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Abstract—Existing multiobjective evolutionary algo-
rithms (MOEAs) tackle a multiobjective problem either as a
whole or as several decomposed single-objective sub-problems.
Though the problem decomposition approach generally converges
faster through optimizing all the sub-problems simultaneously,
there are two issues not fully addressed, i.e., distribution of
solutions often depends on a priori problem decomposition, and
the lack of population diversity among sub-problems. In this
paper, a MOEA with double-level archives is developed. The
algorithm takes advantages of both the multiobjective-problem-
level and the sub-problem-level approaches by introducing two
types of archives, i.e., the global archive and the sub-archive. In
each generation, self-reproduction with the global archive and
cross-reproduction between the global archive and sub-archives
both breed new individuals. The global archive and sub-archives
communicate through cross-reproduction, and are updated
using the reproduced individuals. Such a framework thus
retains fast convergence, and at the same time handles solution
distribution along Pareto front (PF) with scalability. To test
the performance of the proposed algorithm, experiments are
conducted on both the widely used benchmarks and a set of truly
disconnected problems. The results verify that, compared with
state-of-the-art MOEAs, the proposed algorithm offers compet-
itive advantages in distance to the PF, solution coverage, and
search speed.

Index Terms—Evolutionary algorithm (EA), global
optimization, multiobjective optimization.
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I. INTRODUCTION

O
PTIMIZATION problems with multiple objectives often

have a set of optimal solutions. These solutions define

the inherent Pareto set (PS) [1]. In a-posteriori preference

articulation methods [1, part II, ch. 3], there are primarily

two goals in multiobjective optimization. The first goal is to

converge as close to the Pareto front (PF) as possible in the

search space with a high speed, and the second one is to dis-

tribute solutions as evenly as possible on the entire PF with a

high density.

As an evolutionary algorithm (EA) [2], [3] works with a

population of individuals, it has the potential to achieve both

goals of multiobjective optimization. A number of multiobjec-

tive EAs (MOEAs) have been reported in the literature, which

can deliver a set of solutions in a single run [4]–[9].

Most MOEAs work at the multiobjective problem level,

which means that individuals, archives and operators are

associated with multiple objectives, and special operators

are designed to fulfill the two goals of multiobjective

optimization. Represented by the Non-dominated sorting

genetic algorithm II (NSGA-II) [9], which selects individuals

according to a nondominated rank and crowding distance,

one group of algorithms in this category uses a multiobjective

selection strategy to achieve solutions close to the PS with a

relative even distribution of objective vectors. Examples are

improved versions of differential evolution (DE) [10]–[12],

the “vector evaluation genetic algorithm” (VEGA)

based on alternating objectives [13], the domination-

based “Pareto archived evolutionary strategy” (PAES) [7],

“strength-Pareto EA” (SPEA) [8] and the “strength Pareto

EA II” (SPEA-II) [14]. Another group in this category

designs population distribution strategies to achieve a good

distribution of solutions. Strategies include, using multiple

populations [15] and dynamic multiple populations [16], [17],

clustering the candidate individuals [18], [19], and devising

new strategies to estimate the density of objective space.

In most algorithms that work at the problem level, the

distribution of solutions on the PF is controlled implicitly

at the multiobjective problem level with the optimization

operators, and adapts to different shapes of PF.

More recently, another class of MOEAs based on problem

decomposition has gained much attention. These algorithms

work at a single-objective sub-problem level, where all evolu-

tionary operators handle only single-objective sub-problems.

The distribution of solutions on PF explicitly depends on the

2168-2267 c© 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
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decomposition method, i.e., the definition of sub-problems.

Early research efforts on problem decomposition include the

research work in [20]–[23]. Later, Zhang and Li [24] pro-

posed the MOEA/D which decomposes the problem into

single-objective scalar optimization problems and optimizes all

the scalar problems simultaneously. More recently, based on

the fact that the framework of MOEA/D is compatible with all

existing single-objective reproduction operators, an enhanced

version of MOEA/D [25] which adopts the reproduction opera-

tor of DE [26] has been proposed. Since then, MOEAs based

on decomposition have become the state-of-the-art, featured

with a higher convergence speed brought about by simulta-

neous optimization of multiple single-objective sub-problems,

a high compatibility with single-objective evolutionary oper-

ators, and better coverage of the PF on a set of widely used

benchmarks like ZDT [27] problems.

Despite the encouraging performance of MOEAs based on

decomposition, there are two unaddressed issues with most

algorithms in this class, i.e., the explicit dependence of the

solution distribution on the a priori definition of sub-problems

and the lack of population diversity for each sub-problem.

When the shape of PF is not known a priori, a certain decom-

position method cannot guarantee good scattering of solutions

on the PF [28]. Since the algorithm only works at sub-problem

level, it is difficult to fix improper definition of sub-problems

during runtime. According to the research in [29], solving

the problem with adaptation has corresponding costs. Besides,

most of these algorithms adopt an elitist strategy in their selec-

tion for each sub-problem, which means that one new solution

replaces an old one immediately if it has a better aggrega-

tion function value. Such replacement can result in a lack

of population diversity at the sub-problem level. Empirical

experiments have indicated that algorithms in this class handle

cases with truly disconnected PF and extreme shapes of slope

on PF with difficulty [30], which could lead to unfavorable

performance in solving complicated real problems.

