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An Evolutionary and Mechanistic Perspective on Dietary Carbohydrate
Restriction in Cancer Prevention

Abstract

The confluence of basic cell biochemistry, epidemiological and anthropologic evidence points to high dietary
carbohydrate and the associated disruption of the glucose-insulin axis as causes of the current increase in
metabolic disorders, metabolic syndrome, hypertension and cardiovascular disease. This hyperinsulinemic
state likely contributes, as well, to an increased mutagenic microenvironment, with increased risk for cancer.
This critical review discusses these risks in their historical and evolutionary context. The evidence supports
the benefits of lowering the glycemic load of the diet as a preventive measure against the development of
cancer.
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Editor’s note: 

Dear Journal of Evolution and Health Reader, 

Prior to 1944, the entire scientific community "knew" that proteins had to be the units of heredity.  

No other macromolecule could possibly be responsible for the enormous diversity of expression in 

life. Certainly, DNA couldn't have been responsible. After all, there were only four bases! Even the 

word, protein, was designated to mean "primary." 

However, three men, Oswald Avery, Colin MacLeod, and Maclyn McCarty, published a paper in 

February 1944 in the Journal of Experimental Medicine that clearly demonstrated that the entire 

scientific community was simply wrong: DNA was the "transforming" genetic material, not 

protein. Consequently, this landmark paper drove the race for the discovery of the structure of 

DNA and spurred the discovery of the mechanisms that underlie heredity, cell expression and 

evolution.  

Similarly, this paper presents an alternate hypothesis that is in contrast to the conventional 

wisdom of cancer mechanisms and therapies. As such, the reader should be aware that some of 

the literature the author's used for references were speculative in nature. Caloric restriction and 

carbohydrate restriction are not the same yet are difficult to separate in the literature. Therefore, 

keep a healthy skepticism as you read. Indeed, the word "Perspective" in the title demonstrates 

that the authors are themselves aware that the article needs to be tested for its validity! 

An evolutionary basis for cancer mechanisms is a unique perspective not seen elsewhere. It is the 

Journal of Evolution and Health's hope that the article will result in further testing of this 

interesting hypothesis. 

Sincerely, 

David C Pendergrass, PhD 

Editor-in-Chief 
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INTRODUCTION 
The multiple genetic changes [1,2] that characterize the cancerous state limit the ability to target 
isolated molecular pathways. At the same time, diet as an effective treatment, widely and often 
enthusiastically held in popular and social media, holds limited influence in medicine, at least as 
a sole treatment. In practice, diet is considered an option which usually fails and therefore must 
be subservient to pharmacology. Nutrition as cancer prevention may, however, be better 
received. 

Calorie restriction (CR) as cancer prevention was proposed and tested in animal models more 
than 55 years ago [3-5]. Studies of CR in humans have generally addressed cancer treatment [6–
9] but, most recently, carbohydrate-restricted diets, ketogenic diets, and so-called paleo diets 
which have de facto reduction of carbohydrate (CHO) as a common feature, have shown much 
promise for prevention [10]. It is understood, however that the discussion has outstripped both 
understanding of underlying mechanisms and the limited experimental support [11]. In this 
critical review, we provide background and recent results supporting the interest in CHO 

restriction in cancer prevention.  

RATIONALE 
The rationale for diets based on limiting CHOs and/or generating a ketogenic environment 

derives first, from our evolutionary past which provided greater variation in the availability of 
total nutritional sources. However, even in times of plenty, our ancestors had limited access to 
dietary sugar or purified starch, a circumstance made worse during times of intermittent 
starvation, quite likely during the ice ages in northern Europe or on the Asian Steppes [12.] The 
evolutionary pressure for maintaining physiologic stability under extremes of dietary deprivation 
is evident.  

 

Total caloric restriction has shown efficacy in the treatment of cancers in animal models [7,13,14] 
but the studies raise questions of the extent to which outcomes are due to de facto limitation of 
CHO. If CHO is 70% of total calories, for example, calorie restriction is primarily CHO restriction 
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and will be associated with the changes in the insulin and/or ketosis that may accompany CHO 
deprivation. While there are numerous intracellular control mechanisms, the insulin-glucose axis 
exerts a predominant effect and provides a stimulus for excessive growth and mutagenesis [15] 
as well as support for excessive biomass production required during the progression of cancer 
[16]. The hyperinsulinemic/hyperglycemic state also may appear as increased mitochondrial 

reactive oxygen species which, in turn, are likely to have a mutagenic effect [17–19]. Reduced 
insulin signaling, therefore, is expected to have beneficial effects in tumor suppression and is not 
excluded as the effect of total caloric restriction. 

