
An Evolutionary Approach for the Tuning of a Chess Evaluation
Function using Population Dynamics

Graham Kendall
University of Nottingham

School of Computer Science & IT
Jubilee Campus

Nottingham NG8 1BB, UK
gxk@cs.nott.ac.uk

Glenn Whitwell
University of Nottingham

School of Computer Science & IT
Jubilee Campus

Nottingham NG8 1BB, UK
gxw@cs.nott.ac.uk

Abstract- Using the game of chess, this paper proposes
an approach for the tuning of evaluation function
parameters based on evolutionary algorithms. We
introduce an iterative method for population member
selection and show how the resulting win, loss, or draw
information from competition can be used in
conjunction with the statistical analysis of the population
to develop evaluation function parameter values.

A population of evaluation function candidates are
randomly generated and exposed to the proposed
learning techniques. An analysis to the success of
learning is given and the undeveloped and developed
players are examined through competition against a
commercial chess program.

1 Introduction

Since the beginning of the century mathematicians have
tried to model classical games to create expert artificial
players. Chess has been one of the most favoured of these
with many decades of research focusing on the creation of
grandmaster standard computer programs (see Fig. 1). This
research culminated in the defeat of Garry Kasparov, the
World Chess Champion, by IBM’s purpose-built chess
computer, “Deep Blue”, in 1997. “Deep Blue” and since
“Deeper Blue”, still mainly rely on brute force methods to
gain an advantage over the opponent by examining further
into the game tree. However, as it is infeasible to evaluate
all of the potential game paths of chess, we cannot rely on
brute force methods alone. We need to develop better ways
of approximating the outcome of games with evaluation
functions. The automated learning of evaluation functions
is a promising research area if we are to produce stronger
artificial players.

In 1949, Shannon started to surmise how computers
could play chess. He proposed the idea that computers
would need an evaluation function to successfully compete
with human players [13]. Although Shannon pioneered the
work on computer chess, it is Turing who is accredited with
producing the first chess automaton in 1952 [4]. The earliest
publication that actively employs learning was presented in

1959 by Samuel [11]. Samuel developed a checkers
program that tried to find “the highest point in
multidimensional scoring space” by using two players. The
results from Samuel’s experiment were impressive and yet
his ideas remained somewhat undeveloped for many years.
In 1988, Sutton developed Samuel’s ideas further and
formulated methods for ‘temporal difference learning’
(TDL) [14]. Many researchers have since applied TDL to
games [2,3,15,16]. One of the most successful of these is
Tesauro’s backgammon program “TD-Gammon” which
achieved master-level status [15]. Tesauro had shown that
TDL was a powerful tool in the development of high
performance games programming. Thrun successfully
applied TDL to his program “NeuroChess” [16]. TDL is
reviewed in Kaebling [6].

Co-evolutionary methods try to evolve a population of
good candidate solutions from a potentially poor initial
population by “embedding the learner in a learning
environment which responds to its own improvements in a
never ending spiral” (Pollack) [9]. Moriarty gives a survey
into general learning with evolutionary algorithms [8].
In 2000, Chellapilla and Fogel successfully developed
strategies for playing checkers with the use of a population
of neural network candidate players [5]. Barone applied
adaptive learning to produce a good poker player. It was
entered in a worldwide tournament involving several human
expert players and achieved a ranking of top 22% [1]. Other
examples of co-evolution include Pollack’s Backgammon
player [9] and Seo’s development of strategies for the
iterated prisoner dilemma [12].

2 The Chess Engine

A simple chess program was created as a platform for the
learning process. The current board state was represented
by a vector of length 64, where each element stores the
contents of a square on the chess board. On each player’s
turn, the set of legal moves is generated for the current
position. To select one of the moves, a minimax tree was
generated with alpha-beta pruning to a fixed depth [7].
Quiescence was used to selectively extend the search tree to
avoid noisy board positions where material exchanges

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

sonms
0-7803-6657-3/01/$10.00 © 2001 IEEE

sonms
995

Computer Champions

Human Champions
B

ot
vi

ni
k

(2
61

6)

Pe
tr

os
ia

n
(2

36
3)