In this paper, an MOEA with double-level

archives (MOEA-DLA) is proposed to address the above

issues. The proposed algorithm maintains promising indi-

viduals, preserves population diversity, and controls the

distribution of solutions along PF at the multiobjective

problem-level and the single-objective sub-problem-level

simultaneously. The sub-problem-level sub-archives are

adopted to obtain faster convergence introduced by problem

decomposition, and to maintain population diversity for each

sub-problem. At the same time, to preserve the population

diversity at the problem-level and to handle complicated

shapes of PF, the problem-level global archive is adopted. The

global archive and the sub-archive communicate indirectly

with the cross-reproduction.

The proposed method has the following features.

1) The MOEA-DLA optimizes all of the single-objective

sub-problems and the multiobjective problem simulta-

neously to gain a higher search speed.

2) The MOEA-DLA provides a mechanism of diversity

preservation and distribution control at both the sub-

problem level and the problem level, and a mechanism

for the communication of the two levels. This way,

the explicit dependency of solution distributions on

sub-problem definition in existing decomposition-based

MOEAs is relieved, which means that the proposed

algorithm would handle different shapes of PF with

increased scalability.

3) The MOEA-DLA provides a framework for multiob-

jective optimization with no other parameters than the

number and capacity of the archives. Existing selection

strategies and density estimation strategies for multi-

objective optimization and reproduction operators for

single-objective optimization can fit in the framework

conveniently. Besides, existing problem decomposi-

tion method, e.g., decomposition method adopted in

MOEA/D and its enhanced version MOEA/D-M2M [31],

and existing local search strategies can be adapted to the

proposed framework with minor modifications.
To validate the effectiveness of the proposed MOEA-DLA,

experiments will be conducted on 12 multiobjective test prob-

lems. The widely used ZDT [27] problems, the WFG [32]

problems and the truly disconnected TDY [30] problems will

be employed to test the algorithm performance on conven-

tional as well as highly disconnected shapes of PS and PF.

Specifically, the TDY problems are a set of problems with true

PS and PF in the form of multiple disconnected segments, and

are thus challenging for MOEAs.

The rest of this paper is organized as follows. Section II

presents the background, including a brief review on MOEAs

and the definition of sub-problems, which works as a prelimi-

nary. Section III describes the MOEA-DLA in detail, followed

by experiments on test problems in Section IV. Section V

concludes the paper.

II. BACKGROUND

A. Brief Review of MOEAs

In the early 1990s, a number of MOEAs were devel-

oped [2], [3]. Among them, multi-objective genetic

algorithm (MOGA) [33], Non-dominated sorting genetic

algorithm (NSGA) [34], and niched Pareto genetic

algorithm (NPGA) [4] have attracted most attention. To

achieve the goals of multiobjective optimization, these early

MOEAs focus on two issues: 1) designing methods to

evaluate and preserve individuals close to the true PF, e.g.,

using nondominated sorting and 2) devising mechanisms of

maintaining diversity of achieved solutions on the PF. The

two issues are so significant in MOEAs that they have

attracted constant research attention.

Among various approaches to enhancing MOEA perfor-

mance on the above two aspects, archives with elitism, which

preserve historically best solutions, has drawn much research

interest. Solutions preserved in elitism are determined through

association with both domination relationship between solu-

tions and the solution distribution. Representatives of these

MOEAs with elitism include the SPEA [8], PEAS [7], and

NSGA-II [9]. The SPEA is an elitist multicriterion EA with

the concept of nondomination. In SPEA, an external popu-

lation, i.e., archive, is suggested to be maintained at every

generation to store all nondominated solutions found so far.
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The archive participates in the whole evolutionary process and

the updating strategy for the archive significantly influences

the performance of algorithm.

Considering the issues that: 1) a selection process prefer-

ring nondominated solutions would be adopted to preserve

individuals closer to the PS and 2) a technique is required

to achieve diversified distribution, the PAES and the NSGA-II

are proposed. Addressing issue 1), the PAES uses only one

parent and one offspring in each generation and the NSGA-II

proposed the nondominated sorting. Addressing issue 2), in

PAES positions of historically best solutions in an archive

are referred to, and in NSGA-II the crowding distance is

introduced for the selection of individuals residing in a less

crowded region.

There are other research efforts concerning solution distri-

bution strategies, which work on distributing the population

with diversity with certain mechanism. These efforts include

clustering the candidate individuals [18], [19] to achieve

highly spreading population, using multiple populations [15],

quantizing the solution space for selection [46], using dynamic

multiple populations [16], [17], devising new strategies to

estimate the density of objective space, territory definition

around each individual [35], and estimating the density of

solution space [30].