Support for the importance of insulin signaling comes from epidemiologic associations between 
several types of cancers and obesity, hyperinsulinemia, and hyperglycemia. In studies of 
intracellular signaling pathways, insulin is consistently found to modulate tumorigenesis [20]. 
Reduction in insulin signaling may also provide a parallel approach to cancer inhibition via the 

systemic effects of ketosis which develops only under low systemic insulin levels. KBs in cell 
culture studies have been demonstrated to act as metabolic inhibitors of glycolytic ATP 
production and cell growth in several cancer lines [21,22] and also have demonstrable action as 
signaling molecules with broad cancer inhibiting effects [23–25]. 

EPIDEMIOLOGIC ASSOCIATIONS OF CANCER, OBESITY, AND DIABETES 
Historically, obesity as a major health problem is recent. It can be argued that excessive, cheap 
sources of CHO, coupled with the recommendations by health agencies to consume high 
carbohydrate diets, have contributed to hyperinsulinemia and accompanying widespread 
metabolic syndrome, obesity, type 2 diabetes and lipid disorders. (The U.S. Department of 
Agriculture, the American Diabetes Association, and the American Heart Association have 
advised consuming CHOs at about 55-70% of total caloric intake until recently, now revised 
slightly downward). 

However, obesity, hyperglycemia, and hyperinsulinemia have now also been associated with an 
increased risk of a variety of cancers [26–31]. Obesity has even surpassed smoking as the greatest 
behavioral risk factor for cancers in the U.S. Multiple studies have now established CHO 
restriction as an effective, if not superior, way to treat obesity and type 2 diabetes [32–38]. 
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Obesity leads to several physiologic states that accommodate cancer induction and growth. 
Excess adipose tissue behaves as an endocrine organ, secreting inflammatory factors and 
hormones that create a hospitable environment for malignant cells both locally and systemically. 
Adipose cells secrete tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), and both are 
inflammatory mediators that have been shown to promote cancer progression through 

activation of pro-malignant pathways, including PI3-K/Akt, MAPK, and nuclear factor-kappa  
[39,40]. The inflammatory state produced by adipose tissue can increase cellular proliferation, 
tumor survival, and metastases [41]. Systemically, the increase in inflammation can blunt the 
normal immune response to cancer cells while released cytokines up-regulate fibroblasts, 
vascular endothelial cells, and macrophages in the extracellular matrix [42]. Finally, high level of 

C-reactive protein (CRP), another marker of adipose tissue-derived inflammation, is predictive 
for poor survival in patients with metastatic cancer [43].  

The global effect of excess adipose tissue also inhibits the body’s ability to effectively modulate 
insulin and glucose levels. Obesity is accompanied by decreased insulin sensitivity, insulin 
resistance, and corresponding elevated levels of insulin and serum glucose [44]. Obese 
individuals also experience a parallel increase in insulin-like growth factor 1 (IGF-1) [45]. As data 

reveal that cancer cells exhibit increased glucose consumption, [46] it is not surprising that this 
metabolic state corresponds with poor outcomes in cancer patients [47–50]. Elevated serum 
glucose and corresponding elevated levels of insulin and IGF-1 provide both stimulus and 
sustenance for tumor proliferation, and altered glucose metabolism predisposes patients to 
metabolic dysregulation, favoring a malignant phenotype [16,51], as well as stimulating cellular 
proliferation while providing cancer cells protection from apoptosis [50,52].   

Along these lines, residents of mainland Japan, who consume a more Western diet consisting of 
an abundance of food experience significantly higher rates of cancer and shorter life span when 
compared to residents of Okinawa [53]. Furthermore, the Mongolian population has an 
extraordinarily low incidence of breast cancer even compared to other Asian countries which is 
particularly interesting given their almost exclusive reliance on red meat and dairy products for 
energy intake [54]. Also of interest, while data are mixed, some studies in anorexic patients and 
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those who encounter intervals of minimal food consumption – similar to those of our ancient 
ancestors – reveal a lower risk of cancer [55,56] even when correcting for the overall reduction 
in life expectancy. Patients with a history of food overconsumption experience a decrease in 
cancer incidence and mortality after undergoing a surgical intervention to limit food intake [57–
60]. 

