
 Open access  Proceedings Article  DOI:10.1109/ICARCV.2014.7064369

An evidential sensor model for Velodyne scan grids — Source link 

Chunlei Yu, Véronique Cherfaoui, Philippe Bonnifait

Institutions: University of Technology of Compiègne

Published on: 01 Dec 2014 - International Conference on Control, Automation, Robotics and Vision

Topics: Occupancy grid mapping and Grid

Related papers:

 Moving Objects Detection by Conflict Analysis in Evidential Grids

 Online Road Model Generation From Evidential Semantic Grids

 Reducing Uncertainty by Fusing Dynamic Occupancy Grid Maps in a Cloud-based Collective Environment Model

 Credibilist occupancy grids for vehicle perception in dynamic environments

 A mathematical theory of evidence

Share this paper:    

View more about this paper here: https://typeset.io/papers/an-evidential-sensor-model-for-velodyne-scan-grids-
11y7pyijm5

https://typeset.io/
https://www.doi.org/10.1109/ICARCV.2014.7064369
https://typeset.io/papers/an-evidential-sensor-model-for-velodyne-scan-grids-11y7pyijm5
https://typeset.io/authors/chunlei-yu-1vpbe7nulq
https://typeset.io/authors/veronique-cherfaoui-385pevv42t
https://typeset.io/authors/philippe-bonnifait-3jfeiimrnl
https://typeset.io/institutions/university-of-technology-of-compiegne-3bas8sks
https://typeset.io/conferences/international-conference-on-control-automation-robotics-and-2qlophxi
https://typeset.io/topics/occupancy-grid-mapping-20m5raqe
https://typeset.io/topics/grid-1e79jo7o
https://typeset.io/papers/moving-objects-detection-by-conflict-analysis-in-evidential-2hcxvuhuy9
https://typeset.io/papers/online-road-model-generation-from-evidential-semantic-grids-1f342ow8z2
https://typeset.io/papers/reducing-uncertainty-by-fusing-dynamic-occupancy-grid-maps-y1ape6lvpl
https://typeset.io/papers/credibilist-occupancy-grids-for-vehicle-perception-in-tyt7nx5bj3
https://typeset.io/papers/a-mathematical-theory-of-evidence-10we9hworo
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-evidential-sensor-model-for-velodyne-scan-grids-11y7pyijm5
https://twitter.com/intent/tweet?text=An%20evidential%20sensor%20model%20for%20Velodyne%20scan%20grids&url=https://typeset.io/papers/an-evidential-sensor-model-for-velodyne-scan-grids-11y7pyijm5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-evidential-sensor-model-for-velodyne-scan-grids-11y7pyijm5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-evidential-sensor-model-for-velodyne-scan-grids-11y7pyijm5
https://typeset.io/papers/an-evidential-sensor-model-for-velodyne-scan-grids-11y7pyijm5


HAL Id: hal-01098180
https://hal.archives-ouvertes.fr/hal-01098180

Submitted on 23 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Evidential Sensor Model for Velodyne Scan Grids
Chunlei Yu, Véronique Cherfaoui, Philippe Bonnifait

To cite this version:
Chunlei Yu, Véronique Cherfaoui, Philippe Bonnifait. An Evidential Sensor Model for Velodyne Scan
Grids. 13th International Conference on Control, Automation, Robotics and Vision (ICARCV 2014),
Dec 2014, Singapore, Singapore. pp.583-588, 10.1109/ICARCV.2014.7064369. hal-01098180