More recently, one class of MOEAs have been developed

based on problem decomposition and have gained much atten-

tion [20]–[23], [36], [37]. These algorithms achieve the two

MOEA goals in a different way from optimizing the multi-

objectives as a whole collectively. By decomposing the multi-

objective problem into different single-objective problems, the

task of finding solutions close to the true PF for the multiob-

jective problem is first replaced by that of optimizing a set

of single-objective sub-problems. In this case, the distribution

of solutions on PF merely depends on the methods of decom-

position at the beginning and of recombination at the end.

Among the MOEAs based on decomposition, the MOEA/D

proposed by Zhang and Li [24] is a representative. This

algorithm, after decomposing an MOEA problem into mul-

tiple single-objective scalar optimization problems, optimizes

all the scalar objectives simultaneously using only single-

objective evolutionary operators for simplicity and speed.

Since the framework of MOEA/D is compatible with existing

single-objective reproduction operators, an enhanced version

of MOEA/D [25] which adopts the reproduction operator of

DE [26] has been proposed. Algorithms in this class are com-

petitive for a high convergence speed, high compatibility with

single-objective evolutionary operators, and good coverage to

the PF, as validated by a set of benchmark tests. Based on

problem decomposition, another decomposition method has

been proposed by Liu et al. [31]. The algorithm decom-

poses the multiobjective problem into a number of simple

multiobjective problems and assign each sub-problem one sub-

population to conquer the lack of sub-population diversity

resulted from the elitism in MOEA/D.

To enhance the local exploitation ability of MOEAs,

MOEAs are hybridized with local search strategies. In [38],

a synchronous particle local search (SPLS) is adopted

in multiobjective particle swarm optimization (MOPSO).

Ke et al. [39] proposed a memetic algorithm based on

decomposition (MOMAD), which hybridize the Pareto local

search with problem decomposition.

For many-objective optimization, research efforts have been

paid on strategies for working with large number of objectives

efficiently. Wang et al. [40] proposed a preference-inspired

coevolutionary algorithm (PICEA) for many-objective opti-

mization, which coevolved a population of solutions together

with a set of decision-maker preferences. Deb and Jain [41]

designed a many-objective particle swarm optimization algo-

rithm based on reference point. For set quality measurement

in many-objective MOEAs, Bader and Zitzler [42] designed a

hypervolumn estimation algorithm HypE. In [43], a shift-based

density estimation (SDE) strategy is proposed in order to make

Pareto-based MOEAs suitable for many-objective EAs.

B. Definition of Sub-Problems

The MOEA-DLA adopts both the problem-level archive and

sub-problem-level sub-archives, with each sub-archive serves

one corresponding sub-problem. As the proposed method is

closely related to the definition of sub-problems, this sec-

tion introduces the problem decomposition approach and the

definition of sub-problems.

1) Problem Decomposition: Several decomposition meth-

ods have been proposed to decompose a multiobjective prob-

lem into a series of single-objective sub-problems. In this

paper, two most commonly used decomposition approaches

are briefly introduced as follows. For more information on

decomposition methods, one can refer to [44] and [45].

a) Weighted sum approach: The weighted sum approach

is an intuitive approach to problem reduction. The method

considers a convex combination of all the objectives. To

reduce a multiobjective problem to a single-objective one,

define a weight vector w = (w1, . . . , wm)T , where wi ≥

0 for all i = 1, 2, . . . , m and
∑m

i=1 wi = 1. One

weight vector w yields one sub-problem of the multiobjective

problem

minimize gw(x) =

m
∑

i=1

wi fi(x) (1)

where fi(x) is the objective function of the ith objective

and whereby altering w can control the positions of optimal

solutions on the PF explicitly.

b) Chebyshev approach: In the Chebyshev (also known

as Tchebycheff) approach [1], the weight vector w is similar

to the weighted sum approach, but the sub-problems are

defined as

minimize gw(x) = max
1≤i≤M

{wi · | fi(x) − zi|} (2)

where zi = (z1, z2, . . . , zM) is the reference point defined as

z = inf( fj(x)) for each j = 1, 2, . . . , M.

The Chebyshev approach to optimal solutions for a sub-

problem is controlled by the weight vector, which is similar to

the weighted sum approach. Here the reference point is asso-

ciated with the offset of PF. Problems with shifted PF in the

objective space can be handled by defining suitable reference
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Fig. 1. Procedure for the generation of weight vectors.

point. In practice, the value of inf( fj(x)) is usually not known a

priori; thus the algorithm uses z∗
j , i.e., dynamically obtained

best-so-far value of fj(x), as the jth dimension of the reference

point.

2) Generation of Weight Vectors: Since the scalarizing

functions are continuous functions of the weighting vectors,

an infinite number of sub-problems can be defined. Only are

a few numbers of these sub-problems used in the actual pro-

cess of optimization. In the proposed algorithm, the number of

sub-problems optimized simultaneously equals the population

size N.

The procedure for the generation of weight vectors for

bi-objective and tri-objective problems, which is illustrated

in Fig. 1, is derived from the same procedure in [24] (also used

in [25] and [47]). Here N is the population size, M is the number

of objectives, and H is a parameter defining N in tri-objective

cases. In this paper, two and three objectives are considered for

multiobjective optimization. Cases with more objectives can

be handled with an extension of the presented method.