Thus these data indicate that energy restriction and traditional diets that do not promote obesity 
can have an impact on cancer development. 

THE GLUCOSE-INSULIN AXIS IN METABOLISM 
The modern “Western diet” is generally considered to consist of highly refined sugars and 
starches. The key factor is the rate of absorption and low-glycemic-index carbohydrates and 
added dietary fiber are widely recommended. In practice, these are secondary considerations 
since approximately 90% or more of the CHOs in the Western diet, i.e. between 250 and 400 
grams per day, represent highly absorbable and digestible starches and sugars. At these levels of 
intake, what follows may be understood to refer to essentially all ingested CHOs.  

Dietary CHOs elevate serum glucose concentration, thus stimulating insulin release from the beta 

cells of the pancreas. A primary effect of insulin secretion – kinetically and thermodynamically – 
is the repression of fat breakdown (lipolysis) in fat cells (adipocytes). Insulin is generally tissue 
building or anabolic, and stimulates protein, CHO and lipid synthesis. As is more widely 
appreciated, insulin represses hepatic production of glucose, the process of gluconeogenesis [38-
40], directly or indirectly by the inhibition of glucagon [61]. This is likely the major mechanism for 
the clearance of blood glucose while the generally appreciated recruitment of GLUT4 receptors 
to the cell surface of peripheral cells is likely secondary [62]. As shown in Figure 1, glucose itself 
provides the substrate for re-synthesis of triglyceride (TAG) in adipocytes. Because adipocytes do 
not express glycerol kinase, the glycerol-3-phosphate must be provided by anaerobic glucose 

metabolism or glycolysis and glyceroneogenesis, a truncated form of gluconeogenesis, from 
protein [63].  
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Figure 1: Triacylglycerol (TAG)-fatty acid cycle in adipocytes. Glycerol from lipolysis cannot be re-cycled 
because adipocytes do not express glycerol kinase. Glycerol-3-phosphate, the substrate for the fatty acyl-
CoA transferase must be generated from glycolysis or glyceroneogenesis. 

From an overall perspective, excess dietary CHO sets insulin into a state of overdrive to synthesize 
excess fat and to store the fat in adipocytes, thereby increasing and maintaining adiposity.  

EVOLUTION POINTS TO LIMITED CARBOHYDRATE CONSUMPTION  
The evolution of the genus Homo in East Africa took place during a period characterized by high 
seasonal and longer-term climate variability, associated fluctuations between wood- and 
grasslands, arid and moisture climates, and food resources [64]. Unstable food resources and 

changing climates required the exploitation of new foods. Accordingly, the appearance of early 
hominids coincides with an increasing supplementation of a primarily frugivorous (plant-eating) 
diet with animal meat. Hints of butchering of animals and use of stone tools are currently dated  
back to more than 3 million years ago [65-66] preceding even the oldest known Homo fossils. 
About 1.9 million years ago [64], early Homo gave rise to the species Homo erectus, better 
adapted for walking longer distances and covering larger areas in search of food. The first human 
species leaving Africa and colonizing greater Eurasia, Homo erectus continued to incorporate 
meat into the diet as inferred from the production of bifacial hand axes used to butcher animal 
carcasses.  

The emergence of modern humans, Homo sapiens, around 200,000 years ago saw a dramatic 
shift in dietary preference. Although the evidence is sparse, archaeological data indicate the 
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appearance, about 100,000 years ago, of a wide range of new food sources, including birds, fish, 
and shellfish [67]. It is estimated that modern humans left Africa and began colonizing Europe, 
Asia, and Australia approximately 50,000 years ago. And it was only 10,000 years ago that 
sedentary agriculture developed in some human groups. Over several millennia, this lifestyle 
diffused widely from centers in the Near East, China and Mesoamerica. According to this 

perspective, we were hunter-gatherers for 95% of our early evolution. Although the data are 
limited, the best evidence suggests CHO consumption in this period represented only 20-35% of 
total caloric intake [68]. There was no bread on the table, there were no cakes, puddings, pies, 
chips, or pasta. Wild fruits or tubers gathered were available only seasonally. In addition, it has 
been argued that gathered fruits did not measure up in either size or abundance to fruits now 
available year round. Such fruits may, in addition, have contained significantly less sugar and 
more fiber [69].  Looking at this pattern against a likely background of frequent periods of 
intermittent or longer-term fasting, one would have to conclude that low blood glucose and low 
insulin levels were characteristic features of humans for most of our evolutionary history.  