https://hal.archives-ouvertes.fr/hal-01098180
https://hal.archives-ouvertes.fr


An Evidential Sensor Model for Velodyne Scan

Grids

Chunlei Yu, Véronique Cherfaoui and Philippe Bonnifait

Université de Technologie de Compiègne,

UMR CNRS 7253 Heudiasyc,

Compiègne, France

Email: {chunlei.yu, veronique.cherfaoui, philippe.bonnifait}@hds.utc.fr

Abstract—For the development of driving assistance systems
and autonomous vehicles, a reference perception equipment
including navigable space determination and obstacles detection is
a key issue. The Velodyne sensor which provides high definition
and omnidirectional information can be used for this purpose.
Nevertheless, when scanning around the vehicle, uncertainty
necessarily arises due to unperceived areas and noisy measure-
ments. This paper proposes an inverse evidential model for the
Velodyne in order to exploit its measurements in a 2D occupancy
grid mapping framework. The evidential sensor model interprets
the data acquired from the Velodyne and successively maps it
to a Carthesian evidential grid using a fusion process based
on the least commitment principle to guarantee information
integrity. Experimental results prove that this approach can
handle efficiently the uncertainties of the sensor and thus a highly
reliable local reference map near the vehicle can be built for
every timestamped perception system that needs evaluation or
calibration.

I. INTRODUCTION

To cope with errors and uncertainties when building oc-

cupancy grid maps, Bayesian methods are the foundations of

usual frameworks. Many extensions have been published in

the literature, like the Bayesian Occupancy Filter (BOF) [1]

which estimates both the occupancy and the speed of the cells.

[2] proposed an extended occupancy grid approach which can

be used to track non-rigid moving objects. [3] applied the

bayesian occupancy grid map to detect road boundaries. [4]

proposed novel forward model to interpret laser observations

into occupancy grids. In this paper, we propose an evidential

framework to build an occupancy grid map in the proximity

of the host vehicle. The evidential theory [5] is used as the

mathematical basis to build an inverse model. Indeed, by using

this formalism, it is efficient to model state cell allocation and

avoids introducing arbitrary a priori information in unoberved

areas. The accumulation of scan echoes contributes to the

detection of the ground and of the obstacles. Evidential grid

mapping is not new. [6] built an evidential grid map using the

data acquired from a sonar, [7] also adopted the evidential

approach and built an evidential occupancy grid map in a

Cartesian coordinates frame. Using the evidential framework

to manage fusion is popular and [8] applied evidential fusion

rules to manage sensor uncertainties.

The V elodyne lidar [9] provides rich and accurate infor-

mation about the surrounding environment, an adapted sensor

model to tackle its uncertainty and to fully profit its rich

information is put forward. We propose a tailored sensor model

which interprets the V elodyne data into local 2D occupancy

grid maps. The least commitment principle is adopted here

in order to avoid introducing any prior information. The

model makes fully use of the evidential theory to handle the

rich information provided by the V elodyne while keeping

the processing load reasonable. A fusion process based on

Dempster Shafer data fusion enhances the reference map by

fusing data acquired at different locations.

The paper is organized as follows: section II presents the

evidential framework, the theory basis will be illustrated. Sec-

tion III details the main contribution of the work. An evidential

sensor model is developed and utilized to merge high definition

lidar measurements into scan grid maps. Section IV illustrates

the fusion scheme based on the evidential framework. Section

V shows the implementation details and experimental results.

II. EVIDENTIAL FRAMEWORK

In this framework, a frame of discernment Ω is defined

to model the state of each cell. The frame of discernment is

a finite discrete set, which contains all mutually exclusively

propositions of interest. These basic propositions are called

singleton propositions. In our case, the frame of discernment

is defined as: Ω = {O, F}, the two singletons are the

proposition O and the proposition F, indicating respectively

that the specific cell is occupied and free. One has to increase

this set, by considering the power set which is defined as

2Ω = {∅, F, O, Ω}. With the frame of discernment, there are

2|Ω| possible subsets, where |Ω| is the cardinality of the set.

Each subset is a possible proposition and in this manner it is

possible to exhaustively propose other more general proposi-

tions based on interactions between the singleton propositions.

The meaning of each singleton proposition is detailed

below:

• 1) O indicates Occupied cell.

• 2) F indicates Free cell.

• 3) Ω indicates ignorance about the state of the cell

(Unknown cell).
• 4) ∅ indicates that no proposition fits the cell.

