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ABSTRACT Neural networks are the cutting edge of artificial intelligence, demonstrated to reliably

outperform other techniques in machine learning. Within the domain of neural networks, many different

classes of architectures have been developed for various tasks in specific subfields, as well as a multitude of

diversity in the way of activation functions, loss functions, and other such hyperparameters. These networks

are often large and computationally expensive to train and deploy, restricting their utility. Furthermore,

the fundamental theory behind the effectiveness of particular network architectures and hyperparameters

are often not well understood, and as such, practitioners frequently resort to trial-and-error techniques to

optimize their model performance. To address these concerns, we propose the use of compact directed acyclic

graph neural networks (DAG-NNs) and an evolutionary approach for automating the optimization of their

structure and parameters. Our experimental results demonstrate that our approach consistently outperforms

conventional neural networks, even while employing fewer nodes.

INDEX TERMS Evolutionary algorithms, DAG neural networks, compact neural networks, artificial

intelligence.

I. INTRODUCTION

Artificial neural networks (ANNs) are a class of systems in

machine learning modeled after the structure of the brain.

In recent years, ANNs and particularly deep neural net-

works (DNNs) have risen to the forefront of the artificial

intelligence community, attracting the lion’s share of interest

among academic and industry professionals owing to a vari-

ety of factors. Neural networks find applications across many

disciplines within and outside computer science – computer

vision and medical diagnosis are two such domains with

profound and well-publicized advancements – and they con-

sistently achieve the best performance among statistical mod-

els and machine learning techniques across various domains

and applications. The existence of numerous well-supported

software libraries for building and training DNNs make them

a popular choice for data scientists. And perhapsmost intrigu-

ingly, their underlying theoretical foundations are not well

understood, lending promise to groundbreaking discoveries

that may further improve their performance.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

Research in neural networks has yielded a wide array of

variations and configurations, suited to different applications

and dataset conditions. One such design consideration is

the network architecture, which determines the arrangement

and manner in which nodes connect to and transmit infor-

mation between each other. For instance, a shallow neu-

ral network (SNN) consists of an input layer, hidden layer,

and output layer, where each layer consists of a number of

nodes, each of which are connected to every node in the next

layer. A deep neural network contains a greater number of

hidden layers. Meanwhile, convolutional (CNN) and recur-

rent (RNN) neural networks have alternative architectures

that make them particularly favorable for computer vision

and natural language processing tasks, respectively. These

frequently complex and massive network structures require

expensive hardware to train and to run, limiting their use in

applications such as embedded systems. Another issue afflict-

ing the training of such networks is the great number of con-

figurable hyperparameters which influence the way a neural

network learns and adjusts to information. Hyperparameter

tuning is frequently a process of trial and error, as current

understanding of the relationship between hyperparameters
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and training data is limited. A practitioner may spend hours

or days adjusting hyperparameters to obtain the best perfor-

mance, an often frustrating task.

This paper proposes a solution to these difficulties by

applying the principles of evolutionary algorithms to opti-

mize the structure and parameters of a compact artificial

neural network. Evolutionary algorithms (EAs) are a class

of optimization algorithms inspired by another biological

process – natural selection. Borrowing concepts from evolu-

tion such as crossover and mutation, EAs are a particularly

clever way of exploring a search space for an optimal solu-

tion. We reimagine a neural network’s structure as a directed

acyclic graph, the weights as weighted edges, and biases as

node attributes. The proposed evolutionary algorithm inter-

prets networks as individuals in a population, eliminating

poorly performing networks through selection and generating

new ones through crossover and mutation. The result is a

framework for training and optimizing artificial neural net-

works which exhibit high accuracy with far fewer nodes.

The remainder of our paper is presented as follows.

Section 2 contains a survey of existing research in neural

network architectures, neural architecture search, and com-

pression. In Section 3 we present our proposed evolutionary

framework, including the representation of the artificial neu-

ral network and the evolutionary algorithm for manipulating

said representation. Then in Section 4, we apply our approach

to real-world datasets representing a diverse array of appli-

cations and learning tasks, comparing performance against

conventional neural networks. Finally, we conclude our paper

in Section 5.

