
 Open access Proceedings Article DOI:10.1109/CEC.2006.1688493

An Evolutionary Approach to Optimal Web Proxy Cache Placement — Source link

G. Houtzager, C. Jacob, Carey Williamson

Institutions: University of Calgary

Published on: 11 Sep 2006 - IEEE International Conference on Evolutionary Computation

Topics: Cache algorithms, Cache, Evolutionary computation, Web content and The Internet

Related papers:

 A packet-level simulation study of optimal Web proxy cache placement

 Evolutionary Techniques for Web Caching

 Coordinated en-route Web caching

 Optimal content placement for en-route web caching

 DWCS: A Dynamic Web Cache Selection algorithm

Share this paper:

View more about this paper here: https://typeset.io/papers/an-evolutionary-approach-to-optimal-web-proxy-cache-
29sa4om8g8

https://typeset.io/
https://www.doi.org/10.1109/CEC.2006.1688493
https://typeset.io/papers/an-evolutionary-approach-to-optimal-web-proxy-cache-29sa4om8g8
https://typeset.io/authors/g-houtzager-5cey02fkjk
https://typeset.io/authors/c-jacob-fum545lw41
https://typeset.io/authors/carey-williamson-4xlyqnqgh1
https://typeset.io/institutions/university-of-calgary-3rbzln32
https://typeset.io/conferences/ieee-international-conference-on-evolutionary-computation-uj5ywum4
https://typeset.io/topics/cache-algorithms-u99b01nk
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/topics/evolutionary-computation-id65m1zy
https://typeset.io/topics/web-content-2wca22n9
https://typeset.io/topics/the-internet-1hyt0v5h
https://typeset.io/papers/a-packet-level-simulation-study-of-optimal-web-proxy-cache-2nomsli09c
https://typeset.io/papers/evolutionary-techniques-for-web-caching-1z0sw2w684
https://typeset.io/papers/coordinated-en-route-web-caching-1f9gugadb1
https://typeset.io/papers/optimal-content-placement-for-en-route-web-caching-23b7eh3w5l
https://typeset.io/papers/dwcs-a-dynamic-web-cache-selection-algorithm-1l0jb2r0l0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-evolutionary-approach-to-optimal-web-proxy-cache-29sa4om8g8
https://twitter.com/intent/tweet?text=An%20Evolutionary%20Approach%20to%20Optimal%20Web%20Proxy%20Cache%20Placement&url=https://typeset.io/papers/an-evolutionary-approach-to-optimal-web-proxy-cache-29sa4om8g8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-evolutionary-approach-to-optimal-web-proxy-cache-29sa4om8g8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-evolutionary-approach-to-optimal-web-proxy-cache-29sa4om8g8
https://typeset.io/papers/an-evolutionary-approach-to-optimal-web-proxy-cache-29sa4om8g8

An Evolutionary Approach to Optimal Web Proxy Cache Placement

Gwen Houtzager Christian Jacob Carey Williamson

Department of Computer Science

University of Calgary, Canada

{gwen,jacob,carey}@cpsc.ucalgary.ca

Abstract— This paper studies the Web proxy cache placement
problem, in which m caching proxies are to be placed in
a network so as to minimize the average response time for
users accessing Web content. We compare an evolutionary ap-
proach to this network optimization problem with two classical
approaches, namely dynamic programming and packet-level
simulation. The results show that the evolutionary approach
produces results as good as or better than the other approaches.
Furthermore, the evolutionary approach is computationally
faster, enabling the study of larger network scenarios than
possible with the other approaches.

I. INTRODUCTION

Given the explosion of Internet use in the last decade,

much effort has been directed towards improving user-

perceived performance on the World Wide Web.

One popular approach involves the installation of Web

proxy caches, which provide a shared cache for a set of

Web clients [19]. By exploiting commonalities in the Web

browsing patterns of many users, Web proxy caching can

reduce Internet traffic across a network, improve server

responsiveness by reducing server load, and reduce user-

perceived latency when accessing Web documents.