In evidential theory, different functions may be used to rep-
resent the information in the power set. One specific function
which is mostly utilized in our approach is the basic probability
assignment (BPA), which is a direct support for a specific
proposition. Let function m denote a BPA that maps each



proposition in 2Ω to a numerical measure of direct support for
that particular proposition. The function m returns values in
the range of [0, 1] and satisfies the conditions:

∑

A⊆Ω, A 6=∅

m (A) = 1, m (∅) = 0

One powerful application of evidential theory is the fusion

of different sources of information. Let m1 and m2 be two

given mass functions describing the occupancy belief of the

same cell. The result of the combination using Dempster’s

conjunctive rule is computed in the following way:

(m1 ⊕m2) (A) = K
∑

∀B,C∈2Ω, B∩C=A,A 6=∅

m1 (B)m2 (C)

K
−1 = 1−

∑

∀B,C∈2Ω, B∩C=∅

m1 (B)m2 (C)

(m1 ⊕m2) (∅) = 0

In the mapping process, one inherent aspect is to merge

sensor data from different locations at different time instants

into the built map. This fusion process changes the space

states from unknown (initial state) to another applicable state

and enables to update and confirm the state of the cells.

Typically, the Dempster’s conjunctive rule is chosen as the

fusion operator.

III. FROM VELODYNE DATA TO EVIDENTIAL SCAN GRID

MAP

In this section, an inverse sensor model for the V elodyne

is developed. The sensor model has to be chosen with special

attention since a well adapted model can greatly increase

the perception performance. In our approach, we build a 2D

evidential occupancy grid map with data from the Velodyne

by making a projection on the ground plane. To develop the

sensor model, we suppose that the ground is locally flat for

every Velodyne scan.

A. Polar sensor model basic concepts

Figure 1: Space representation in Polar Coordinates, showing how

measurements from V elodyne can be interpreted in the evidential

framework. Green refers to free space, red refers to occupied space

and dark refers to unknown space.

In order to be as close as possible to the sensor’s rotating

acquisition process, the scan grid map is created in a polar

frame. As shown in Figure 1, the whole space around the

car, which is placed at the origin, is divided into angular

sectors, while each sector in the space is divided into different

cells. For the BPA assignment process, we consider the sectors

independent from each other. Indeed, if the sampling of the

grid is high enough and since the laser beam width is very

small, this assumption is well verified. In Figure 1, the colors

represent different information. The dark cells mean that

there is no information in the corresponding space due to an

occlusion because of obstacles for instance. Green and red cells

represent respectively Free and Occupied space.

This state assignment respects the least commitment princi-

ple. Velodyne points determine the state of the corresponding

cells. Therefore, the space where there is no information is

treated as Unknown which avoids adding wrong a priori

information.

Although Velodyne is a high definition sensor, there might

exist objects that are not detected. In Figure 2, six beams are

drawn in the angular sector corresponding to angle λ, among

which three hit the ground (G1, G2, G3), and the three other

ones hit obstacles (H1, H2, H3). Due to the installation of

the sensor on the roof, there is little information provided about

the space between the host vehicle and the first impact on the

ground, and between the consecutive impacts. As shown in

the figure, there exists a non-null possibility that some non-

detected objects exist in these areas, like O1, O2, O3 and

O4. Therefore, when projecting Velodyne data in 2D, one

needs to consider with attention what can happen between

two consecutive beams. If the sensor is used for autonomous

driving or driving assistance, this is crucial for safety.

G1 G2 H1

H2

G3

H3
O1

O2 O3 O4

x

S

λ

Figure 2: Some lidar beams in a particular angular sector S. Top, bird

view of the host vehicle, x represents the motion direction. Bottom,

lateral view of the scene.

B. Thresholding the ground

Let define an elevation threshold denoted H which specifies

the elevation of points considered as obstacles. The value of

the threshold has to be chosen carefully in order to filter noise.

When the elevation of an echo is above H , we consider the

cell Occupied.

Figure 3 illustrates the state allocation process, and a spe-

cific sector is shown. To differentiate the ground information

from the above-ground information, we set up a scene where

a human and a car are near our host vehicle. Corresponding to

the angular sector of angle λ, the lateral view is shown, where

eight beams from Velodyne are drawn for illustrating purpose.