II. RELATED WORK

A. NETWORK ARCHITECTURES AND

HYPERPARAMETER SELECTION

The history behind the development of novel architectures

and hyperparameters is one characterized by experimentation

just as much as theory. However, the development of novel

architectures and hyperparameters is often conducted on the

basis of experimentation rather than theory. And the process

of selecting architectures and hyperparameters is frequently

a process of trial and error on the part of the practitioner.

The discovery and adoption of activation functions typi-

fies the largely empirical nature of deep learning research.

Hahnloser et al. [1] introduced the celebrated rectified lin-

ear unit (ReLU) activation function, providing mathematical

support, but it became popularized through [2] by primarily

experimental means. Ramachandran et al. [3] took the empir-

ical derivation of activation functions to an extreme by con-

ducting a search through a search space of composed unary

and binary functions. Through this method, they discovered

an activation function which they termed Swish, finding that

it consistently outperformed ReLU with all other parameters

held constant. A similar trajectory describes the direction of

research involving DNN architectures. LeCun et al. provide

an overview of deep learning in [4], describing the develop-

ment of architectures as an empirical process.

This is not to say that the theoretical foundations of

DNNs have been neglected. With deep learning at the fore-

front of computing research, strides are indeed being made

on the fundamental theory front. In an influential paper,

Lin et al. [5], discuss the effectiveness of deep neural net-

works from a statistics and physics perspective. Similarly,

Mhaskar et al. [6] describe the long-standing discussion over

shallow versus deep layered architectures, providing theo-

retical insight into the particular conditions that allow deep

networks to learn better representations than shallow ones.

However, the bleeding edge of deep learning research builds

so rapidly upon the repository of architectures and hyper-

parameters that pioneering researchers and practitioners are

inevitably faced with experimentation and trial and error.

B. NEURAL ARCHITECTURE SEARCH

Architecture optimization of neural networks is a well-

studied research area, with many different approaches having

been adopted. Because the theory behind optimal structure

is not sufficiently explored, most research attempts to

experimentally determine an optimal network configuration

through search algorithms, collectively known as neural

architecture search (NAS). Elsken et al. [7] conduct a sur-

vey on such approaches, categorized along three dimensions:

search space, search strategy, and performance estimation

strategy.

Doering et al. [8] present an algorithm for architecture

optimization utilizing the A* search algorithm, finding suc-

cess when applied to the Pima Indians dataset. Meanwhile,

Yang et al. [9] develop another such algorithm tailored to

large dataset applications by introducing the concept of sparse

representation pruning (SRP), and Ihme et al. [10] use a

pattern search optimization algorithm, applying the approach

to chemical systems approximation. In a departure frommost

approaches, Shirakawa et al. [11] utilize a probability dis-

tribution to generate neural network structures and optimize

the parameters of the probability distribution rather than that

of the structure, adopting an indirect strategy for structure

optimization. The primary advantage of their approach is

computational efficiency. A recent noteworthy implementa-

tion of neural architecture search is NASNet [12]. Its key

contribution is the development of the ‘‘NASNet search

space’’ which enables efficient architecture search over

smaller datasets and transferability to larger ones. Employ-

ing this strategy, a NASNet found on CIFAR-10 and trans-

ferred to ImageNet achieved state-of-the-art accuracy on both

datasets.

The concept of directed acyclic graph neural networks

(DAG-NNs) have entered the nomenclature, representing a

generalized network for architecture optimization. Yang and

Ramanan [13] apply a DAG architecture to CNNs, obtain-

ing exceptional accuracy with image classification tasks.

In a similar fashion, Shuai et al. [14] propose DAG recur-

rent neural networks and apply their approach to scene

labeling, achieving state-of-the-art results by outperforming

well-known convolutional neural networks.

178332 VOLUME 7, 2019



C. Chiu, J. Zhan: Evolutionary Approach to Compact DAG NN Optimization

1) EVOLUTIONARY APPROACHES

DAG-NNs are particularly receptive to evolutionary

approaches as a search heuristic for optimizing structure.