3) Normalization of Fitness for Sub-Problems: In this

paper, the Chebyshev approach is used with objective normal-

ization. Much research effort has been made on the objective

normalization in evolutionary computation [48]–[50]. A basic

normalization method is to redefine the objective fi as

f̄i(x) =
fi(x) − z′

i

zi − z′
i

(3)

where z′
i = inf( fi(x)) and zi = sup( fi(x)). Since the value of

sup( fj(x)) is usually not known a priori, the algorithm uses

z∗
i and z′∗

i , i.e., dynamically achieved maximum and minimum

values of fi(x) during optimization. In such a way, the value

of every objective is normalized within the range [0, 1].

III. MOEA-DLA

A. Evolutionary Process

The proposed MOEA-DLA adopts two levels of archives

to curate and maintain promising solutions. One level is the

problem-level, where one global archive for the multiobjective

problem is updated with elitism. Through the elitism strategy,

promising individuals are maintained globally at the problem

level. The other level is the sub-problem level, where one

Fig. 2. Basic flow of the MOEA-DLA.

sub-archive is assigned for each single-objective sub-problem.

During the evolutionary process, all sub-problems are opti-

mized simultaneously at the sub-problem level to accelerate

the convergence.

The two levels of archives work with their own updat-

ing strategies and at the same time communicate with each

other. The global archive reproduces individuals independently

through self-reproduction. The self-reproduction procedure

allows the promising individuals in the global archive to

breed offspring, which contributes to evolving the popu-

lation at the problem level. On the other hand, the two

levels of archives communicate through cross-reproduction,

where the reproduced individuals are used to update all the

archives. Through the cross-reproduction, the individuals in

the sub-archives are able to breed offspring with the promis-

ing individuals in the global archive. Both the global archive

and the sub-archives learn from each other in the process of

cross-reproduction.

This way, the problem-level global archive benefits from

the fast convergence at the sub-problem level, and diversifies

the population through learning from different sub-problems.

Besides, the solution distribution in the global archive would

not explicitly depend on the definition of sub-problems for

the global archive works with self-reproduction and its own

updating strategy at the problem level.

A flowchart of the MOEA-DLA is shown in Fig. 2. In

each generation, MOEA-DLA contains the basic steps of an

ordinary MOEA, i.e., reproduction of individuals, evaluation

of individuals, and archive update. Specifically, the reproduc-

tion procedure consists of self-reproduction of a global archive

and cross-reproduction of the global archive and sub-archives.

Detailed descriptions of the flowchart are as follows.
Step 1: Initialization: N individuals are generated stochas-

tically within the upper and lower bounds to form

the initial population P0, where N is the size of

population. A number of N sub-archives are ini-

tialized with weight vectors generated according to

the previous section. Each sub-archive is randomly

assigned one individual from P0.

Step 2: Self-Reproduction of the Global Archive: The algo-

rithm reproduces N offspring from the current
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Fig. 3. Flow of individuals in the MOEA-DLA.

global archive to form Sgen. Detailed description

of self-reproduction is presented in part B.

Step 3: Cross-Reproduction of the Global Archive and

Sub-Archives: The algorithm reproduces N

offspring to form Cgen. Both the global archive

and sub-archives contribute to the N offspring

reproduced in this step. Detailed description of

cross-reproduction is presented in part B.

Step 4: Evaluation: Evaluate all of the individuals in Sgen

and Cgen.

Step 5: Update the Sub-Archives and the Global Archive:

Use Sgen and Cgen generated in previous steps to

update the global archive and the sub-archive.

For sub-archives, all of the individuals in Cgen

are used to update all sub-archives. Each sub-

archive is updated according to the fitness values

of its corresponding single-objective sub-problem.

To update the global archive, all of the individuals

in Sgen and Cgen are added to the global archive.

If the number of individuals in the global archive

exceeds the maximum number Gmax, one selection

procedure with elitism is performed. The detailed

strategy is described in the following part.

Step 6: Termination check: If the number of function

evaluation (FEs) exceeds the predefined maxi-

mum number, the algorithm terminates. Otherwise,

increase gen by 1, go back to Step 2 and start a

new generation.
Fig. 3 presents the flow of individuals in two successive

generations. As shown in the figure, the self-reproduction

reproduces N individuals, i.e., Sgen, and the cross-reproduction

reproduces another N individuals, i.e., Cgen. All of the 2N

individuals reproduced are used to update the global archive

to maintain a “best-so-far” nondominated set, whereas only

the individuals reproduced in cross-reproduction are used to

update the sub-archives.

B. Self-Reproduction and Cross-Reproduction

1) Self-Reproduction: In this procedure, the global archive

reproduces within itself, which is independent from the

sub-archives. Promising individuals from the global archive

undergo crossover and mutation to produce new offspring. The

strategy for self-reproduction is as follows.
1) Two or three individuals are selected according to

crowding distance which is proposed in NSGA-II [9]

and utilized in many MOEAs. Roulette wheel selec-

tion is adopted to select individuals with large crowding

distances with a relative high probability. The number

of individuals selected is determined by the crossover

operator in the following step.