The four lowest green beams hit the ground, where G1, G2,
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G1 G2 H1

H2

G3
H

h
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G4
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Range

Angle

OU U U FFFU F FUU U U U U

1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 1911 20

Oλ F FU

Figure 3: Sensor model for the Scan grid construction process. Top,

lateral visualization of the threshold scene and of the backward free

extrapolation (short vertical lines, explained in section III-C). Bottom,

state assignment.

G3 and G4 are respectively the intersections of the signal and

the ground. The four red beams reach the human and the car

in the distance, and their intersections are H1, H2, H3 and

H4. The grid in the bottom serves as an illustrating plot of the

polar world model shown in Figure 3, in which the horizontal

axis shows the range variation and the vertical axis represents

the angle variation.

Based on the least commitment principle, the state alloca-

tion process obeys the following rules: As shown in Figure

3, the cells which contain the H2, H3 and H4 are marked

O(Occupied), as these points are above the threshold; the cells

which contain respectively G1, G2, G3 and G4 are marked

as F (Free), as these points are detected on the ground; as

depicted above, although H1 is above the ground and hits on

the person, the corresponding cell is allocated Free because

it is under the threshold H . All the other cells are marked

U(Unknown).

C. Backward free space propagation

G1
H

h

extrapolation

α
L

Range

Angle

U U U U FUU U Uλ F FU U U U U U U U U

Figure 4: Backward extrapolation to the host vehicle: the two cells

included in the interval L are extended as Free space.

One benefit of defining the threshold H is the extension of

the Free region by making a backward extrapolation to the

host vehicle. Figure 4 illustrates the principle: considering the

beam which hits the ground, one can deduce that there is no

obstacle in the interval L which has an elevation superior to

threshold H . In this case, the zone Free corresponding to G1
is extended towards the host vehicle. Two more cells covered

by the extension distance L are set to Free. In Figure 3, the

states of cell 8 cell 11 and cell 13 at angle λ are also set to

Free because we extrapolate at point G3, G4 and H1.

D. Eliminating conflicting impacts

One conflicting situation might happen using the above

sensor model, as shown in Figure 5, where the host vehicle

detects one bus ahead, four beams are drawn for illustration.

Based on the cell state allocation principle, the corresponding

cells for G1 and G2 should be allocated Free, which conflicts

with reality. Obviously, cell 10 should be allocated Occupied

and cell 11 should be allocated Unknown based on the sensor

readings. In our approach, we make an additional modeling: a

detected obstacle on the ground is modeled as a vertical

surface that is linked to the ground. So in cells where both

obstacle points and ground points are detected, ground points

are ignored. This model brings the convenience of eliminating

the conflicting cells, but at the expense of making impossible

to differentiate hung obstacles from obstacles linked to the

ground. The ground points detected behind the first obstacle

surface are ignored and the corresponding cells rest Unknown

until future exploration when the host vehicle moves.

G1 G2

H

h H2

H1

Range

Angle

U U U U U U U U U

1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 1911 20

λ U U U U O U U U U U U

Figure 5: Conflicting information elimination

E. Grid mass assignment

We need now to assign a BPA to the grid cells to quantify

the belief. We propose a grid mass assignment model based

on information accumulation. In Figure 3, cell 6, cell 9 and

cell 12 are all set to Free. However, we should have unequal

amount of beliefs about their Free state because in cell 6,

there exist two points on the ground to support the state,

whereas in cell 9 and cell 12, there exists only one. The same

stands for the Occupied cells, cell 15 and cell 19 should have

unequal amount of beliefs about the occupied state. More

points supporting one state should contribute to more

beliefs on the state. This accumulation concept reinforces

the belief assigned to each proposition.