Perhaps the most well-known contribution to this area is

from Stanley and Miikkulainen in ‘‘Evolving Neural Net-

works through Augmenting Topologies’’ [15], who offer and

demonstrate the application of genetic algorithms for evolv-

ing fluid network topologies. Shinozaki and Watanabe [16]

borrow these principles by proposing evolutionary algorithms

for NN topology optimization with a specific interest in

speech processing applications. They utilize both a classic

genetic algorithm [17] as well as a covariance matrix adap-

tation evolution strategy (CMA-ES) [18]. Husken et al. [19]

adopt another evolutionary approach in the form of a covari-

ance matrix adaptation strategy described in [20], empirically

finding their structure optimization method yields models

with better performance than that of a standard fully con-

nected neural network.

The use of evolutionary algorithms is alive and well in

cutting edge research. Miikkulainen et al. [21] describe a

framework termed CoDeepNEAT for applying evolution-

ary methods to optimizing ANN architectures. They take

the additional step of extending CoDeepNEAT to recurrent

neural networks by evolving its component LSTM nodes.

Experiments on an image captioning problem determine that

the approach outperforms baseline methods in RNN applica-

tions. Real et al. [22] employ regularized evolution, a variant

of evolutionary algorithms which modifies the tournament

selection operator to favor newer individuals. Searching over

the NASNet space from [12], they evolved AmoebaNet-A,

which established a new state of the art on ImageNet.

C. NETWORK COMPRESSION

The unwieldy size and complexity of network architectures

complicates the training process and limits the systems which

may deploy such an ANN. For devices with lower compu-

tational power, the study of network compression to obtain

smaller networks while minimizing performance loss is valu-

able. For instance, Ma et al. [23] considers a method for

compression, achieving a speedup factor of 2 on VGG-16.

Likewise, Cheng et al. [24] and Choi et al. [25] describe

methods for compressing CNNs with quantization, obtain-

ing considerable compression and acceleration factors while

enabling practical usage on mobile devices. Other works

include [26]–[44]

III. EVOLUTIONARY FRAMEWORK

Here, we develop a generalized concept of a neural network in

the context of an evolutionary algorithm. Then, we define the

rules and parameters with which we evolve a neural network

for the purposes of learning.

A. DIRECTED ACYCLIC GRAPH NEURAL NETWORKS

The vast majority of ANN architectures utilize a fully-

connected layered structure. This composition enables rapid

TABLE 1. Symbols describing a DAG-NN.

GPU computation, which is a particular concern for larger

networks and their applications, but it also imposes limita-

tions that affect network learning capacity. Directed Acyclic

Graph Neural Networks (DAG-NNs) relax these structural

restrictions, providing the greatest flexibility for a feedfor-

ward neural network architecture. This enables a higher ceil-

ing for representation learning when compared to traditional

neural networks.

A DAG-NN borrows the notion of a directed acyclic

graph (DAG) consisting of nodes linked by directed edges

and the absence of cycles. The cascading structure of a

typical fully-connected network, in which nodes in layer

n must have a directed edge to every node in layer

n + 1, is discarded in favor of allowing connections

between any node. The acyclic property is a necessary

consequence of the feedforward neural network model,

in which all information moves forward from the input to

output nodes. In addition, two more properties apply to

DAG-NNs:

1) Input nodes may not contain directed edges to other

input nodes

2) Output nodes may not contain directed edges to other

output nodes

Property (1) is trivial since input nodes are sourced directly

from a dataset, while (2) enforces the intuition that output

nodes are endpoints in the network. At this moment it would

be worthwhile to assert the following lemma, referring to the

notation described in Table 1:

Lemma 1: The number of possible edges in a DAG-NN is

(|I | + |H |)(|H | + |O|)−
(

|H |+1
2

)

, and the number of possible

structural configurations is 2(|I |+|H |)(|H |+|O|)−(
|H |+1

2 ).

Proof: We know that edges can only originate from

input or hidden nodes according to Property (2), and simi-

larly edges can only terminate from hidden or output nodes

pursuant to Property (1), so at most the number of edges is

(|I | + |H |)(|H | + |O|). To prevent cycles, we must consider

that the threat of a cycle can only arise from a node for which

both inbound and outbound edges are possible, which in our

case applies only to hidden nodes. To resolve, affix an order

to the hidden nodes and disallow edges that self-loop or travel

upstream – that is, to an node at or earlier in an ordering. It is

known that any DAG can be ordered in this manner. There are
(

|H |
2

)

upstream edges + |H | self-loops =
(

|H |+1
2

)

total illegal

edges, leaving (|I |+|H |)(|H |+|O|)−
(

|H |+1
2

)

possible edges

in a DAG-NN. Given that each edge may be present or absent
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FIGURE 1. An example phenotype for a Directed Acyclic Graph Neural
Network (DAG-NN).