INSULIN AND KETONE BODY METABOLISM 
Under modern conditions of CHO intake, in the well-fed state, the brain uses about 130 grams of 
glucose per day [70]. During the initial stages of dietary CHO restriction or during fasting, the 

brain continues to be supplied with glucose by hepatic glycogenolysis and gluconeogenesis, 
primarily from amino acids from protein breakdown, and to a lesser degree, by glycerol from 
lipolysis. Continued breakdown of endogenous proteins for gluconeogenesis, however, carries 
the risk of severe protein loss from muscle, causing ongoing and ultimately fatal damage to the 
heart and diaphragm. The evolution of ketone body (KB) metabolism promotes a selective 
survival advantage sparing body protein loss by providing an alternate energy substrate, initially 
for muscle and, in a few days, for the brain. The KBs, β-hydroxybutyrate, acetoacetate, and the 
non-enzymatic breakdown product, acetone, derive from acetyl-CoA, primarily from lipolysis of 
fat tissue. These KBs are synthesized primarily in the liver and are transported to peripheral cells 
where they are incorporated into the TCA-cycle via reactions catalyzed by a CoA transferase and 

thiolase: 
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succinyl-CoA  + acetoacetate   succinate  + acetoacetyl-CoA 

acetoacetyl-CoA + CoA   2 acetyl-CoA 

In essence, KBs provide a method of transporting acetyl-CoA from the liver to other organs, 
including the brain. The availability of free fatty acid for ketogenesis depends on releasing 
insulin’s inhibition of lipolysis which is accomplished by dietary CHO restriction. Feedback control 
is exerted by KBs which stimulate pancreatic insulin secretion, albeit to a much smaller extent 
than glucose, thus controlling fatty acid generation. Loss of this control due to the absence of 
insulin gives rise to the ketoacidosis of uncontrolled type 1 diabetes). 

BACKGROUND ON CANCER 
Current theories on cancer describe an initial injurious event leading to a series of genetic 
mutations. Over-activation of oncogenes and/or loss of function in tumor suppressor genes must 

accumulate in order to transform a normal cell into one which displays rapid cell-division, growth, 
and immortality, the hallmarks of cancer. While we think of growth and proliferation as the major 
characteristics of life, the real demands on the living state come from keeping these processes 
under control. Hanahan & Weinberg’s widely cited hallmarks of cancer [2,1], all describe a failure 
to  control growth and replication (Figure 2).  

 

 

 

 

 

 

 

Classical hallmarks: 

 Limitless replicative potential 

 Sustained angiogenesis 

 Evading apoptosis 

 Self-sufficiency in growth signals  

 Insensitivity to empty growth signals  

 Tissue invasion & metastasis 
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Figure 2: Acquired Capabilities of Cancer as described by Hanahan & Weinberg [1] and Hanahan & 
Weinberg [2] 

From an evolutionary perspective, the genetic mutations in pre-cancerous cells can be thought 
of as re-activating an ancient genetic program that has been switched off, regulated or silenced 
in contemporary animals. In this sense, tumors can be viewed as an atavism, an evolutionary 
back-transition towards the first simple multi-cellular organisms [71]. In the context of this paper, 
cancers adopt an abnormal metabolic reprogramming: reduced mitochondrial function and 

increased reliance on glycolytic metabolisms. Not included in the original hallmarks, the 
dependence of glycolytic mechanisms has emerged as a key feature of many cancers. 
Fermentation of glucose represents an ancient biochemical mechanism employed by 
prokaryotes at least 3.5 billion years ago [72] when oxygen concentrations in the atmosphere 
were low [73]. Some authors have argued that this feature alone explains most if not all, the 
other hallmarks, thereby classifying cancer as a metabolic disease [74]. The theory is supported 
by evidence that the metabolic environment drives the evolution from mutations within 
mitochondrial DNA toward a cancerous state [75]. 