δs Beam divergence of Lidar projected on ground

δg Angle resolution of polar grid

Figure 6: Missed-detection illustration

The BPA values are based on sensor uncertainties. Let

αFA and αMD correspond to the the probability of false alarm

and missed-detection. A false alarm is when the sensor issues

an impact whereas there is nothing. It depends essentially

on the sensor noise and on multipath propagation. A missed

detection is mainly related to the reflexivity of the target and

to the ratio between the cell size and the beam width. Figure 6

shows how this ratio results in missed-detection. δs represents

the divergence of Lidar (beamwidth), and δg represents the

angular resolution of the polar grid. In this circumstance, one

beam of Lidar can not cover the whole sector. This beam can

3



miss potential obstacles within its blind regions of the cell.

The missed-detection effect thus has to be considered.

The proposed model calculates the BPAs with probabilistic

approach. Based on the definition of false alarm, αFA =
P (C = F | ξ1), Where ξ1 represents one obstacle impact in

the cell, C stands for the state of the cell. Supposing that

errors are independent, the total false alarm probability in one

cell given nO obstacle points are detected in this cell should

be P (C = F | ξ1, ξ2, ... , ξN ) = αnO

FA. Thus the probability of

Occupied can be represented as: P (C = O | ξ1, ξ2, ..., ξN ) =
1−αnO

FA. Based on the same methodology, for Free cells, the

missed-detection probability αMD = P (C = O |∆), where ∆
represents no above ground impact is returned to the sensor.

If we assume nF ground points are detected in this cell, the

total missed-detection probability should be αnF

MD. Thus the

probability of Free should be represented as 1− αnF

MD.

Based on the principle, the BPA assignment:
For a Free cell:

m(O) = 0, m(F ) = 1− α
nF

MD, m(Ω) = 1−m(F ), m(∅) = 0

For an Occupied cell:

m(O) = 1− α
nO

FA, m(F ) = 0, m(Ω) = 1−m(O), m(∅) = 0

For an Unknown cell, the initial state is kept:

m(O) = 0, m(F ) = 0, m(Ω) = 1, m(∅) = 0

To keep the processing load reasonable, we suggest to

extrapolate the free level m(F ) uniformly with no decrease

to the cells that have no echoes.

F. From polar to cartesian

The approach merges the Velodyne scan data into occu-

pancy grid map. This map is built in polar coordinate system,

but for the fusion purpose, we need to transform it into

Cartesian coordinate system. All the information collected

has to be transformed into Cartesian coordinates, with the

least loss. Several methods exist to do the transform. In our

approach, we have adopted the bilinear interpolation algorithm

introduced by [10].

IV. EGO-MAP GRID FUSION SCHEME

The scan grid map is not complete, because there ex-

ist uncertainties in the map due to unperceived space. The

Unknown space between the host vehicle and the obstacles

should be eliminated. With Dempster’s conjunctive rule, the

fusion of several successive scan grids allows to gradually

eliminate the uncertainties in the map. In the proposed ap-

proach, a map is built by fusing the scan grids centered at

different locations. To make this fusion, the ego-motion of

the host vehicle has to be compensated and then every new

scan grid of the Velodyne is merged into a grid denoted

EgoMapGrid. Figure 7 illustrates the whole approach. The

fusion process is sequential. At time t, the new scan grid

ScanGrid(t) updates EgoMapGrid(t− 1) to provide a new

EgoMapGrid(t).

Velodyne

MFrame(t)

Evidential sensor model

CellMstateMandMmassMMMMMMMMMMMMM

valueMallocation

PolarGrid(t)

MMMMMBilinearM

Interpolation

ScanGrid(t)

Segmentation

GroundMPoints Non-groundMPoints

EgoMapGrid(t-1)

Decay

Ego-motionM

Compensation

M

Pose(t)

MMMMMMMMFusion

(Dempster-shaferM

ConjunctiveMrule)

EgoMapGrid(t)

Figure 7: Workflow of the scan grid construction and fusion

To accommodate to the dynamic environment, we adopt
the approach proposed by [11] and use a decay factor for
EgoMapGrid. The information in EgoMapGrid can be-
come aged and not consistent with reality. This effect can be
especially important when moving objects are in the scene.
Adopting decay factor means that all the information in the
past will gradually become less evident. The equations below
show how mass functions are discounted with a decay factor
denoted β.