in a configuration, we arrive at 2(|I |+|H |)(|H |+|O|)−(
|H |+1

2 ) pos-

sible structural configurations. �

Figure 1 depicts a DAG-NN with 3 input nodes, 4 hidden

nodes, and 1 output node. In evolutionary terminology we

describe this as a phenotype – the conceptual manifestation of

a DAG-NN. According to Lemma 1, this allows for 25 poten-

tial edges and 225 possible configurations. A conventional

shallow neural network with these hyperparameters would

have 16 edges and a fixed configuration. We can observe

that reduced restrictions on node connections allow for more

diverse networks than typically permitted in traditional net-

work architectures. The directed edge from input node 0

to output node 7 is a particular novelty introduced by a

DAG architecture. It is also important to note that the fig-

ure presents only structural information and omits weights

and biases for clarity, which would otherwise be a critical

component of a DAG-NN and its phenotype.

B. NETWORK REPRESENTATION

For utilization in an evolutionary algorithm, a network must

be encoded with a representation amenable to evolution-

ary processes such as crossover and mutation. In other

words, we must transform the conceptual representation of

a DAG-NN into a computational one.

It is known that any directed acyclic graph possesses at

least one topological ordering where every node contains

directed edges exclusively to nodes later in the ordering.

Therefore, the nodes in a DAG can be indexed and repre-

sented by an ordered list, with input nodes occupying the

lowest numbering and output nodes occupying the highest.

For consistency with the literature, we index the first node in

the ordering with value 0. It is also essential to identify input,

hidden, and output nodes due to the restrictions imposed on

their connections as enumerated in the previous subsection.

Additionally, weights and biases compose the parameters

of the neural network and must also be encoded; weights

are associated with edges while biases are associated with

(non-input) nodes. This necessitates the formulation of a data

structure which incorporates this information alongside the

network structure composition. Toward this end, we propose

a data structure which we refer to as a neural matrix.

Assume for notational simplicity that id(b) = −1. Then

the neural matrix contains real values for all mappings f → t

FIGURE 2. A neural matrix for the DAG-NN depicted in Figure 1.

where f ∈ (I ∪ H ∪ b), t ∈ (H ∪ O), and id(f ) < id(t).

A mapping from node to node indicates a weight value along

the directed edge, while a mapping from special symbol b to

a node indicates the bias value for the node. Lemma 1 dictates

the total number of weight values in the neural matrix, with an

additional |b| bias values. Consider Figure 2, which depicts

the matrix for the phenotype illustrated in Figure 1. The

neural matrix corresponds to the genotype of the DAG-NN,

a representation manipulable by an evolutionary algorithm.

With this representation, we are now able to define the algo-

rithm in detail.

C. EVOLUTIONARY ALGORITHM

An evolutionary algorithm is an optimization heuristic which

draws inspiration from the evolutionary processes found

in nature and studied in biology. It borrows key concepts

such as the doctrine of ‘‘survival of the fittest’’ to select

well-performing solutions according to some evaluation of

fitness, and enables solutions to transmute through the

similarly-inspired concepts of crossover and mutation. In this

subsection, we describe each component of an algorithm

developed and tailored specifically for the neural matrix rep-

resentation of a DAG-NN.

1) INITIALIZATION

An initial population of primitive DAG-NNs is necessary to

begin the algorithm. The population size is configurable, with

larger populations enabling higher network diversity at some

cost in training time. For each network, certain characteristics

are dictated by the dataset, namely the number of input and

output nodes. In addition, the number of hidden nodes may

be set by the practitioner to conform to the desired level of

compactness and other computational requirements. With the

amount of nodes in each class determined, the dimensions and

number of values containedwithin the neuralmatrix genotype

are established by Lemma 1. This leaves the values of the neu-

ral matrices to be initialized, and as the starting collection of

networks represents a population with no evolutionary pres-

sure applied, we can randomly generate values according to

stochastic processes. The initialization process is outlined by

Algorithm 1. With an unbiased initial edge probability P(ie)

of 0.5, each potential network configuration has an equal

178334 VOLUME 7, 2019
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Algorithm 1 initialize()

Require: population size ps, initial edge probability P(ie),

initial weight standard deviation iwSD, initial bias stan-

dard deviation ibSD

1: P← {}

2: for i = 1 . . . ps do

3: n← new network()

