent, A (  @--average, G(P)- 
good, and E (  B)-excellent, where 0 represents confidence degree [7]. 

TABLE X 
UNCERTAIN SUBJECTIVE JUDGMENTS FOR y4 (a,) 

Evaluation Grades 
Confidence 
Degrees ( 0) Poor Indifferent Average Good Excellent 

0.8 Responsiveness 

Quietness 
Factors Fuel economy 1 .o 

0.5 0.5 

corresponding attribute, and that the priority coefficients 
cy4, c y 5 ,  are all equal to 0.9. This means that the state 
of the corresponding attribute is only regarded to be con- 
firmed by 90% to the same evaluation grade as that con- 
firmed absolutely by a key factor’s state. Thus, the fol- 
lowing weights for the factors are obtained: 

= {steering bumpy bends maneuverability 

top speed stability} (61) 

E6 = { e ;  e ;  e:}  

= {quality of finish seat comfort 

headlight}. (62) 

The customer realizes that the factors in the same factor 
set have equal relative importance for evaluation of the 

A4 = [ A i  A: Ai]’ = [0.9 0.9 0.9IT 

As = [A: A: A: A i l T  = [0.9 0.9 0.9 0.93’ (64) 

A6 = [A;  A i  A i l T  = [0.9 0.9 0.9IT. 
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In [7], the same set of evaluation grades is used for the 

three qualitative attributes, which includes five distinct 
evaluation grades and is defined by 

H = {HI H2 H3 H4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHsl 

= {poor indifferent average good excellent}. 

(66) 

H is transformed into the preference degree space using 
the following scale: 

P { H )  = [ P ( H l )  P(H2) P W 3 )  PW4)  P(Hs)IT 

= [-1 -0 .4 0 0.4 1IT (67) 

where p(H,)  (n = 2, 3, 4) are assigned by the customer 
so that they satisfy the basic conditions (4) and the con- 
sistence condition (21), and p ( H )  = l p (H, , ) /5  = 0. 

The evaluation analysis model for evaluation of the 
three qualitative attributes may then be depicted as in 
Fig. 3. 

Each of the preference degrees for quantifying the states 
of the qualitative attributes at all alternative motorcycles, 

generated following the same process demonstrated in the 
last subsection. The basic probability assignments are ob- 
tained from the confidence degrees given in Table IX and 
the relative weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXk (k = 4, 5, 6) assigned by the cus- 
tomer. The overall probability assignments are generated 
using the evidence combination algorithms. The results 
are listed in Tables XI-XXII. 

Then, the preference degrees of the three qualitative 
attributes at the four alternative motorcycle types are cal- 
culated using (34). For instance, from (67) and Table XI, 

i.e., prk = p ( y k ( a r ) )  ( k  = 4 ,  5,  6: r = 1 ,  - - , 41, is 

Pi4 = b$t4)P(H1) + b$i4’p(H2) + b$y)p(H3) 

+ b$i4)p(H4) + b$k4)p(Hs) + l ~ ; ( ~ ) p ( H )  

= 0.0 X ( - 1 )  + 0.072 X ( -0 .4)  + 0.87 X 0 

+ 0.0 x 0.4  + 0.041 x 1 + 0.017 x 0 

= 0.012. (68) 

The values of the three quantitative attributes at each 
altemative are normalized using (35) for y2 and y3  and 
using (36) for y l .  Table XXIII shows the obtained eval- 
uation matrix for the motorcycle evaluation problem. 

The CODASID method is then used to rank the four 
motorcycle types, based on Table XXIII. Using formulas 
(38)-(43), we can obtain the following judgment and 
evaluation matrix (Table XXIV) . 

Finally, the relative closeness indexes of the four mo- 
torcycle types are generated by formulas (44)-(52), that 
is, 

[ U ( U d  u(U2) U ( U 3 )  u(a4)IT 

= [0.281 0.895 0.942 0.2051‘. (69) 

So the preference order is 

u3 > u2 > a1 > u4. (70) 

. = I ,  ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Evaluation grade level H, H2 H3 H4 H5 - 

Factor level E4 E5 E6 

Fig. 3.  The evaluation analysis model for the motorcycle evaluation 
problem. 