M
ac

H
ac

k
(1

40
0)

C
he

ss
 3

.0
 (

15
00

)

Sp
as

sk
y

(2
48

0)

Fi
sc

he
r

(2
78

5)

C
he

ss
 4

.6
 (

19
00

)

K
ar

po
v

(2
70

5)

K
or

ch
no

i (
26

45
)

B
el

le
 (

22
00

)

K
as

pa
ro

v
(2

74
0)

H
it

ec
h

(2
40

0)

D
ee

p
T

ho
ug

ht
 (

25
51

)

K
as

pa
ro

v
(2

80
5)

D
ee

p
T

ho
ug

ht
 2

 (
ap

pr
ox

. 2
60

0)

W
C

F
 R

at
in

g

Year

Figure 1. Comparison of the WCF Ratings of Computer Chess Champions and Human Champions from 1960-1995. The large quantity
of computer chess research has resulted in computer players improving at a greater rate than their human counterparts.
Diagram amended from “Artificial Intelligence – A Modern Approach”, with kind permission of the authors [10].

may influence the resultant evaluation quality [4]. We
chose to use a simplified version of Shannon’s evaluation
function involving player material and mobility parameters:

∑
=

−=
6

0

)][][]([
y

blackwhite yNyNyWEvaluation

where:

N[6] = {No pawns, No knights, No bishops, No rooks,
No queens, No kings, No legal moves }

W[6] = {weightpawn
, weightknight , weightbishop

, weightrook,

weightqueen , weightking
, weightlegal move }

Also, a small fixed bonus was given for control of the center
squares and advanced pawns with promotion potential. The
first move of the minimax sequence giving the highest
evaluation is conducted and the process repeats for the other
player. Each chess game ends when one of four ending
conditions is met: checkmate, stalemate, three-move
repetition draw, or fifty move draw.

3 Learning Process Method

For a chess programmer, the main problem arises in
choosing the respective weightings of the parameters in the
evaluation function. If the evaluation function parameter
weightings are less than optimal, the weakness will be
emphasized throughout the entire game. A slight change in
evaluation parameter weightings can be enough to
completely change the entire game path and hence create a
different player with a different playing strategy. Instead of
the programmer having the responsibility for choosing the
weightings, it can be beneficial to let the computer develop
the weightings through learning techniques, as the optimal
function is often very different from the assumed one.

Terminology

We shall use the following notation throughout the
remainder of this paper:

P : Population
: Size of population

ν : A member of the population
νi : The ith member of the population

: The fittest member of the population
fbest : The optimal evaluation function
y : A parameter of ν
V : A vector
c : A variable

We adopted a population-based approach to learning by
UDQGRPO\�JHQHUDWLQJ�D�SRSXODWLRQ��3��RI� members where
each member νi represents one candidate evaluation
function. Thus the population can be summarised by:

∀ νi ∈ P, νi = { A, B, C, D, E }

where:
A = weightknight

B = weightbishop

C = weightrook

D = weightqueen

E = weightlegal move

In the evaluation function proposed in section 2, weightking

and weightpawn are also included. These parameters are
fixed for every member of the population. The weightking

parameter is set to an arbitrarily high value (i.e. ∞) as the
loss of the king signifies loss of the game. The weightpawn

parameter is set to a constant of 1 as to configure each of the
other weightings in pawn units.

sonms
996

In our learning model we identify the relative strength
between pairs of population candidates through competition.
Firstly select two members of the population. Then conduct
two games of chess with these players, each player playing
one of the games as White and one of the games as Black. It
is necessary to follow in this manner to eliminate the first
move advantage. Each player will use their own evaluation
function when selecting moves. After completion, the
winning function is allowed to remain in the population.
The losing function is expelled from the population and a
mutated clone of the winner is inserted in its place. If the
contest is a draw then both functions remain in the
population but they are mutated. The process continues
until population convergence is achieved.