4: for each potential edge (f , t) do

5: if r sampled from U (0, 1) < P(ie) then

6: n[f , t]← r sampled from N (0, iwSD)

7: else

8: n[f , t]← 0

9: end if

10: end for

11: for each bias b do

12: n[b, b]← r sampled from N (0, ibSD)

13: end for

14: P← P ∪ n

15: end for

16: return P

probability of being generated. Then, for each weight and

bias in the network, a number is sampled from the Gaussian

distributions N (0, iwSD) and N (0, ibSD) respectively, with

iwSD and ibSD being constants supplied by the practitioner.

An alternative to hand-selecting a constant for iwSD is

to use an initialization scheme that determines a value for

iwSD as a function of network structure. A theoretically-

supported and widely used initialization scheme for conven-

tional ReLU-activated neural networks is He et al. initializa-

tion [45]. The scheme prescribes

iwSD =

√

2

in
,

where in is the number of input connections to a node. For a

fully-connected network, in is equal to the number of nodes

in the previous layer, and thus iwSD is defined on a per-layer

basis. We make two observations:

1) In a DAG-NN, the value of in for non-input nodes

is bounded above by min(id(n), |I | + |H |), which we

denote by inmax.

2) The expected value of in upon initialization is P(ie) ·

inmax.

From this, we can adapt He et al. initialization for a DAG-NN

as follows:

iwSD =

√

2

P(ie) · inmax
.

Once this step is completed, the population is considered

initialized and the generation loop may begin.

2) SELECTION

Algorithm 2 details the steps for iterative generation compu-

tation. Each network n is scored based on a fitness function

Algorithm 2 nextGeneration()

Require: population P, population size ps

1: P′← {}

2: sort P by F descending

3: for i = 1 . . . ps do

4: a← ⌊(r sampled from U (0, 1))2⌋

5: b← ⌊(r sampled from U (0, 1))2⌋

6: n← mutate(crossover(P[a],P[b]))

7: P′← P′ ∪ n

8: end for

9: return P′

F that compares network-predicted values with actual values

from a training set. Predicted values are computed via for-

ward propagation of training inputs through the DAG-NN.

This fitness function is analogous to the loss function in a

gradient-based ANN, and as such, the conventions for select-

ing a loss function apply here as well. For instance, consider

a fitness function for regression tasks, for which we employ

the negative mean squared error (MSE) of the m predicted

values against actual values over a set of some l training

examples:

F(n) = −

l
∑

i=0

m
∑

j=0

(predicted[i][j]− actual[i][j])2

l × m

The negation preserves the notion that a higher score indicates

higher fitness.

Once the scores are calculated, selection is performed.

In our algorithm, we utilize a efficient rank selection pro-

cedure. First, the population of DAG-NNs are sorted by fit-

ness in descending order. Then, pairs of values are sampled

from U (0, 1). These values are passed through a quadratic

transformation and scaled to the population size ps. The

resultant values are floored and correspond to the indices of

the sorted DAG-NNs. In this manner, lower indices – and

therefore fitter networks – are more likely to be selected,

while less fit networks still retain a nontrivial chance for

selection, stymieing premature convergence to local min-

ima. This procedure is computationally efficient, with indi-

vidual selection done in strictly O(1) time and requiring

no comparison of fitness or any pre-processing beyond

sorting.

3) CROSSOVER AND MUTATION

When two DAG-NNs are selected to reproduce, the resul-

tant DAG-NN undergoes two processes to obtain its values.

The first is crossover, which combines existing values from

each contributing genotype.We opt for single-point crossover

for its simplicity: a random node index i is selected, and

the weights and biases from nodes 0 . . . i in the first net-

work are merged with the complement set of nodes from

the second network. Once crossover is completed, we per-

form random mutation on the new network. Algorithm 3

describes the mutation process, which bears resemblance to
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TABLE 2. Dataset characteristics.