β
mM (A) = β ∗mM (A), A ⊂ Ω

β
mM (Ω) = 1− β + β ∗mM (Ω)

The fusion process adopts the Demster-Shafer conjunctive

rule, as shown in Equation 1. For denotation purpose, let

mM,t and mS,t represent respectively the mass functions of

EgoMapGrid and ScanGrid at time t.

mM,t =
β
mM,t−1 ⊕mS,t (1)

V. EXPERIMENTAL IMPLEMENTATION AND RESULTS

A. Experimental implementation

Figure 8: Experimental platform with the Velodyne sensor

The approach was tested with a vehicle of the experimental

platform PACPUS shown in Figure 8. We have implemented

the approach in C++. In the approach, the V elodyneHDL−
64E data was acquired at 10Hz frequency. The segmentation

process detects the ground plane and above ground points. We

have adopted the ground labeling technique proposed by [12],

which generally provides satisfactory results. The ego-motion

between two scans is estimated using CAN data.
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For the purpose of demonstration, the scan grids of (72∗72)
meters are built with uniform cells of size(0.1∗0.1) meters. In

the polar grid map, the angular resolution is 0.5 degrees and

the radius resolution is 0.1 meters. For the tuning parameters,

we have adopted αMD = 0.66, αFA = 0.15. αMD is based

on the ratio of the beam divergence of V elodyne (estimated

to 0.17 degrees by [13]) and the resolution of the grid (0.5

degrees). We have tuned empirically αFA to 0.15 in order to

consider the sensor noise and the multipath phenomenon.

B. Results

Figure 9: 3D display of the scene

For every instant, a Velodyne scan grid is built. For illus-

tration of the system, we report in this section a typical scene

where the host vehicle is in an urban road, as shown in Figure

9. The scene is depicted using Point Cloud Library (PCL)
[14]. Three occupancy maps are shown in Figure 10. Figure

10a shows result with no backward extrapolation while Figure

10b and Figure 10c show scan grids with two different H

values for comparison, respectively H = 0.2 and H = 0.4.

Conform to the sensor model, with a larger H value, longer

distance is extrapolated, so larger Free zones are observed

in the grid map in which H = 0.4. Augmentation of H can

reduce the uncertainties in the map, as less unperceived space

is contained in the map thanks to backward extrapolation, but

it also adds uncertainty to the system, because obstacles points

with high elevation (but still beneath H) can be recognized as

ground points. In reality, the vehicle can cross speed-bumpers

or small slopes, with H set appropriately, these situations pose

no problem and the approach can be more robust.

The effect of information accumulation model is reflected

by the green level, which corresponds to the Free mass degree.

From the 3D display in Figure 9, the ground points received

by V elodyne are typically denser in the space near the host

system than farther away, which contributes to higher Free

belief in the nearby space due to more ground points. Thus in

the resultant grid map in 10c, the Free (green) space near the

center is brighter than at the edge.

(a) Occupancy scan grid with no extrapolation

(b) Occupancy scan grid with backward extrapolation, H = 0.2

(c) Occupancy scan grid with backward extrapolation, H = 0.4

Figure 10: Scan Grids, Green represents Free space, Red represents

Occupied space, Dark represents Unknown space.
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Figure 11 shows the fusion result. Corresponding to the

scene depicted in Figure 9, H is set to 0.2. One can remark

that the green level in the central part of the fusion result map

is lower compared to the other surrounding parts of the Free

space. The reason is that the sensor receives no information

from this space in the present scan. The resulting scan grid in

Figure 10b shows that this space is Unknown, which makes

no contribution to state confirmation in the EgoMapGrid,

whereas the Free space surrounding this part accumulates in

the Free mass from the ScanGrid, resulting to a higher Free

mass degree in fusion.