The strategic placement of Web proxies in a network can

yield many performance advantages. Specifically, the goal is

to keep request/response traffic off of slower inter-continental

links that can inflate client response times. By reducing round

trip delay, Web document downloads are faster for the user.

Equally important, unnecessary network traffic is eliminated

on busy Internet backbones.

The Web proxy cache placement problem is often formu-

lated as an optimization problem: place m proxies within

a network to minimize the mean user response time for

retrieving Web objects. Solutions to this problem include

graph theoretic, combinatorial, dynamic programming, and

vector quantization approaches [6], [10], [11], [12], [13],

[14].

One drawback of most theoretical approaches to the Web

proxy cache placement problem is the limiting assumptions

that are needed to make the problem tractable. For example,

some approaches assume homogeneous clients, fixed-size

documents, and identical hit ratios at each proxy cache.

These assumptions differ from empirical observations of Web

workload characteristics: Zipf-like distributions for client

activity and Web object popularity [2], [5], heavy-tailed

transfer size distributions [1], [5], and diminishing hit ratios

at each successive level of cache due to filter effects [4],

[16], [22]. Furthermore, theoretical approaches often ignore

network protocol effects, such as bursty packet traffic, packet

losses, and the dynamics of TCP flow control.

Another approach is to study the Web proxy cache place-

ment problem from a network-layer perspective, at the packet

level. For example, detailed packet-level simulations often

use more realistic assumptions. Earlier simulation work [8],

[18] has shown the impacts of network-level effects (e.g.,

round trip times, link speeds, network congestion, packet

losses, TCP dynamics) on user-level Web performance.

The drawbacks of the packet-level simulation approach are

the computational demands per simulation, and the number

of simulations required. Conducting multiple simulations is

possible for a small, simple Web proxy caching environment.

However, applying the same “brute force” method to a

moderately sized, complex network becomes infeasible.

In this paper we propose an evolutionary approach to the

Web proxy cache placement problem. Through the evolu-

tionary algorithm we can incorporate important assumptions

about TCP flow control and Web caching effects, while

maintaining the ability to study larger, more realistic network

topologies. In essence, we provide a method for addressing

the deficiencies of classical theoretical and simulation-based

approaches to the problem.

We first compare results of the evolutionary approach

to packet-level simulations and a dynamic programming

algorithm for a small network model. We then apply the evo-

lutionary computation techniques to a larger, more realistic

network model, and discuss the results.

The rest of the paper is organized as follows. Section II

provides some background on the cache placement problem,

and briefly discusses prior work. Section III describes the

experimental methodology for our work. Section IV briefly

describes the classical approaches to this problem, while

Section V introduces the evolutionary approach. Sections VI

and VII present results for small and large network scenarios,

respectively. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

Web proxy caches provide a shared cache to a set of

clients [19]. When a user requests a Web document from

a particular origin server, the request goes via the proxy. If a

valid copy of the document is cached at the proxy, then the

user’s request is served from the proxy in the same way as

it would have been served had it been handled by the origin

server. Alternatively, if the document is not in the proxy

cache, or if the document is not up to date, then the proxy

forwards the request to the origin server. The origin server

responds to the proxy, and the proxy forwards the response

to the client. The proxy typically stores the document in its

cache to serve future requests from other clients for the same

document. To the origin server, the proxy appears and acts

as a client making a request. To the client, the proxy appears

and acts as the origin server responding to a request.

The placement of Web proxy caches (proxies) in a given

network poses an interesting problem. Specifically, there is a

theoretical, optimal solution to the placement problem where

the number, size, and cost of Web caching appliances is

minimized while the benefit of Web caching is maximized

in terms of reducing user latency and bandwidth usage. In

graph theory, this problem is referred to as the k-median

problem, and has been proven to be NP-hard. As a result,

current solutions to the problem rely on heuristic approaches

and approximate models [10], [11], [12], [14].

Li et al. [13] have studied the problem of optimal place-

ment of multiple Web proxies among potential sites, given

a certain traffic pattern. The reduction in overall network

traffic and the reduction in access latency are used to

determine optimal placement. Using a dynamic programming

approach, they propose an optimal solution for linear network

topologies, and a heuristic approximation for tree topologies.