Algorithm 3 Mutate()

Require: network n, weight mutation probability P(wm),

bias mutation probability P(bm), weight mutation stan-

dard deviation wmSD, bias mutation standard deviation

bmSD, edge addition probability P(e+), edge removal

probability P(e−)

1: n′← n

2: for each edge (f , t) do

3: if r sampled from U (0, 1) < P(wm) then

4: n′[f , t]← n′[f , t]+r sampled fromN (0,wmSD)

5: end if

6: end for

7: for each bias b do

8: if r sampled from U (0, 1) < P(bm) then

9: n′[b, b] ← n′[b, b] + r sampled from

N (0, bmSD)

10: end if

11: end for

12: for each potential edge (f , t) do

13: if n′[f , t] = 0 then

14: if r sampled from U (0, 1) < P(e+) then

15: n′[f , t]← r sampled from N (0,wmSD)

16: end if

17: else

18: if r sampled from U (0, 1) < P(e−) then

19: n′[f , t]← 0

20: end if

21: end if

22: end for

23: return n′

initialization. Weights and biases mutate with probabilities

P(wm) and P(bm) and standard deviations wmSD and bmSD,

each respectively, while edges can be added or removed with

probability P(e+) and P(e−) as well. These two processes

enable solutions to move stochastically toward global minima

and escape local minima.

4) TERMINATION

The algorithm terminates once a desired fitness score is

achieved or the maximum number of generations is reached.

At this time, the best-performing DAG-NN as measured by

the fitness function is returned. Algorithm 4 illustrates the

Algorithm 4 Main()

Require: max generations g, target fitness f

1: P←initialize()

2: while f not achieved and g not reached do

3: P←nextGeneration()

4: end while

5: n∗ ← argmax
n∈P

(F(n))

6: return n∗

main algorithm, including the loop termination conditions

and the selection of the fittest network.

IV. EXPERIMENTS

We conduct a number of experiments on datasets sourced

from the real world in order to measure the perfor-

mance of our approach. The results strongly demonstrate

that compact DAG-NNs trained through our algorithm

attain higher accuracies than that of the fully-connected

networks.

A. DATASETS

To ensure the effectiveness of our evolutionary algorithm

against the considerable diversity in real world applications,

we sought datasets that represented a selection of different

application spaces and learning tasks – binary or multiclass

classification and regression. To this end, we selected six

such datasets, the key characteristics of which are enumerated

in Table 2. All datasets were feature-normalized to mean

0 and standard deviation 1.

1) PIMA INDIANS DIABETES

Pima Indians Diabetes is a dataset that challenges algorithms

to predict the presence or absence of diabetes in 768 women

based on eight medical characteristics – a binary classifi-

cation task. The dataset is a well-known benchmark in the

machine learning community and has been the subject of

extensive research. Using a general regression neural net-

work (GRNN), Kayaer and Yildirim [46] obtained 80.21%

test accuracy on this dataset. For our experiments, the sig-

moid activation function was used for the output node in all

approaches, and binary cross-entropy was employed as the

fitness/loss function.
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2) AIR QUALITY

The Air Quality dataset [47] is a regression task for predicting

carbon monoxide concentration in an Italian city utilizing

readings from a gas sensor and other meteorological met-

rics. A number of missing values are present in the dataset,

labeled with the value -200. We removed data instances with

a missing output value as those have little use as training

examples. In the experiments, output nodes had no activation

function in either approach, and the fitness/loss function used

was the mean squared error. When evaluating this dataset,

we considered predictions within 0.5 mg/m3 to be correct.

3) FROG CALLS

This dataset [48] contains processed audio data for frog

calls belonging to 60 frogs encompassing multiple taxonomic

families, genera, and species, presenting several potential

multiclass classification tasks. For the purposes of our experi-

ments, we sought to predict the family, a 4-class classification

problem with unbalanced classes. The sigmoid activation

function was used for output nodes in all networks and cate-

gorical cross-entropy was utilized as the fitness/loss function.

4) ABALONE

This dataset [49], [50] contains physical measurements for

over four thousand abalone. Algorithms are challenged to use

these measurements in lieu of an exact but time-consuming

method for determining abalone age. The ordinal nature of the

output variable led us to regard the learning task as a regres-

sion task. The dataset contains a categorical variable which

we one-hot encoded, yielding in effect 10 attributes. In our

experiments, output nodes had no activation function in either

approach, and mean squared error was used as a fitness/loss

function. Predictions within.5 years were considered to be

accurate.