In addition to avoidance of initiating events, repair of unavoidable random cellular damage and 
removable of potentially cancerous cells becomes critical in prevention. Adaptive mechanisms in 
humans include the various DNA damage repair methods and ultimately, the cellular suicide 
process known as apoptosis. Given an order of 1013 cells in our body, however, errors in repair 
are inevitable and will be passed on to subsequent generations of cells, accumulating DNA 
mutations as we age. Indeed, careful organ autopsies of people who have died from non-cancer 
causes have revealed high rates of indolent tumors that remained quiescent, causing no 
symptoms in the patient's life [76,77]. It should be noted, however, that factors permitting and 

provoking tumors toward aggressive behavior, removing the “brakes” on cell growth, 
proliferation and metastasis, are hyperglycemia and the associated hyperinsulinemia [78–81]. 

Metabolic abnormalities appear to contribute to genomic mutation and instability. High blood 
glucose concentrations – especially those experienced during spikes in poorly-controlled type 2 
diabetics – stimulate production of free radicals and especially reactive oxygen species (ROS) 
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[18,19,82]: Figure 3). Hyperglycemia induces increased ROS in breast cancer cell lines [17,83] 
presumably contributing to genomic instability. Cancer cells appear to protect themselves from 
intrinsically high steady state levels of ROS by increasing the rate of glycolysis and activation of 
the pentose phosphate pathway, both resulting in production of high levels of the anti-oxidative 
pyruvate and lactate as well as NADPH, stabilizing reduced glutathione [84,85]. Starving such cells 

of glucose breaks down this defense mechanism and leads to cell death via ROS [86,87]. The 
overexpression of uncoupling protein 2 in cancer cells has also been proposed as a mechanism 
to mitigate ROS damage (see section on uncoupling proteins below). 

THE WARBURG EFFECT AND MITOCHONDRIAL FUNCTION 
Warburg’s original observations that rapidly growing cancers produced lactate even in the 
presence of oxygen led him to believe that this was a universal feature of all cancers [88–90]. 
While not true in all instances of cancer — most prostate cancers, for example represent an 
exception [91,92] — the Warburg effect has provided a crystallizing point in research into energy 
metabolism, mitochondrial function, reactive oxygen species, and the utility of PET scanning in 
cancer. While it is unlikely that the glycolytic profile that appears in different tumors has a single 
cause, several important hypotheses based on disruption in mitochondrial function and/or 
uncoupling of mitochondrial activity from energy production, have been proposed to explain the 

origin of the Warburg effect [16,93,94]. 

Mitochondrial DNA (mtDNA; 16,569 base pairs) codes for many of the components of oxidative 
phosphorylation including subunits of three proton translocases, complexes I, III and IV and 
complex V, the ATP synthase.  Mutations, depletions or abnormalities in mtDNA have been 
identified in many cancers [75, 95–105]. Mitochondrial dysfunction further enhances production 
of the free radicals and ROS that are by-products of the redox reactions of electron transport 
(Figure 3) 
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Redox reactions can produce a variety of chemically reactive free radical compounds, the most 
abundant being ROS, which may be increased by mitochondrial dysfunction.  See Figure 3. 

Figure 3: Common forms of reactive oxygen species 

 

The role of uncoupling proteins 

In addition to mitochondrial components that are directly involved in aerobic energy production, 
mechanisms of mitochondrial coupling and metabolic responses are candidates for explaining 
the tendency of rapidly growing cancers to by-pass aerobic oxidation even under aerobic 
conditions.  

The free energy of aerobic oxidation is captured as a proton gradient across the inner 
mitochondrial membrane. Dissipation of the gradient is coupled to synthesis of ATP via the 
complex V, the ATP synthase. The process is not perfectly efficient and the loss of usable energy 
is described as proton leak or uncoupling, analogous to the action of small molecule uncouplers 
such as 2, 4-dinitrophenol or FCCP, which are protein ionophores. Uncoupling in vivo is mediated 
by several (currently 5) uncoupling proteins [106]. The wasted energy is dissipated as heat and 
the uncoupling protein 1 (UCP1) – the first discovered in mammals – functions as a mediator of 
non-shivering thermogenesis in brown adipose tissue. Brown adipose tissue is widely distributed 
in mammals and newborn humans [107].  