2) Two offspring are reproduced through crossover

and mutation. To reproduce new individuals, one

crossover operator, e.g., blend crossover (BLX) [51],

simulated binary crossover (SBX) [52], simplex

crossover (SPX) [53], or DE [26], is adopted, followed

by the mutation operator performed with a probability

of pm. In this paper, the DE crossover and polynomial

mutation are used.

3) Terminate if N offspring are reproduced, otherwise go

back to 1).
2) Cross-Reproduction: Through cross-reproduction, the

global archive communicates with the sub-archives to learn

from the fast-converging optimization of sub-problems. At the

same time, all the sub-archives learn from the global archive

simultaneously to converge globally on each sub-problem.

Individuals from both global archive and sub-archives con-

tribute to the N offspring reproduced here. The strategy for

cross-reproduction is as follows.
1) For a randomly picked sub-archive, select one individual

from the nondominated set of global archive according

to crowding distance, and one individual from the sub-

archive based on fitness. Roulette wheel selection is used

in the proposed algorithm.

2) Reproduce two offspring through crossover and muta-

tion. For simplicity, the crossover and mutation operator

are the same as those in Step 2.

3) Terminate if N offspring are reproduced, otherwise go

back to 1).

C. Update of Sub-Archives and Global Archive

1) Sub-Archives: The sub-archives maintain limited num-

ber of solutions for single-objective sub-problems, which

provides a mechanism for diversity preservation at the sub-

problem level.

Since the sub-problems each has only one fitness value,

all the solutions are comparable according to the definition of

sub-problem. The definition of fitness for the ith sub-archive is

gi(x) =

m
∑

j=1

w
j
i fj(x) (4)

where fj denotes the objective function for the jth objective,

and w j
i denotes the jth dimension for the weight vector of the

ith sub-problem.

The individuals in sub-archives are maintained considering

their corresponding fitness and the crowding distance [9]. The

crowding distance, which is used in the NSGA-II [9], provides

an estimation of solution density in objective space. To pre-

serve the diversity, solutions with larger crowding distance are

preferred.

In the proposed work, the maximum number of individuals

in one sub-archive is Smax. All the individuals reproduced in

the cross-reproduction are used to update every sub-archive.
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The update strategy for individual ind in Cgen for the ith sub-

archive Subi is described as follows.
Step 1: Add the individual ind to the sub-archive.

Step 2: If the number of individuals in sub-archive does not

exceed the maximum number Smax, go to Step 4)

directly. Otherwise, go to Step 3).

Step 3: If gi(ind) is better than the best fitness value in

Subi, remove a randomly picked individual except

the one with best crowding distance from Subi

and add ind to Subi. If gi(ind) and the crowd-

ing distance for ind are both better than the fitness

value of any individual in the Subi, replace a ran-

domly picked individual that has both worse fitness

and worse crowding distance with ind. Otherwise

remove ind.

Step 4: Terminate the procedure.
As shown above, when the number of individuals exceeds

the maximum number, the sub-archive eliminates one indi-

vidual, with the best one always kept. Similar to the global

archive update strategy, the update strategy for sub-archive

adopts elitism inherently.

In the evolutionary process, all of the sub-archives

are updated simultaneously and all the sub-problems are

thus optimized simultaneously. The strategy accelerates

the convergence, which has been largely verified by the

MOEA/D. However, the distribution of individuals in all sub-

archives depends on the decomposition method, since the

optimum of each sub-problem is defined by the definition of

sub-problems.

2) Global Archive: Different from the sub-archives, the

global archive maintains a limited number of solutions to

cover the PF of the problem. To update the global archive,

selection strategy for multiobjective optimization is used. The

update of global archive is independent from the definition of

sub-problems.

In the proposed work, both the domination of solu-

tions and crowding distances are considered for the selec-

tion of individuals. The selection of individuals with larger

crowding distance gives the individuals with fewer neigh-

bors in the objective space more chances of surviving and

breeding.

The strategy for global archive update is as follows.

Step 1: Add all individuals in Sgen and Cgen to global

archive.

Step 2: Remove all the individuals that are dominated by

other individuals from the global archive. Only non-

dominated individuals are preserved in the global

archive. If the number of individuals in global

archive does not exceed the maximum number Gmax,

go to Step 5) directly. Otherwise, go to Step 3).

Step 3: Sort the individuals in global archive with crowding

distance.

Step 4: Preserve the first Gmax individuals with largest

crowding distance and remove the other individuals.

Step 5: Terminate the procedure.

According to the above procedure, the global archive

is limited to Gmax individuals. All the individuals domi-

nated by other individuals are eliminated from the archive.

When the number of nondominated individuals exceeds

the limit Gmax, individuals with largest crowding dis-

tance are preserved. This update strategy naturally adopts

elitism.