5) WHITE WINE QUALITY

White Wine Quality [51] is a regression task for assessing

the quality of white wine samples on a 0-10 scale based on

physicochemical tests, using ratings from wine experts as

ground truth. We chose to treat the dataset as a regression

task. In the experiments, output nodes did not have an acti-

vation function, and the fitness/loss function used was the

mean squared error. When evaluating for accuracy against

the ground truth, predictions within.5 were considered correct

(i.e., predictions that would round to the correct score).

6) HEART DISEASE

The Heart Disease dataset [52] contains medical character-

istics used to predict the presence of heart disease in indi-

viduals. Following the precedent set by previous studies,

only the Cleveland subset was used, and the absence (output

label 0) or presence (output labels 1-4) of heart disease was

predicted, presenting a binary classification task. In addi-

tion, six instances containing incomplete data were removed.

TABLE 3. Experimental parameters for our approach.

The sigmoid activation functionwas used for all output nodes,

and binary cross-entropy was used as a fitness/loss function.

B. SETTINGS

We implemented our approach in Python with CuPy,

a NumPy-esque library for n-dimensional array processing

with GPU acceleration. For comparison, we implemented

traditional neural networks in Python utilizing Keras with a

GPU-enabled TensorFlow backend. In our principal exper-

iments, we evaluated three specific configurations for each

dataset with k hidden nodes, k ∈ {2, 4, 6, 8, 10}:

1) DAG-NN with k hidden nodes

2) Fully-connected ANN with one k-node hidden layer

3) Fully-connected DNN with two k
2
-node hidden layers

The intention of this experimental design was to determine

the performance of our framework (configuration 1) against

conventional architectures (configurations 2 and 3) at varying

levels of compactness while also examining the effect of node

counts on each architecture. In addition, we trained a larger

deep neural network with two 10-node layers on each dataset

in order to assess the competitiveness of our approach with

more massive architectures.

The experiments were run on 16GB NVIDIA Tesla

P100 GPUs. For impartial evaluation, it is desirable to set

parameters in as equitable of a fashion as possible. The

activation function used in hidden nodes for all models

was the rectified linear unit (ReLU) [2]. Stochastic gradient

descent was used for the fully connected networks with a

mini-batch size of 32; no such equivalent parameters exist in

our approach. Output activations and fitness/loss depended

upon the learning task and were determined on a per-dataset

basis as described in Section IV-A. Furthermore, the param-

eters specific to our algorithm as described in the previous

section were set as shown in Table 3. A few values are worthy

of note. The initial edge probability was set to.5 for the

highest structural diversity in the initial population. Weight

initialization was performed using the modified He et al.

scheme described in Section III-C.1. The inequality in edge

addition and removal probability predisposed the system to

favor networks with more edges, which light experimentation

indicated yielded improved results.
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Test accuracy was the metric used to evaluate the perfor-

mance of each configuration. The computation of accuracy is

dependent upon the learning task. Consider a set of l exam-

ples containing m outputs each, evaluated on a network n:

(1) For a classification task with binary outputs, each output

is rounded to 0 or 1 and represents a single binary prediction,

and thus the accuracy is calculated as

acc(n) =

l
∑

i=0

m
∑

j=0

δ
(

⌊predicted[i][j]+ 0.5⌋ , actual[i][j]
)

l × m
,

where δ is the Kronecker delta. (2) For a multiclass classifi-

cation task with one-hot encoded outputs, accuracy is defined

as

acc(n)=

l
∑

i=0

δ
(

argmax
j

(predicted[i][j]), argmax
j

(actual[i][j])
)

l
.

(3) For a regression task, we consider a prediction to be

correct if it is within some value a from the actual value, and

therefore accuracy is calculated as

acc(n) =

l
∑

i=0

m
∑

j=0

{

1 if|predicted[i][j]− actual[i][j]| < a

0 else

l × m
.

For each model, we performed 5-fold cross-validation; that

is, the dataset was partitioned into five contiguous subsets,

with each held out in turn as a validation set while the

remaining data was used to train the model. Each fold was

trained for 1000 generations/epochs and the mean peak test

accuracy for the folds was reported along with the standard

error.