3.1 Selection

We propose an iterative method for selection whereby the
SRSXODWLRQ� LV� UHSUHVHQWHG� E\� D� YHFWRU�� 9�� RI� OHQJWK� �� � $
variable, c, is used to monitor progress through the vector
and is initially set to the first member of V. When selecting
the two evaluation functions, we choose the cth member of
the vector, V[c], and randomly select another function from
the remainder of the vector, which is V[i] (where c < L��� ��
as the other player. The variable c is incremented before
making the next selection (see Fig. 2). When the variable c
indexes the last member of the population we call this one
generation of learning, the vector is then reversed. This
selection method results in the quick propagation of the best
function. For example, let’s assume a simple learning
process that simply clones the winner of the match into the
loser’s vector position. It can be shown that will occupy
the last vector position at the end of each generation:

Proof

i) is the last member of the vector: condition holds.

ii) is the first member of the vector:
 and n are selected where n > first index.
 wins the competition (it is the best function).
 is cloned and inserted into position n.

If position n is last element of V: condition holds.
Remove elements up to n. Let vector V = [n�«� �@
Else repeat case ii).

iii) is the ith member of the vector:
Remove elements up to i. Let vector V = [i�«� �@
Now follow case ii).

(see Fig. 3)

By reversing the vector, we ensure that the best function
will occupy the first vector position at the beginning of a
generation. Therefore, the best member of the population
will have more chance of propagating through the
population.

Figure 2. The first three selection iterations of a population
FRQVLVWLQJ� RI� � � �� PHPEHUV�� � 7KH� VKDGHG� VTXDUH� LQGLFDWHV� WKH
position identified by the variable c.

Figure 3. The diagram shows the propagation of the best function,
��LQ�D�SRSXODWLRQ�RI� � ���PHPEHUV��WKH�grey squares indicate the

selected players νc and νi for each iteration). Starting from
position 5 in the vector, the best function is involved in three
competitions during the first generation (iterations 5, 7, and 8).
This results in several clones of towards the end of the vector.
The vector is reversed before starting the second generation to give

 a greater opportunity to propagate. In the simulation, the vector
is completely saturated with after two generations.

3.2 Crossover

In the proposed learning model there is no crossover –
reproduction is completely asexual. After the selection and
competition of two population members, there will be at
most one breeding parent – the fittest one of the pair. The
population member that wins the competition becomes the
breeding parent and creates a clone to replace its rival. In
the case of a drawn competition, both candidate parents are
denied from breeding.

3.3 Mutation

So far, the learning mechanism is able to distinguish the
best member of the population. But what if the best
member of the population is still much worse than the
optimal solution? (see Fig. 4).

sonms
997

Figure 4. Assume that each possible evaluation function maps to a
unique point on H-space and there is one unknown optimal
solution, fbest�� � :H� JHQHUDWH� D� SRSXODWLRQ� RI� � � �� PHPEHUV� DV
shown in the top H-space diagram. However, the best member of
the population, E8, is still a long way from the optimal solution.
After learning, the population would stabilise as shown in the
bottom H-space diagram.

A good search method is a tradeoff between exploitation
of search space and exploration of different areas within
search space. The current system is completely exploitative
and never veers outside of the initial search specifications.
A suitable result will only ever be found if a member of the
initial population is close to the optimal solution.

We propose a mutation system that is dependent on the
dispersement of the population to create a more explorative
search. This involves calculating the standard deviation for
each of the evaluation parameters, y, that we are trying to
develop:

1

)(2

1

)()(

)(
−

−
=

∑
=

µ
σ

µ

n

yyn

y

averageV
 ∈∀y ν

After each competition between pairs of candidate
evaluation functions we mutate each of their parameters by
a proportion of the standard deviations for those parameters
depending on the outcome of competition. Therefore, when
the population is diverse at the start of the learning process,
we mutate by a larger amount than when the population
begins to converge towards the end of learning. The
functionality behind this method is that the user does not
need to specify a mutation scheme as all mutation is
contolled by the population’s diversity. A generalised
mutation formula is specified below:

ν(y) = ν(y) ()())(5.0)1...0(yRRND σ××−+ ∈∀y ν

The formula allows for positive and negative mutations with
the value of R chosen based on the outcome of matches.
Each parameter is completely independent from the other
parameters when calculating the standard deviation. For
example, one parameter, y1, may have a low standard
deviation but another, y2, may be large. Therefore in
general, parameter y1 would be mutated less than y2.