The decay factor was set to 0.98 to slowly discount aged

information. This effect is noticeable in the fusion result map

shown in Figure 11a: the right bottom part of the map shows

darker green which means less evidence to be Free. This can

also be explained by the ScanGrid of Figure 10b: the state of

this space is Unknown in the ScanGrid. With no evidence

supporting the space state, the system tends to gradually forget

its past state. In this case, m(F ) decreases until the system

totally forgets the state, and it becomes Unknown again.

Figure 11b shows the result of the decision rule consisting

in selecting the cell state which contains the maximum mass.

This is the resultant reference map.

VI. CONCLUSION

In this paper, we have proposed a new inverse sensor model

to transform raw V elodyne data into local evidential grid

maps. Based on the least commitment principle, the proposed

model avoids introducing incorrect prior information in the

grid state allocation of the space. The proposed way to fill

the unobserved areas is based on the principle of information

accumulation thanks to the fusion of successive scans taken

at different points of view. This is performed by a spatio-

temporal fusion process based on evidential theory. Based

on the real experiments we have done to test the approach,

we have observed that the approach provides good results in

comparison to real scenes from a qualitative point of view.

REFERENCES

[1] C. Coue, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessiere,
“Bayesian occupancy filteing for multitarget tracking : an automotive
application,” International Journal of robotics research, vol. 25, no. 1,
pp. 19–30, 2006.

[2] B. Lefaudeux, G. Gate, and F. Nashashibi, “Extended occupation grids
for non-rigid moving objects tracking,” Intelligent Transportation Sys-

tems (ITSC), International IEEE Conference, p. 7, 2011.

[3] T. Weiss, B. Schiele, and K. Dietmayer, “Robust driving path detection in
urban and highway scenarios using a laser scanner and online occupancy
grids,” Proceedings of IEEE Intelligent Vehicles Symposium, p. 6, 2007.

[4] K. Pathak, A. Birk, J. Poppinga, and S. Schwertfeger, “3d forward
sensor modeling and application to occupancy grid based sensor fusion,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
p. 6, 2007.

[5] G. Shafer, A Mathematical Theory of Evidence, P. U. Press, Ed. Prince-
ton University Press, 1976.

[6] D. Pagac, E. M.Nebot, and H. Durrant-Whyte, “An evidential approach to
map-building for autonomous vehicles,” IEEE Transactions on Robotics,
vol. 7, pp. 623–629, 1998.

[7] T. Yang and V. Aitken, “Evidential mapping for mobile robots with
range sensors,” IEEE Transactions on instrumentation and measurement,
vol. 7, pp. 1422–1429, 2006.

(a) Fusion result map of several scan grids.

(b) Decision map deduced from fusion result map.

Figure 11: Fusion result

[8] F. Nashashibi, A. Khammari, and C. Laurgeau, “Vehicle recognition
and tracking using a generic multi-sensor and multi-algorithm fusion
approach,” International Journal on Vehicle Autonomous Systems, 2006.

[9] V. L. Inc., HDL-64E S2 and S2.1 High Definition LiDAR Sensor User’s

Manual and Programming Guide. Velodyne LiDAR Inc., 2010.
[10] J. Moras, “Evidential perception grids for robotics navigation in urban

environment,” Ph.D. dissertation, Université de Technologie de Com-
piègne, 2013.

[11] J. Moras, V. Cherfaoui, and P. Bonnifait, “Moving objects detection by
conflict analysis in evidential grids,” IEEE Intelligent Vehicles Sympo-

sium (IV), vol. 6, 2011.
[12] A. Petrovskaya and S. Thrun, “Model based vehicle tracking for au-

tonomous driving in urban environments,” in IEEE International Confer-

ence Robotics and Automation (ICRA09). Workshop on Safe navigation

in open and dynamic environments Application to autonomous vehicles.
Kobe, Japan: IEEE, 2009.

[13] H. LONJARET and J. BENOIST, “Rapport d’essais de qualification de
l’imageur laser,” ANR, Tech. Rep., 2010.

[14] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),”
Robotics and Automation (ICRA), 2011 IEEE International Conference,
vol. 4, 2011.

6