Later work determined an optimal solution to the distributed

caching problem in a network with a tree topology [14]. The

latter paper provides the basis for the dynamic programming

approach used in our work.

What makes the proxy placement problem more com-

plicated than other instances of the k-median problem is

the existence of upstream and downstream dependencies

when evaluating potential proxy site locations. Empirical

measurements show that the cache hit ratios tend to decrease

at each successive level visited in a cache hierarchy [16]. This

phenomenon is called the cache filter effect [22]. Packet-level

simulations have shown that caching dependencies have a

significant influence on the proxy placement problem [8].

The primary contribution in our paper is the application of

an evolutionary algorithm to the Web proxy cache placement

problem. To the best of our knowledge, this is a novel

application domain for evolutionary computation.

III. EXPERIMENTAL METHODOLOGY

A. Network Model and Assumptions

The simple network model assumed for our study is shown

in Figure 1. The network topology has a single Web server

at the root (top) of an unbalanced tree, with six clients

at the leaf level. The circular nodes, labeled P1 to P11,

represent candidate proxy locations, at national, regional,

and institutional levels. (Browser caches are ignored.) The

lines represent routing paths from the server to the clients.

Router nodes have buffers of size 100 packets with Drop

Tail queueing. All network links have 10 Mbps transmission

capacity. Link propagation delays are shown on the left edge

of the diagram. The percentages beneath each client (square)

indicate the proportion of the total Web request workload

generated by each client. The numerical values adjacent to

each link in Figure 1 represent weights used by a dynamic

programming approach discussed in Section IV.

The network structure and the traffic workload in our

model are intentionally unbalanced and asymmetric. The

network represents a compromise: large enough so that the

placement of proxies is not trivial, yet simple enough so that

it can be easily studied and the results understood. Given

this specific network topology, it is possible to determine an

optimal placement for a set of m Web proxies using dynamic

programming, packet-level simulation, and an evolutionary

approach. The simple model facilitates the analysis and

comparison of results from these three methods.

The larger network model used in our study follows the

same assumptions outlined for the simple network model.

The larger network is discussed in more detail in Section VII.

B. Simple Network Web Workload Model

The Web workload in our study is synthetically generated

using WebTraff [17], a Web workload modeling tool. The

experiments use a workload of 100,000 requests. Each line

in the workload file represents the download of a Web object

by one of the clients. The workload file format has four

columns: a timestamp (request arrival time); a source node

(provider of the Web object); a sink node (the requesting

client); and a transfer size (in bytes). The request arrival

process is Poisson [1], with a specified mean arrival rate (e.g.,

30 requests per second). The transfer size is drawn from a

hybrid distribution, with a log-normal body, and a Pareto tail.

The median transfer size is 1 KB (2 TCP packets), while the

mean is 8 KB (16 packets). The largest transfer is 3 MB.

The source and sink for each Web transfer are chosen at

random according to the client request rates and the cache

hit ratios being modeled. The default source node for each

Web transfer is the origin server.

C. Experimental Factors and Performance Metrics

The primary experimental factors in our study are the

number of proxies to be placed in the network, and the hit

ratios for the Web proxy caches.

1) Number of Proxies: In the simple network scenario,

there are n = 11 candidate locations for Web proxies. There

are two obvious performance bounds for this network. The

worst possible case occurs when no proxies are placed in

the network. The best possible case occurs when 11 proxies

are used. In our experiments, the number of proxies to be

placed in the network is set from 1 to 11. In the larger

network model, the number of candidate proxy locations is

160, therefore the number of proxies to be placed can be set

from 1 to 160. This network is discussed in Section VII.

2) Cache Hit Ratio: The cache hit ratio is defined as

the proportion of client requests that a given proxy is able

to satisfy from its cache. The hit ratio is expressed as a

percentage of the total client requests handled by that proxy.