D. Time Complexity of the Evolutionary Process of

MOEA-DLA

The time consumption of the operators in MOEA-DLA is

composed of three parts. The first part is finding the nondom-

inated set and the crowding distances for individuals in the

global archive. This is the basis for individual selection and

the updating of global archive. For finding a nondominated

set, the time complexity is O(M(N + Gmax)2) to compare

(N + Gmax) individuals, each costing M comparisons. For

computing the crowding distance, the time complexity is

O(MNlog(N)) to sort the individuals for M times. Thus, the

overall complexity for this part is O(MN2). The second part

is the time consumption of crossover and mutation. In our

proposed method, the time complexity of the DE reproduc-

tion is O(DN). The third part of time consumption is the cost

of updating all of the sub-archives. Totally, N individuals are

used to update all of the S sub-archives. For each sub-archive, a

maximum of Smax comparisons are required to decide whether

to accept the individual. Overall, the time complexity of the

evolutionary operators in MOEA-DLA is (M(N + Gmax)2 +

DN + SmaxSN).

Here the S,Gmax, and Smax are user-defined parameters.

Usually, the Smax does not exceed 5, and the value of Gmax

and S, i.e., capacity of global archive and the number of sub-

problems, are usually linear to the population size N. Thus,

the time complexity of the operators in MOEA-DLA can be

viewed as O(MN2 + DN).

IV. EXPERIMENTS AND DISCUSSION

A. Benchmark Test Problems

Experiments are conducted on 12 multiobjective problems

to study the performance of the proposed MOEA-DLA. The

test problems can be categorized into two groups.

The first group includes the ZDT [27], WFG [32], and

DTLZ [54] problems, which are widely used to test the per-

formance of MOEAs. The selected test problems are ZDT3,

ZDT4, ZDT6, WFG1, WFG2, and WFG3. Besides, one of the

DTLZ problems is selected to experiment the algorithms on

problems with three-objectives.

The other group consists of the TDY problems introduced

in [30], which are truly disconnected multiobjective prob-

lems (MOPs). The PF of these test problems are segments

separated far away, and the segments involve some extreme

shapes, e.g., near-horizontal line. Similar to the PF, the shapes

of PS for TDY problems in the solution space are also truly

disconnected. Experimental results in [30] have shown that

these problems are difficult for most of the MOEAs which

suppose that the neighborhood of one good solution always

contain other good solutions. In this paper, the TDY problems

are included in the test cases to study the algorithm perfor-

mance and behavior of MOEA-DLA on truly disconnected PF

and PS.
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Fig. 4. Example of nondominated set away from the PF with a low IGD
value.

B. Performance Measures

To measure the algorithm performance of multiobjective

optimization algorithms, performance measures have been

suggested in [1] and [8].

In this paper, the inverted generational distance (IGD) [55]

metric and the hyper volume (HV) metric [56] are considered.

These two metrics are explained briefly as follows.

1) IGD Metric: Suppose that PT is a series of uniformly

distributed points along the true PF and PA is the set of points

achieve by an algorithm. Then the IGD is defined as

1

|PT |

∑

a∈PT

dist (a, PA) (5)

where dist(a, PA) is the Euclidean distance between the point

a and PA. A low IGD value requires the set PA to be close

to PT , and to cover all parts of PT .

The IGD value measures the performance of an algorithm

considering both the convergence to PF and the coverage of PF.

However, the IGD value can be low when an algorithm obtains

a number of undesirable solutions far from the true PF besides

the solutions close to the true PF. This situation is depicted in

the solution plot illustrated in Fig. 4.

2) HV Metric: The HV metric computes the volume cov-

ered by the nondominated set PA achieved by the algorithm.

For each solution a ∈ PA, a hypercube va is formed with

the solution a and a reference point as the diagonal corners.

Here the reference point can be defined as a vector of worst

objective function values. The value of HV is obtained by

computing the union of all hypercubes, as shown in

HV = volume

⎛

⎝

⋃

a∈PA

va

⎞

⎠. (6)

The HV value is associated with both convergence to the PF

and the diversity of the obtained solutions. Larger values of

the HV usually imply more favorable solutions. In our exper-

iments, the HV value would be presented in percentage, with

a value of 100% representing a perfect coverage of the PF.

To investigate the algorithm performance comprehensively,

the IGD value, HG value and the solution plots are all used

in this paper to report the algorithm performance.

C. Experimental Configurations

In the experiments, five representative MOEAs are tested

for comparison, including the NSGA-II [9], MOEA/D [24],

SPEA2 [14], GDE3 [11], and multiobjective density driven

evolutionary algorithm (MODdEA) [30]. Specifically, NSGA-

II and MOEA/D have received much attention since being

proposed, and the MODdEA has performed competitively on

both ZDT problems and the truly disconnected TDY prob-

lems. Each test is run 100 independent trials and is limited to

a maximum of 2.5 × 104 FEs. For simplicity, both MOEA/D

and the proposed MOEA-DLA use the weighted sum decom-

position method. The parameter configurations for all of the

six algorithms can be referred to the supplementary material.