Depending on the results from contests, we can mutate
by different amounts. At the end of each match, the
following actions were chosen (with R values selected based
on initial testing):

A function wins both games:

Expel loser, duplicate winner and mutate with R = 2

A win and a draw:

Expel loser, duplicate winner and mutate with R = 1
Mutate winner with R = 0.2

Drawn match:

Mutate both functions with R = 0.5

If the standard deviation of a parameter is low then all of the
members of the population are converging for that
parameter. But it may be that the parameter value is at a
local maxima. Therefore, if a parameter, y, obtained a small
VWDQGDUG� GHYLDWLRQ� � (y) < 0.2), then we randomly select
members of the population and mutate their y parameter by
a small amount.

3.4 Summary of Learning Process

The learning process can be summarised as follows:

1) *HQHUDWH�3RSXODWLRQ�RI� �PHPEHUV�LQ�D�YHFWRU
2) Set iteration variable c = 0

While (Continue Learning)

3) Randomly set variable i such that c < L���
4) Select two referenced members, νc & νi

5) Game One: νc is White, νi is Black
6) Game Two: νi is White, νc is Black
7) If there’s a winner, expel loser, duplicate winner
8) Mutate as specified
9) Increment c
10) If c = �� (completion of a generation)

 Set c = 0
 Reverse vector

End While

H
E 1

E 2

E 4

E5

E 6

E 7

E 3

E 8

f best

E 9

H

E 1…

f best

E 9

sonms
998

4 Experimental Results

Using the methods proposed in this paper, we conducted an
H[SHULPHQW� LQYROYLQJ� D� SRSXODWLRQ� RI� � � ��� FDQGLGDWH
evaluation functions. We assigned values for each of the
candidate’s parameters by randomly generating numbers in
the range { 0…12 }. One member of the population was
seeded with the parameter weightings as suggested by
Shannon [13]:

A = weightknight = 3
B = weightbishop = 3
C = weightrook = 5
D = weightqueen = 9
E = weightlegal move = 1 †

It is worthwhile seeding the population because the seed can
reduce the duration of learning. If the seed is logically close
to the optimal solution then the duration of learning will be
shorter. Even if the seed is the poorest member of the
population then it will quickly be expelled from the
population in favour of better candidate functions.
The averages for each of the parameters in this initial
population gave us the evaluation function of the
“undeveloped player”. The values were as follows:

AVRA (knight) = 6.24
AVRB (bishop) = 5.80
AVRC (rook) = 6.54
AVRD (queen) = 5.44
AVRE (legal moves) = 6.38

The standard deviation value for each of the parameters was
approximately 3.8:

A (knight) = 3.88

B (bishop) = 3.60

C (rook) = 3.90

D (queen) = 3.75

E (legal moves) = 3.98

The chess program was set to use a fixed look ahead of
three moves. The population was allowed to undergo 45
generations of learning through 2200 iterations.

4.1 Observations

During the initial stages of learning, each game of chess
took about three minutes to complete. Toward the latter
stages of learning, the average game time had increased to
six minutes and there were more occurrences of drawn
games. This is a good indication that the initial population
contained many poor candidate functions that were easily
beaten. As the poor candidate functions were replaced with

† Although Shannon’s suggested value for mobility was 0.1, a
value of 1 was selected as to show that the proposed learning
method is suitably explorative.

better ones, the games became tougher to win, hence, the
game times increased and there were a greater number of
drawn matches. It was also noted that the seeded function
was the only original member of the population to remain
unchanged through the first five generations. This indicates
that the seed was the fittest member of the initial population.

4.2 Results

The averages and standard deviations for each of the
parameters during the learning process are shown in Fig. 5
and Fig. 6. At the end of the experiment, the population had
converged to the following average values which we will
call the “developed player”:

AVRA (knight) = 3.22
AVRB (bishop) = 3.44
AVRC (rook) = 5.61
AVRD (queen) = 8.91
AVRE (legal moves) = 0.13

The standard deviations of the parameters had decreased to
the following values:

A (knight) = 0.28

B (bishop) = 0.58

C (rook) = 0.33

D (queen) = 0.47

E (legal moves) = 0.13

The reduction in the standard deviations (from around 3.8
before learning to 0.3 after learning) shows that the
population had stabilised with most of the population’s
members containing similar parameter weightings.