The biological roles of UCP 3, 4 and 5 are quite speculative at present. UCP2, while ubiquitous in 
human cells, is measured at very low levels in most normal tissues, but is expressed at higher 

increasing reactivity 
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levels in regions of infection, inflammation [108,109] and malignant transformation [22,110–
112]. It has been proposed that UCP2 acts in response to elevated levels of ROS, moderating and 
reducing their chemical reactivity [113,114]. Co-incubation of KBs with glucose-medium in 
cultured fibroblast lines (RFP3, MCH 064 and MCH065) induces a 30% decline in UCP2 expression 
compared with glucose medium alone [21]. ROS were not directly measured, but these data are 

consistent with KB-induced suppression of ROS in normal tissues and a reduced mutagenic 
microenvironment. It should be noted that cancer lines had much greater variability after the 
addition of KBs, with reduced UCP2 seen in MDA MB 231 and MCF 7 (40% and 15%, respectively), 
but increased UCP2 in some colon cancer lines (LoVo CaCO2), and reductions in others (RKO, 
SW48 and SW480). The significance of these findings is less clear. The most consistent description 
is that the response of UCP2 to ROS must be as complex as the ROS response itself. Since ROS 
function as normal signaling molecules as well as toxic free radical species, as modulators of both 
growth and death it should not be surprising that this will remain an interesting avenue of 
investigation moving forward. 

Cell signaling pathways 

Recent studies have shown a direct role for elevated blood glucose levels in promoting oncogenic 
transformation of cells through the WNT/β-catenin pathway [78] or the EPAC/RAP1 and O-
GlcNAc pathways [79]. High blood glucose also acts indirectly as a growth stimulus through its 

effect on insulin release that in turn increases the bioavailability of IGF-1 and IGF-2 through 
hepatic down-regulation of IGF binding proteins [20]. The direct effect of insulin/IGF signaling is 
activation of the insulin receptor, IGF-1 receptor and hybrid insulin/IGF-1 receptors. These in turn 
activate the PI3K−AKT−mTOR pathway as well as the Ras-Raf-MEK-ERK pathway (Figure 4), both 
of which stimulate cell growth, proliferation and cell survival [20,115]. Multiple modulators of 
these pathways exist, including calorie intake, CHO and protein restriction or drugs such as 
metformin, which down-regulates PI3K signaling through AMP kinase stimulation [116].  

The regulatory effect of metformin has led to several current clinical trials testing its combination 
with chemotherapy and radiation therapy. Metformin has been quite safe in most clinical 
applications, but nonetheless poses a small risk of hypoglycemia and lactic acidosis. 
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However, from the perspective of the data presented here, the same effects could be achieved 
with a ketogenic diet without adverse side effects and without the need for a medication.  

 

 

 

Figure 4: Multiple tumor progression and survival pathways are activated via the Insulin/IGF axis. Dietary 

restriction in the form of overall CR or specific restriction of CHO or protein has specific effects on the insulin/ IGF-1 
system that transduces cellular signals through its insulin and IGF-1 tyrosine kinase receptors. This picture only 

provides a partial overview of the complexity of this signaling network. The classical action of activated ERK1 and 
ERK2 is their translocation into the nucleus where they activate mitogenic transcription factors. Similarly mTORC1 

targets transcription factors that increase proliferation and counteract apoptosis. Activation of mTORC1 via IR/IGF-

1R−PI3K−AKT converges with its activation by amino acids at the lysosomal membrane. There, the guanosine 
triphosphatase (GTPase) Rheb stimulates activity of mTOR which belongs to the mTORC1 complex. In contrast, a lack 

of growth signals activates the tumor suppressor tuberin (TSC2) which translocates to the lysosomal membrane and 
inhibits the Rheb-stimulated activation mTORC1. High insulin levels activate AKT which phosphorylates and 

inactivates TSC2, whereas CR or glucose withdrawal induce energy stress, decrease the intracellular ATP/AMP ratio 
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and activate TSC2 through liver kinase B1 (LKB1) − adenosine monophosphate-activated protein kinase (AMPK) 

signaling. AMPK can also directly inhibit mTORC1 by phosphorylating the regulatory-associated protein of mTOR 
(Raptor). AMPK has similar actions to the class III histone deacetylase SIRT1 which is a NAD+ - dependent enzyme 

that is also activated under calorie or CHO restriction-induced energy stress through an increase in the NAD+/NADH 
ratio. AMPK and SIRT1 amplify each other and both activate the peroxisome proliferator activated receptor gamma 