For the MOEA-DLA, the DE crossover operator and poly-

nomial mutation operator are selected to implement the algo-

rithm, and the parameters in these operators take typical

values. In the following experiments, the population size N

is set as 100. The maximum number of individuals in global

archive Gmax is set to 100, and the limit of one sub-archive

Smax is set to 10.

All of the algorithms for comparison are implemented with

configurations as suggested in their original literature, except

that for the NSGA-II and the MOEA/D the enhanced versions

with DE crossover operator are selected. Since MOEA-DLA

consumes 2N FEs per generation compared to N FEs for the

other five algorithms, a population size of N = 200 is adopted

on bi-objective cases for all the other algorithms except the

MODdEA, which is designed as an algorithm with small

population.

D. Results and Discussion

The experimental results for the tested algorithms are pre-

sented in Fig. 5 and Table I. In Table I, the mean results

are reported for each algorithm. In the table, for each algo-

rithm the IGD values are averaged over all trials. On each

problem, the averaged value of the IGD, the standard devia-

tion and the rank according to the average IGD are presented,

with the best value among six algorithms marked in bold. The

Wilcoxon rank sum test [57] with significance level a = 0.05 is

used to study the significance of difference between the results

achieved by the MOEA-DLA and the algorithms for com-

parison. Values of z that are larger than 1.645 imply that

the proposed MOEA-DLA is significantly better, whereas

z < −1.645 means significantly worse results. In Table I,

the columns where the proposed MOEA-DLA achieved sig-

nificantly better results are marked with gray background. In

the figure, both the true PF and the solutions achieved by the

NSGA-II, MOEA/D, MODdEA, and MOEA-DLA are plotted.

For page limit, only the most competitive algorithms accord-

ing to Table I are presented in the figure. For the NSGA-II

and MOEA/D, the final population is reported, whereas for the

MODdEA and MOEA-DLA the nondominated global archive

is reported. All of the algorithms report the trial with the best

IGD value.

1) Comparison on the ZDT, DTLZ, and WFG Problems: It

is observed from Fig. 5 and Table I that on the ZDT, WFG, and

DTLZ problems the proposed MOEA-DLA generally obtained

solutions closest to PF among all of the algorithms. The

MOEA-DLA ranks first on three ZDT problems and two WFG

problems, ranks second on one ZDT problem and one WFG
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(a)

(b) 

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 5. All solutions obtained by the NSGA-II, MOEA/D, MODdEA, and MOEA-DLA on (a) ZDT3, (b) ZDT4, (c) ZDT6, (d) DTLZ1, (e) TDY1, (f) TDY2,
(g) TDY3, (h) TDY4, and (i) TDY5.

problem, and ranks third on one problem. The z value of

two-sample Wilcoxon test indicated that on five of these prob-

lems the proposed MOEA-DLA has significant advantage over

at least four of the algorithms for comparison. Especially for

the problem ZDT4, the MOEA-DLA converged to the PF and

achieved favorable IGD and HV values; while all the other
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TABLE I
AVERAGE IGD VALUES AND HV VALUES FOR THE SIX ALGORITHMS ON 12 TEST PROBLEMS

algorithms except the MOEA/D failed to obtain a value of IGD

lower than 0.01 and a value of HV larger than 97%. When

compared with the MOEA/D, MOEA-DLA achieves similar

solution quality in terms of distance to the PF and coverage

over PF of ZDT4. The IGD values for MOEA-DLA shows the

slight advantage of MOEA-DLA over the MOEA/D.
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Fig. 6. Solutions achieved by the MOEA-DLA and NSGA-II in 8000 and 20 000 FEs on TDY2 and TDY4.

TABLE II
AVERAGE IGD AND HV VALUE FOR MOEA/D AND MOEA-DLA WITH DIFFERENT DECOMPOSITION METHODS

2) Comparison on TDY Problems: For the TDY prob-

lems, the MOEA-DLA shows obvious advantage over most

algorithms for comparison, especially on ZDT3-ZDT6 where

the advantage is significant according to the Wilcoxon test.

Generally, these problems are difficult for most of the

tested algorithms, especially for the NSGA-II, SPEA2, and

GDE3 whose results have shown large values of IGD and small

values of HV. Nevertheless, the MOEA-DLA ranks first on

four problems and ranks second on one problem, and achieved

IGD values lower than 0.1 on all the TDY problems. It can be

observed that the MODdEA, whose original literature intro-

duced the TDY problem, performed second to the MODdEA

on TDY2-TDY5, and only achieved slight advantage

on TDY1.

It is interesting that for TDY1 the MOEA/D obtains a con-

siderable number of solutions away from the PF, while the

algorithm achieved a small IGD value on the problem. Besides,

the coverage for MOEA/D on TDY2 and TDY3 are unfa-

vorable since one part of the PF is always uncovered. This

situation is associated with the problem decomposition method

in the MOEA/D and the shape of the PF. On the other hand,

the proposed MOEA-DL overcomes the problem of MOEA/D

on these TDY problems.