Table I shows the cache hit ratio values used for both

the simple and complex network models in our study. These

ratios were designed to represent typical Web proxy cache

Fig. 1. Network topology and workload characteristics

hit rates, as well as the “diminishing returns” cache filter

effect reported in the literature [16], [21], [22].

TABLE I

PROXY CACHE HIT RATIOS ASSUMED FOR EXPERIMENTS

Proxies on Cache Hit Ratios
Client-Server Level 1 Level 2 Level 3

Path Institutional Regional National

1 30% – –
1 – 20% –
1 – – 15%

2 30% 15% –
2 30% – 10%
2 – 20% 10%

3 30% 15% 7.5%

The cache hit ratios diminish as the network caching level

increases from the institutional level to the national level.

Since higher level proxies serve more diverse client groups

using a finite shared cache, the probability of an individual

client finding a requested document at a higher level proxy

decreases. Cache hit ratios were assigned consistently across

caching levels for each client stream.

The primary performance metric of interest is the mean

user-perceived transfer time for Web object downloads.

IV. TRADITIONAL APPROACHES

A. Dynamic Programming

The dynamic programming (DP) approach used in our

study is based on work by Li et al. [13], [14]. The approach

assumes that the network is a directed graph of nodes and

edges. Each node has an associated weight that represents

the volume of traffic in the absence of proxies. Within the

network tree, a set of nodes are chosen as proxy sites. Each

proxy set solution has an associated cost, and the set that

minimizes the cost represents the optimal solution.

The dynamic programming algorithm is computationally

efficient. The static costs are pre-computed for small in-

stances of the proxy placement problem, and then stored

in a global array, indexed by the number of proxies and

the subtree in which the proxies are placed. Solutions for

larger instances of the problem are then built in a table-

driven fashion using these pre-computed values. The running

time of the algorithm is O(n3m3). Further details on the DP

approach are provided in [7], [8], [13], [14].

B. The Packet-Level Simulation Approach

The packet-level simulation technique in this paper follows

the same approach as prior work [8]. It represents a “brute

force” exhaustive search of all possible proxy set combina-

tions. Given n candidate proxy locations, and m ≤ n proxies

to be placed, the number of possible combinations is:

C(n, m) =
n!

m! (n − m)!

For example, for the 11-node network in Figure 1, there are

C(11, 3) = 165 possible ways to place 3 proxies. We use the

ns-2 network simulator [3] to carry out the simulations.

V. THE EVOLUTIONARY APPROACH

Figure 2 provides a structural overview of the evolutionary

algorithm used. The evolutionary approach uses parameters

consistent with those of the simulation experiments. Initially,

candidate proxy locations are randomly selected. Through

the process of mutation and recombination, the initial proxy

set is grown into a population of proxy sets, each one

evaluated for its “fitness for purpose”. The fittest member of a

population advances to the next generation, where the process

is repeated. The algorithm terminates when the specified

convergence criterion is reached [9].

A. Initialization

At each iteration of the evolutionary algorithm, a group

of ‘parent’ proxy set combinations ‘breed’ to produce a

population that includes both the initial parents and their

offspring (children). To initialize the parent population for

generation 0, a randomly selected set of m proxy sites is

assigned. More specifically, an array is populated with a

randomly chosen set of integer values. The length of the

array represents the number of proxies to be placed in the

program EA {

t = 0;

initialize population P[t];

until done do {

t = t + 1;

parent_selection P[t];

recombine P[t];

mutate P[t];

evaluate P[t];

survive P[t];

}

}

Fig. 2. Structural overview of the evolutionary algorithm

network, while each integer value within the array represents

the arbitrary numerical label associated with a candidate

proxy site. Next, the parent arrays undergo recombination

and mutation (to be explained next), in order to produce

child arrays with similar structure. The number of parents and

children is specified by the program parameters. Combined,

the parents and children represent the population in a given

generation. Each time the evolutionary algorithm is run, a

different initial set of random parents is generated.