1α co-activator (PGC-1α) protein that cooperates with peroxisome proliferator activated receptor α (PPARα) to 

induce major metabolic shifts such as up-regulation of lipid oxidation and down-regulation of glycolysis. mTORC1, 
stimulated by insulin/IGF-1 signaling, inhibits these actions. Taken and modified from Ref. [20] 

CALORIC AND CARBOHYDRATE RESTRICTION IN CANCER PREVENTION 
As early as 1909, it was shown that under-feeding could inhibit the growth of a transplanted 
tumor in mice [3]. In 1914, not long after he had discovered that an avian sarcoma was caused 
by a virus, Peyton Rous, using dietary calorie restriction (CR), was able to repress spontaneous 
tumor development in mice, along with reduced growth of transplanted tumors [117].  

Over the next century, the effect of CR on cancer as a preventative means and potential 
treatment has gone in and out of fashion. In 1945 Tannenbaum found that the appearance of 

sarcoma induced in mice by addition of the carcinogen benzpyrene was repressed by CR of all 
macronutrients [5] (Figure 5). If the calories were reduced by restricting CHO alone, the effect 
was even more pronounced [4,118].  

The impressive cancer preventive effects of CR in animal models have been confirmed through a 
meta-analysis [119] evaluating studies on spontaneous breast tumors in mice published between 
1942 and 1995. CR led to an average decrease of 55% in tumor development in CR fed mice 
compared to ad libitum fed controls. A recent meta-analysis estimated a pooled odds ratio of 0.2 

(95% confidence interval 0.12-0.34) for a lower tumor incidence after carcinogenic interventions 
in CR fed mice compared to ad libitum feeding [120]. In total, 40 out of 44 studies (90.9%) 
revealed the tumor-inhibitory effect of CR in laboratory animals with respect to tumor incidence, 
progression or metastasis. Interestingly, eight out of nine preclinical studies evaluated in this 
meta-analysis showed that a ketogenic diet was also able to slow down tumor growth, often even 
as monotherapy. 
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Figure 5: The formation of induced skin tumors and the effect of under-feeding. Modified from  

Tannenbaum (1945) [4]. 

 

Traditional experimental studies described as calorie-restriction (CR) or as, energy-restriction 
take the reduction in calories as the cause of the cancer inhibition. This is unfortunate and 
inherently misleading because CR can be accomplished in many ways, permitting manipulation 
of any or all of the three macronutrients – proteins, CHOs, and fat. Numerous studies describing 
cancer inhibition as due to energy or calorie restriction, achieved this goal by exclusively limiting 
CHO [121–124] or protein [125,126] consumption. The rationale of carbohydrate restriction, 
however, follows the idea that glucose, directly or indirectly, through the effect of insulin and 
other hormones, plays a dominant catalytic role biasing the disposition of other nutrients. In the 

case of energy utilization, the level of carbohydrate will determine how much of all the substrates 
are oxidized or stored. So, as described above, a hyperglycemic, hyperinsulinemic state is likely 
to exert substantial control over the emergence of the cancerous state. The impression that CR, 
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i.e. the reduction of calories themselves, “caused” the inhibition is therefore inaccurate and 
misleading. 

More explicitly, calorie (or energy) restriction has been accomplished by proportional reduction 
of all macronutrients [97], or, in some cases, an absence of specification is usually taken to signify 
proportional reduction [127,128]. This experimental design has hazards, as proportional 
macronutrient reduction is an ambiguous concept whose effects cannot be assumed to be 
independent of the macronutrient baseline constituents. A diet composed of 55-70% CHO 
composition, recommended by the USDA until only recently, is quite different from one of 10-
35% CHO, and even further removed from a ketogenic diet (of less than 10% CHO). Most of these 
proportional trials have been performed in mice and rats, where total CR of standard chow (55-
70% CHO for rodents) represents de facto limitation of CHO, the predominant macronutrient.  