C. RESULTS

Table 4 displays the experimental results in tabular form. The

best-performing model per row is denoted in bold. The num-

bers clearly indicate that the performance of our approach

exceeds that of counterpart fully-connected networks, attain-

ing the highest test accuracy in 26 of 30 contests. For five out

of six datasets, the highest accuracy across all node counts

belonged to a DAG-NN configuration, with the Air Quality

dataset being the only exception. Figure 3 illustrates the

effect of the number of hidden nodes on the resultant model

accuracy. Remarkably, it can be observed that the DAG-NNs

achieve extraordinary performance with comparatively fewer

nodes than the fully-connected nets. For three datasets – Pima

Indians Diabetes, White Wine Quality, and Heart Disease –

our approach achieves greater performance with two nodes

than the conventional networks do with ten. It is clear that

DAG-NNs hold far greater representational capacity with

compact node counts.

1) COMPARISON WITH DEEPER, WIDER NETWORKS

Seeing that DAG-NNs vastly outperformed their counterpart

networks, we found it worthwhile to compare our approach

TABLE 4. Experimental results: accuracy (%).

with a larger fully-connected network. The results of a deep

neural network with two hidden layers of 10 nodes each are

depicted in Table 5, with which we stumble upon a curious

result. The 20-node DNN achieved roughly equivalent per-

formance to its more compact counterparts. This suggests that

for these datasets the limit in representational capability for

the basic fully connected architecture has been approached,

and no amount of additional width and depth would result
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FIGURE 3. Comparison of test accuracies over increasing hidden node counts between our approach (red), a conventional ANN (green), and a
conventional DNN (blue).

FIGURE 4. Comparison of seconds per iteration over increasing hidden node counts between our approach (red), a conventional ANN (green), and a
conventional DNN (blue).

in further improvements. Yet, the DAG-NN attains favorable

results to this larger network in 3 of 6 datasets while only

using two hidden nodes. From this result, we can posit that

our framework is capable of learning representations of the

data that fully-connected architectures cannot, and in a way

that computational power cannot overcome.

2) RUNTIME ANALYSIS

With computational efficiency being a core consideration

for compact neural networks, a comparative analysis of the

runtimes of the competing approaches would be a fruitful

endeavor. In Figure 4, we present the average per-iteration

runtime for each experimental configuration. It can be seen

that our framework exhibits the highest efficiency in the

vast majority of configurations, and often by a wide mar-

gin. The fully-connected networks appear to scale more effi-

ciently with increasing node counts, but the results remind

us that DAG-NNs are able to do more with less hidden

nodes. It is important to note that the runtimes are highly

dependent upon multiple factors; implementation, batch size
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TABLE 5. Results on larger DNN: accuracy (%).

for the gradient-based networks, and population size for our

approach are particularly significant contributors. Neverthe-

less, our experiments highlight that increased accuracy can be

attained with faster iteration times using our framework.

D. DISCUSSION

The use of evolved compact DAG-NNs for concept learning

is encouraging, with marked improvement over conventional

neural networks. The clear next step is to apply the algo-

rithms described in this paper to larger networks and assess

their effectiveness and competitiveness. We too are curious

about what other parameters in DAG-NNs – ones which were

set constant in our approach – could be evolved to obtain

higher accuracies, such as node activation functions. Also,

while DAG-NNs represent a generalized form of feedforward

neural networks, it is interesting to consider non-feedforward

architectures such as recurrent neural networks and the feasi-

bility of applying our approach to generalized forms thereof.

Furthermore, future work may entail other forms of evo-

lutionary algorithms such as covariance matrix adaptation

evolution strategies which also hold promise to effectively

evolve DAG-NNs.

V. CONCLUSION

In this paper, we considered the challenges of training and

deploying large neural networks with numerous hyperparam-

eters. In response to these challenges, we proposed an evo-

lutionary algorithm to train compact directed acyclic graph

neural networks, enabling the automated selection of param-

eters and a concise network structure retaining high predictive

accuracy. Our experiments indicate that DAG-NNs generated

with our method are superior to traditional fully-connected

architectures, even when evaluated against comparatively

larger networks.
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