TABLE XI 
PROBABILITY ASSIGNMENTS FOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy4 (a,) 

Basic 
Probability 

Assignments 
Evaluation Grades 

( P  x A,) P ( P )  I ( P )  A ( @ )  G(P)  E @ )  

e: 
Factors e: 0.9 

Overall 

e: 0.45 0.45 

0.72 

Probability 
Assignments O.OO0 0.072 0.870 O.OO0 0.041 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b gr’ 

TABLE XI1 
PROBABILITY ASSIGNMENTS FOR y4 (a,) 

Basic 
Probability Evaluation Grades 

Assignments 

( P  x A,) P ( P )  I ( @ )  A ( @ )  G(P)  E @ )  
~~ ~ 

0.27 0.54 e: 
Factors e: 0.9 

Overall 

e: 0 . 9  

Probability 
Assignments 0.000 0.387 0.387 0.061 0.122 

TABLE XI11 
PROBABILITY ASSIGNMENTS FOR y4 (a3) 

Basic 
Probability 

Assignments 

Evaluation Grades 

( P  x A,) P ( P )  r ( P )  A ( B )  G ( P )  E ( P )  

e: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.9 

e: 0.45 0.27 

Factors e: 0.45 0.45 

Overall 
Probability 
Assignments O.OO0 0.125 0.125 0.696 0.027 

b 2:’ 

Hence, “Honda” is regarded as the best compromise 
choice, “Yamaha” is quite competitive, but its top speed 
and engine are not as good as those of “Honda,” which 
are supposed to be very important. 

It may be noted that the preference order (70) partially 
depends on the customer’s preference, that is, the relative 
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TABLE XIV 

PROBABILITY ASSIGNMENTS FOR y4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 

TABLE XVIII 
PROBABILITY ASSIGNMENTS FOR y5 (a4) 

Basic 

Assignments 
Probability Evaluation Grades 

( P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx A,) P(P)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ( @ )  A ( P )  G(P)  E(P)  

Basic 

Assignments 
Probability Evaluation Grades 

( P  x As) P ( P )  I ( P )  A ( P )  G(P) E @ )  

e: 0.9 
Factors e: 

Overall 
e: 

0.9 
0.9 

Probability 
Assignments 0.000 0.083 0.000 0.000 0.908 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b c(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H" 

TABLE XV 
PROBABILITY ASSIGNMENTS FOR y s  (a,) 

Basic Probability Evaluation Grades 
Assignments (6  x 

AS) P ( P )  I ( P )  A ( P )  G(P) E(P)  

Factors e :  

e: 

e: 

e: 
Overall 

0.81 
0.45 0.45 
0.9 

0.9 

TABLE XVI 
PROBABILITY ASSIGNMENTS FOR y5 (a,) 

Factors e :  0.54 
e: 0.45 0.45 
e :  0.9 
e: 0.54 0.36 

Overall 

0.775 0.065 0.017 0.078 0.052 
Probability 
Assignments 
b ::) 

TABLE XIX 
PROBABILITY ASSIGNMENTS FOR y6 (a,) 

Basic 

Assignments 
Probability Evaluation Grades 

(0  A61 P ( P )  A ( @ )  G(P) E @ )  

e: 0.45 0.45 
Factors e ;  0.9 

4 0.9 
Overall 

Probability 
Assignments 0.041 0.041 0.O00 0.908 0.000 

b C(4) H" 

TABLE XX 
PROBABILITY ASSIGNMENTS FOR y6 (a,) 

Basic 

Assignments 
Probability Evaluation Grades 

( P  x As) P(P)  I ( P )  A ( P )  G(P) E@)  

Factors e :  

e: 

e :  

4 
Overall 

0.9 
0.9 

0.9 
0.81 

Probability 
Assignments 0.000 0.000 0.000 0.995 0.004 

b c(4) H" 

TABLE XVJJ 
PROBABILITY ASSIGNMENTS FOR ys (a,) 

Basic Probability Evaluation Grades 
Assignments ( P  x 

AS) P ( P )  I ( P )  A ( P )  G(P) E(P)  

~ ~ 

e ;  0.9 
Factors e: 0.45 0.45 

4 0.9 
Overall 

Probability 
Assignments 0.000 0.000 0.131 0.788 0.066 

b $:4) 