E. Search Speed of MOEA-DLA on TDY Problems

It is observed that on TDY2 both the MOEA-DLA

and the NSGA-II achieved solutions close to the PF,

and on TDY4 the MOEA-DLA and MOEA/D achieved

similar nondominated sets. In this case, the search speed is

considered. The solutions for TDY2 and TDY4 achieved by

the NSGA-II, MOEA/D, and MOEA-DLA within 8000 and

20 000 FEs are plotted in Fig. 6. According to the figure, the

MOEA-DLA, which optimizes all the sub-problems simulta-

neously with the multiobjective problem, converges close to

the PF within 8000 FEs, while the NSGA-II and MOEA/D

require more than 20 000 FEs to converge on TDY2 and

TDY4, respectively.

F. Effects of the Double-Level Strategy

To study the effect of the proposed double-level

archives, experiments are conducted to analyze

MOEA-DLA without one level of archive. For conve-

nience, we denote the MOEA-DLA without global archive

MOEA-DLA-noGlobal and the MOEA-DLA without

sub-archives MOEA-DLA-noSub. Cross-reproduction

is deleted from both of the two versions, whereas

self-reproduction is added to MOEA-DLA-noGlobal for

fair comparison. Table II presents the average IGD values

achieved by the two versions of MOEA-DLA. Specifically,

in Fig. 7 the results on TDY2 and TDY3 are presented.

The results in Table II indicate that the

MOEA-DLA (noSub) achieved better results on problems

where the NSGA-II with problem-level nondominated sorting

perform well (TDY1-TDY2), while MOEA-DLA (noGlobal)

achieved better results on the problems where the MOEA/D

based on decomposition are more competitive (TDY3-TDY5).
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TABLE III
AVERAGE IGD VALUE AND STANDARD DEVIATION FOR SBX OPERATORS IN THE MOEA-DLA, MOEA/D, AND NSGA-II

Fig. 7. Solutions achieved by MOEA-DLA-noGlobal and
MOEA-DLA-noSub on TDY2 and TDY3.

It can be observed from Table II and Figs. 5 and 7 that

the MOEA-DLA-noSub generally converges worse than

MOEA-DLA-noGlobal and MOEA-DLA. The result is rea-

sonable since MOEA-DLA-noSub only works at the multiob-

jective problem level, where the selection of individuals itself

is a multiobjective problem. On the other hand, the MOEAs

that works at sub-problem level optimize single-objective sub-

problems with elitism simultaneously, which accelerates the

convergence.

Interestingly, the advantage of MOEA-DLA-noSub over

MOEA-DLA-noGlobal lies in the coverage of PF on TDY2,

where MOEA-DLA-noSub converged to the PF. In Fig. 7, the

MOEA-DLA-noGlobal distributes little solutions at the bottom

of PF, which can be explained by the decomposition method.

On the other hand, with multiobjective selection operator at

the problem level, the MOEA-DLA-noSub and MOEA-DLA

distribute the solutions evenly on the bottom of PF.

Comparing Table II and Fig. 7 with Table I and Fig. 5, it

is observed that the MOEA-DLA outperforms MOEA-DLA-

noGlobal in terms of solution distribution and MOEA-DLA-

noSub in terms of convergence. It can be concluded that

the MOEA-DLA combines the advantage of working at both

problem level and sub-problem levels.

G. Effects of the MOEA-DLA Framework

The proposed MOEA-DLA is implemented with a DE

crossover operator, and performed competitively compared

to the DE version of the NSGA-II and MOEA/D. To fur-

ther investigate the effectiveness of MOEA-DLA framework,

in the following experiments the SBX version of NSGA-II,

MOEA/D, and MOEA-DLA are simulated.

Table III reports the simulation results of SBX version of

the NSGA-II, MOEA/D, and MOEA-DLA. As shown in the

table, the MOEA-DLA achieved best IGD values on seven

out of the ten algorithms, and rank second on the other three

algorithms. The results are highly consistent with those of

the three algorithms in the DE version. It can be concluded

that the framework of the MOEA-DLA algorithm contributes

good performance in the case of both DE and SBX crossover

operators.

V. CONCLUSION

A multiobjective optimization algorithm that works at both

the problem level and the sub-problem level has been devel-

oped. Two different levels of archives are successfully adopted

in the algorithm, i.e., the global archive at the problem level

and sub-archives at a sub-problem level. In each genera-

tion, individuals are reproduced from self-reproduction with

the global archive and cross-reproduction between the global

archive and the sub-archives. All the archives are updated

using the reproduced individuals. Experiments are conducted

on 12 benchmark test problems to validate the effectiveness of

the proposed MOEA-DLA algorithm. The MOEA-DLA has

achieved competitive results on the widely used ZDT prob-

lems, and has shown advantage over some state-of-the-art

algorithms on various disconnected problems in terms of dis-

tance to the PF, solution coverage and search speed. Besides,

compared to the MOEA/D and NSGA-II frameworks, the

MOEA-DLA has shown competitive advantage with alterna-

tive crossover operators.
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