A second experiment was conducted with a completely
random initial population (without any seeding). The
developed values from this experiment were consistent with
the first experiment to one decimal place although an
extended learning time was required.

4.3 Success

After several test games with human players, it was clear
that the chess program’s performance after learning was
better than before learning. However, due to the fallible
nature of humans and the lack of accessible grandmaster
standard players, we decided to use a commercial chess
program, “Chessmaster 2100” from “The Software
Toolworks”, as a control to measure the extent of the
evaluation function’s improvement. We set Chessmaster’s
look ahead to a fixed depth of three moves and disallowed
the use of its opening sequence database. This eliminated
any advantages that Chessmaster may have had over the
chess program we had produced. Therefore, the player
differences were only with their respective evaluation
functions. Both the undeveloped and developed players
were allowed two games with Chessmaster, once playing as
White and once as Black. The results are shown in Table 1.

sonms
999

The Average for each Evaluation Parameter in the Population

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Generation

A
ve

ra
g

e
P

ie
ce

 V
al

u
e

A (knight) B (bishop) C (rook) D (queen) E (mobility)

Figure 5. A chart showing the averages of the evaluation function parameters within the population during learning. We can see how
the values have changed rapidly over the first 10 generations as the poorer functions of the population are beaten by better
ones. As we continue through the iterations, eventually we reach a point where the values change less rapidly. For example,
take the change in values from the 1st generation to the 2nd generation. Each of the coefficients have changed by
approximately 1. Now take the 44th and 45th generations, the change is about 0.04 for each coefficient between the
generations. The parameter averages have stabilised indicating that the learning process will not yield any further
improvement.

The Standard Deviation for each Evaluation Parameter in the Population

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
Generation

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

A (knight) B (bishop) C (rook) D (queen) E (mobility)

Figure 6. A chart showing the standard deviations of the evaluation function parameters during the learning process. We can see that
the standard deviation of each parameter is decreasing as learning proceeds. The standard deviations are large at the
beginning of learning as the initial population members’ had a diverse range of values for each parameter. Therefore,
mutations are greater in the earlier stages of the process. As learning continuess and better functions win, the standard
deviations decrease and mutation is less.

sonms
1000

It is important to note that the chess games are completely
deterministic, there is no randomness for move selection
within any program. If the players were to play again under
the same conditions, the game paths would be identical.

Player Playing as Player’s Result
White Lost in 58 moves
Black Lost in 59 moves
White Won in 69 moves
Black Lost in 97 moves

Developed

Undeveloped

Table 1. Results of test games playing against Chessmaster 2100.

Chessmaster 2100 was able to defeat the undeveloped
player within 60 moves whilst playing as both White and
Black. However, the developed player was a more able
opponent losing to Chessmaster in 97 moves as Black. This
is an improvement on the 59-move loss that the
undeveloped player suffered. When playing as White, the
developed player scored a victory in 69 moves. The
developed player was able to beat Chessmaster in fewer
moves than it took Chessmaster to win against the
developed player (the developed player games are given in
the appendix).

Chessmaster 8000, which provides several opponent
profiles of differing quality and their USCF ratings, was
used to evaluate the improvement of the developed player
over the undeveloped player. This was achieved by
choosing one of Chessmaster 8000’s opponent profiles and
playing it against one of our players. If our player won, a
better-rated opponent profile was used. If the player lost, a
worse opponent was selected. This continued until our
players were evenly matched with their respective
opponents (i.e. drawing the majority of games). The
resulting ratings of the undeveloped and developed players
are highlighted in Table 2.

Table 2. The Undeveloped and Developed Player USCF Ratings.

Although these ratings are unofficial, the difference is
clearly evident with the developed player achieving a 270%
improvement over the undeveloped player’s rating.