TABLE XXI 
PROBABILITY ASSIGNMENTS FOR y6  (a3) 

Factors e: 0.9 
e: 0.72 0.09 
e: 0.9 
e: 0.9 

~~ 

e:, 

4 
Factors e: 

Overall 

0.9 

0.9 
0.54 

0.000 0.000 0.000 0.012 0.979 
Overall Probability Probability 

Assignments 0.000 0.136 0.136 0.707 0.007 Assignments 
b c(4) H" b $:4) 

weights of the six attributes and those of the factors. If he 
assigns different weights to the attributes or to the factors, 
different preference orders may be generated. For in- 

stance, if he recognizes that top speed ( y3) and engine 
( y4) are not as important as suggested by (58)  and adopts 
the following devaluated weights for y3 and y4, 
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TABLE XXII 

PROBABILITY ASSIGNMENTS FOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a4) 

Basic 
Probability Evaluation Grades 

Assignments 
( P  x A,) P ( P )  I ( P )  A ( P )  G(P)  E @ )  

e:, 

4 
Factors e: 

Overall 
Probability 
Assignments 
b 5:4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO.OO0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO.OO0 

0.45 0.45 

0.45 0.45 
0.9 

0.088 0.909 

TABLE XXIII 
THE EVALUATION MATRIX 

P ( Y d  P( Y2)  P ( Y 3 )  P( Y4) P ( Y 5 )  P ( Y d  

a1 0.139 -0.353 1.000 0.012 0.481 0.306 
a2 1 .ooo 1 .000 0.333 -0.057 0.402 0.381 
a3 0.338 -0.891 1 .OO0 0.255 0.235 0.984 
a4 -1.OOO - 1.000 - 1 .000 0.875 -0.718 0.944 

TABLE XXIV 
THE J-E MATRIX 

P C  (4 ec (4 d ( 4  

a1 0.308 -1.179 -0.964 
a2 0.436 0.566 0.867 
a3 0.769 1.006 0.728 
a4 -1.513 -0.394 -0.631 

W =  [9 5 5 5 7 4IT 

then the four motorcycle types will be ranked as follows: 

= [0.306 0.916 0.869 0.144IT (72) 

a2 > a3 > al > a4. (73) 

In this case, the cheapest “Yamaha” is ranked to be the 
best compromise choice. 

VI. CONCLUSION 
The evidential reasoning approach proposed in this pa- 

per provides an altemative way to treat uncertain decision 
knowledge. The presented decision making procedure 
composed of this approach and the CODASID method can 
be used to deal with hybrid multiple-attribute decision 
making problems with uncertainty. The evidential reason- 
ing framework involved in the approach is suitable for 
representation and quantification of subjective judgments 
with uncertainty. The obtained two evidence combination 
algorithms are computationally useful for combining mul- 
tiple uncertain subjective judgments. The presented ex- 
amples have demonstrated the implementation process of 
the proposed approach, and perhaps its potential to treat 
uncertainty in hybrid MADM problems through multiple- 
factor analysis and evidential reasoning. 

However, the approach reported in this paper is only at 
the early stage of its development. More work needs to 
be done for evolution of the approach into better ap- 
proaches for dealing with more general problems. For in- 
stance, one question may be that only the parallel com- 
bination of factors is considered in the approach. In real 
world problems, however, multiple factors associated with 
the evaluations of an attribute may constitute a hierarchi- 
cal structure [35]. In this case, sequential propagation of 
the evaluations for these factors may occur, which needs 
to be explored in further research. 

In addition to this question, it may be argued that some 
technical details presented in this paper need more proper 
justification or more formal definition by using univer- 
sally accepted rules or laws. For instance, the following 
questions may be proposed as well. Is the rationality as- 
sumption of Section 111-A always rational? If not, is 
it possible to extend the approach on a more general basis 
so that more general problems could be treated? Are there 
any common rules to follow for assignment of the priority 
coefficient ak defined in (25) as its value is important to 
conduct a rational transformation of the given confidence 
degrees and preference weights into the basic probability 
assignments? Some of these questions have actually been 
addressed to a large extent in the authors’ current work 
[31], [32]. To answer all of these questions or similar 
ones, however, more effort should be placed on the work 
of other researchers such as Keefer et al. [13] and Miller 
et al. [18]. 
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