Kalaany et. al. [97] reported that cancer proliferation was inhibited in wild-type mice after CR 
(proportional). Further they showed that this inhibition was reversed in genetically altered mice 
resulting in constitutive activation of the PI3K pathway. Since the PI3K pathway is directly 
downstream of the insulin receptor, the data strongly point to the dominant role of insulin 
inhibition by dietary CHO restriction in the wild-type cancer results. Unfortunately, this was not 
mentioned in the discussion of this article, and the semantics of nutrient and dietary restriction 
continue. 

Ambiguities continue to propagate in the literature. As a result, ‘calorie restriction’ remains 
popular among approaches to cancer control [129]. We therefore re-emphasize that the 
insulin/IGF-1 pathway is activated principally by dietary consumption of CHO, and glucose is most 
often the preferred energy substrate for cancer cells due to metabolic dysfunction, as described 
above [90,130,10]. Protein consumption also stimulates this pathway albeit to a lesser extent 
than glucose in humans [20]. Mechanisms of protein activation of this pathway include the 

stimulation of pancreatic insulin and hepatic glucose production [131,132] as well as a general 
activation of mTORC1 by amino acids [133]. Intermittent fasting, a low-CHO or low-protein diet, 
or a ketogenic diet – all dietary elements which humans have often experienced over hundreds 
of thousands of years of evolution – all reduce insulin/IGF1 signaling. A reduction in blood glucose 
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levels via CHO restriction has been shown in cancer patients with ad libitum eating [134]. 
However, other studies failed to observe such an effect in cancer patients [135]. We point out 
that dietary CHO restriction results in normal range glucose concentrations (60-100 mg/dl) for 
the vast majority of people. Since most cancers over-express glucose 1 transporters, whose rate 
of glucose uptake is saturated at levels of 45 mg/dl, it is unlikely that blood glucose reduction has 

a direct effect on limiting cancer growth, so indirect effects via insulin/IGF1 signaling appear 
much more important. 

For instance, a reciprocal association between blood glucose and KB levels has been shown in 
both mice [136] and human cancer patients [135]. The significance of high KBs lies in their ability 
to retard tumor growth [137–140]. For example, KBs inhibit glycolysis in both normal and cancer 
cells, but while normal tissues easily switch to KBs and fatty acids for fuel when glucose is limited, 
cancer cells in general cannot compensate for energy loss when glycolysis is impaired [21,22]. 

This is supported by a clinical trial showing that strict CHO restriction with ketosis can result in 
the down-regulation of glycolysis in some cancer patients with associated slower tumor growth 
as measured by imaging procedures [141]. 

β-hydroxybutyrate, the principle KB manufactured by the liver – and to a lesser extent 
acetoacetate – has also recently been shown to be a histone deacetylase (HDAC1, 3 and 4) 
inhibitor [23]. Through this action, β-hydroxybutyrate promotes the hyperacetylation of histone 

proteins and induces a stress response which promotes autophagy and inhibits mTOR signaling 
[25].  

Thus it becomes clear that methods to minimize circulating insulin and spikes of glucose as well 
as mediators of chronic inflammation may help to decrease the occurrence and progression of 
cancer. One such method emphasized in this paper is the reduction of dietary CHO intake to 
levels that are more in line with the likely human diet in the past. 

CONCLUSIONS: MOVING FORWARD BASED ON THE PAST 
For over 95% of human evolution, the human diet was largely affected by periods of limited or 
no food consumption, intermixed with periods of plenty but limited CHO intake compared to 
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contemporary diets. As the evolutionary biologist Theodosius Dobzhansky stated in 1973: 
"Nothing in biology makes sense except in the light of evolution.” Over a century of accumulated 
data appears to confirm that this statement applies to the effect of diet on cancer prevention.  

CR – and more specifically CHO restriction – which were experienced throughout human 
evolution as normal periods without food and seasonal variation, appears to have been ingrained 
within human biology as a method to prevent cancer. Support for this hypothesis has been 
illustrated in ecologic data, epidemiologic data, preclinical and animal data, and more recently in 
human data.   

Such evidence is encouraging both for treating and, more importantly, for preventing cancer. As 
described throughout this manuscript, a diet that more closely mimics the ancient human diet 
appears to result in metabolic changes and cellular pathway modulation favoring a physiologic 
state that is not conducive to cancer induction or growth. These dietary effects should be 
incorporated and tested in future clinical trials as they may stand as a potent weapon in the fight 
against cancer. 
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