5 Conclusions

In this paper, we have proposed a method for selection of
candidate evaluation functions and also a learning
mechanism that utilises the dynamics of a population in
order to control mutation amounts. Mutating by a random
proportion of the standard deviation of parameters is
beneficial, as the population controls mutation not the user.

An experiment was conducted and the resulting
evaluation function was examined through competition with
Chessmaster. After learning, the performance of the
population was greatly improved over the initial population
and it is interesting that the values developed, both with and
without seeding, are of similar nature to Shannon’s
mathematically derived suggestions of 1950 [13]. Although
Shannon believed the bishops and knights to be of equal
worth, the more recent idea of a bishop being slightly more
valuable than a knight is reflected in the developed values.
The resultant program played a better game of chess against
human players and, in particular, the commercial software.

Unfortunately, many games are needed to give good
solutions, so although increases in the game tree search
depth gives more accurate results, it has the side effect of
exponential increases in game lengths and, therefore,
learning times. Also, the developed function will only have
good weights for the particular implementation. That is, if
the search depth is changed, parameters are added or
removed from the evaluation function, or if the chess
implementation changes, then the previously developed
function may no longer play as well. In experiments using
smaller populations, the learning time increased. This can
be attributed to the fact that the weights take longer to
converge due to the chess players having a smaller number
of opponents to play against. Of course, a larger population
means a longer execution time. The balance between
population size, learning time and execution time is
something we are considering.

Chess games are very complex, requiring different
strategies in different situations such as the protection of an
important pawn, defence of a file, or perhaps dominance of
a board region. As our evaluation function was based on
Shannon’s simple linear function, its performance is limited.
However, for research purposes, the advantage of using a
documented evaluation function is that, after learning,
immediate comparisons are possible. The developed player
has been shown to have vastly improved over the
undeveloped player using Chessmaster 8000. Therefore, we
see no reason why the given processes could not be applied
to developing stronger players by using more complex
evaluation functions incorporating intragame adaptable
parameters, a greater look ahead depth, and using longer
learning times.

The ability for non-experts to produce competent
programs that exceed the expertise of the creator, with the
use of evolutionary learning methods, is a very powerful
approach that we would encourage people to use when
domain specific knowledge is lacking.

USCF Rating Ability

2400+ Senior Master
2200-2399 Master
2000-2199 Expert
1800-1999 Class A
1600-1799 Class B Developed (1750)
1400-1599 Class C
1200-1399 Class D
1000-1199 Class E

800-999 Class F
600-799 Class G Undeveloped (650)
400-599 Class H
200-399 Class I
< 200 Class J

sonms
1001

References

[1] Barone L., While L., “Adaptive Learning for Poker”,
Proceedings of the Genetic and Evolutionary Computation
Conference, July (2000), pp. 566-573.

[2] Baxter J., Tridgell A., Weaver L., “KnightCap: A chess
program that learns by combining TD(lambda) with game-
tree search”, Proceedings of the Fifteenth International
Conference on Machine Learning,, July (1998), pp. 28-36.

[3] Beal D. F., Smith M. C., “Learning Piece values using
Temporal Difference”, Journal of the International Chess
Association, September (1997).

[4] Bowden B. V., “Faster Than Thought”, Chapter 25, Pitman,
(1953).

[5] Chellapilla K., Fogel D. B., “Anaconda Defeats Hoyle 6-0: A
Case Study Competing an Evolved Checkers Program
against Commercially Available Software”, Proceedings of
the Congress on Evolutionary Computation 2000, July
(2000), Vol. 2, pp. 857-863.

[6] Kaebling L. P., Littman M. L., Moore A. W.,
“Reinforcement Learning: A Survey”, Journal of Artificial
Intelligence Research, (4) (1996), pp. 237-285.

[7] Knuth D. E., Moore R. W., “An analysis of alpha beta
pruning”, Artificial Intelligence, Vol. 6 (4) (1975),
pp. 293-326.

[8] Moriarty D. E., Schultz A. C., Grefenstette J. J.,
“Evolutionary Algorithms for Reinforcement Learning”,
Journal of Artificial Intelligence Research, (11) (1999),
pp. 241-276.

[9] Pollack J. B., Blair A. D., Land M., “Coevolution of a
Backgammon Player”, Proceedings of the Fifth Artificial
Life Conference, May (1996).

[10] Russell S., Norvig P., “Artificial Intelligence A Modern
Approach”, Prentice-Hall, (1995), pp. 137.

[11] Samuel A. L., “Some Studies in Machine Learning Using the
Game of Checkers”, IBM J. Res. Dev., Vol. 3 (3) (1959).

[12] Seo Y. G., Cho S. B., Yao X., “Exploiting Coalition in Co-
Evolutionary Learning”, Proceedings of the Congress on
Evolutionary Computation 2000, July (2000), Vol. 2,
pp. 1268-1275.

[13] Shannon C., “Programming a computer for playing chess”,
Philosophical Magazine, Vol. 41 (4) (1950), pp. 256.

[14] Sutton R. S., “Learning to predict by the methods of
temporal differences”, Machine Learning (3)(1988), pp. 9-44

[15] Tesauro G. J., “TD-Gammon, a self-teaching backgammon
program, achieves master-level play”, Neural Computation,
(6) (1994), pp. 215-219.

[16] Thrun S., “Learning to Play the Game of Chess”, In Tesauro
G., Touretzky D., Leen T., editors, “Advances in Neural
Information Processing Systems 7”, San Fransisco, Morgen
Kaufmann, (1995).

Appendix

Chessmaster 2100 (White) vs. Developed Player (Black)

1 g1f3 d7d5 26 g4f3 d7c6
2 b1c3 d8d6 27 e1e2 h8h4
3 e2e4 d5e4 28 a5a6 b7b5
4 c3e4 d6e6 29 c2b1 b5b4
5 f3g5 e6d5 30 f3c6 d6c6
6 d2d4 b8c6 31 d1c1 c6d5
7 c1e3 e7e6 32 e2d1 d5f5†
8 f1e2 f8b4† 33 d1c2 h4e4
9 c2c3 h7h6 34 d2d3 a8d8

10 e2f3 d5b5 35 c1c7 f5g4
11 g5f7 e8f7 36 c7a7 a5f5
12 a2a4 b5c4 37 h1g1 e4g4
13 c3b4 c6b4 38 d3f5† e6f5
14 b2b3 b4d3† 39 g1g4 f5g4
15 e1d2 c4a6 40 a7c7 d8d5
16 d2c3 a6a5† 41 a6a7 d5a5
17 c3d3 a5f5 42 e3d2 g4g3
18 g2g4 f5a5 43 h2g3 g7g6
19 d3c2 g8f6 44 d2b4 a5a6
20 e4f6 f7f6 45 c7c6 a6c6
21 d1e1 a5b6 46 a7a8(Q) c6e6
22 g4g5 h6g5 47 a8f8† f6g5
23 a1d1 g5g4 48 f8f4† g5h5
24 a4a5 b6d6 49 f4h4‡
25 f3g4 c8d7

Developed Player (White) vs. Chessmaster 2100 (Black)

1 d2d4 g8f6 26 d5b7 a6a5
2 c1f4 b8c6 27 b7c8 g7g6
3 b1c3 f6h5 28 c8d8† g8g7
4 e2e3 h5f4 29 d8c7 h6h5
5 e3f4 e7e6 30 c7d6 h5f5
6 d4d5 e6d5 31 e3e8 f5h5
7 d1d5 f8e7 32 c3e4 h5d5
8 f1c4 e8g8 33 c4d5 h7h5
9 a1d1 d7d6 34 d6f8† g7h7

10 d5e4 e7f6 35 f8h8‡
11 g1e2 f6c3†
12 b2c3 f8e8
13 e4d5 c8e6
14 d5e4 e6c4
15 e4c4 c6a5
16 c4d5 a5c6
17 d1d3 d8e7
18 d3e3 e7h4
19 g2g3 h4g4
20 e1d2 a8d8
21 h1b1 g4c8
22 c3c4 e8e6
23 e2c3 e6h6
24 h2h4 a7a6
25 b1e1 c6b4

sonms
1002