B. Genetic Operators

The evolutionary algorithm uses two genetic operators

called recombination and mutation. These two genetic op-

erators serve different purposes. Recombination combines

existing knowledge from different individuals already in

the population, while mutation randomly introduces new,

potentially better values (proxies) into the population.

1) Recombination: Inspired by biological reproduction,

recombination refers to the re-ordering and sharing of exist-

ing genetic information from the parents. More specifically,

the child arrays are produced by swapping the parent in-

formation according to a chosen crossover point (one-point

crossover). The result of recombining two parent arrays is

two new child arrays. Each child array contains a portion

of the proxy sites from one parent array and the remaining

proxy sites from the other parent array. Therefore, the child

array represents a new proxy set combination. There is a

globally specified probability of recombination occurring for

each individual. When recombination occurs, a crossover

point is determined uniformly at random. Figure 3 provides

an overview of the recombination operator.

Given the simplistic nature of the recombination operator,

a child could inherit the same proxy location from both

parents, resulting in a duplicate entry in the child array.

The evolutionary algorithm does not preclude this possibility,

nor does it need to. Intuitively, a proxy set combination

with duplicate entries will have inferior performance, since it

leaves some other candidate location without a proxy. If the

duplication is not eliminated by mutation or recombination,

then the child is unlikely to survive from one generation to

the next. As a result, the algorithm can ignore the issue of

crossOver(parent1, parent2) {

prob1 = random();

if(prob1 < crossRate)

do {

xPoint = random();

for i = 1 to xPoint-1

child1[i] = parent1[i];

child2[i] = parent2[i];

for j = xPoint to numProxy

child1[j] = parent2[j];

child2[j] = parent1[j];

}

}

Fig. 3. The recombination operator algorithm

duplication.

2) Mutation: In nature, mutation refers to the process

of randomly changing the genetic makeup of an organism.

Within the context of the proxy placement problem, mutation

refers to the process of changing the proxy set combination

represented in an array.

During the evolution phase of the algorithm, a mutation

operator is applied to each array within a population. First,

the mutation rate determines whether a single proxy site

within a proxy set will change. Next, the step size determines

the mutability of the item. That is, the step size, which is

drawn from a Gaussian distribution, determines the numerical

amount by which a selected array item can change. Figure 4

provides an overview of the mutation operator.

mutation(child) {

for i = 1 to numProxy do {

prob1 = random();

if(prob1 < mutationRate) do {

step = stepSize * Gaussian();

child[i] = child[i] + step;

}

}

}

Fig. 4. The mutation operator algorithm

C. Evaluation Function

The evaluation function, also known as the fitness test,

is an important component of an evolutionary algorithm.

This function distinguishes between different proxy set com-

binations, and determines the fittest in a given population.

Our evaluation function uses the same parameters as the

packet-level simulation study. This consistency facilitates

comparison of results from different solution approaches.

For the proxy placement problem, the key is to minimize

the transfer time in order to reduce the user-perceived latency.

For this purpose, the expected overall network transmission

time E(T) is a suitable fitness metric. The transfer time is

the sum of the transmission time that it takes to transfer

packets across the network plus any queueing delays plus any

additional transmissions caused by packet loss. In this study,

queueing delays and packet loss are ignored. However, their

inclusion requires only a slight modification to the fitness

equation.

For a three-level caching hierarchy, the average transfer

time depends on the hit ratio HR for each level of cache,

and the average transfer time from each cache:

E(T) = HR1(T (Pinstitutional)) + HR2(T (Pregional))

+HR3(T (Pnational)) + (1 −
∑

HR)(T (Pserver))

Furthermore, the transfer time for an individual client

request with N packets can be approximated by the following

formula [15]. The formula incorporates the effects of TCP

slow start, as well as the network round trip time RTT .

T (i) = (1 + ⌊log2N⌋) ∗ RTT i

The overall fitness value for the evolutionary algorithm

depends on the expected transfer times for clients, weighted

by the proportion r of traffic generated by each client:

FitnessV alue =
c∑

i=1

ri(E(Ti))

The numerical result of the fitness test is used in relative

terms to rank and compare proxy set combinations within

the population.

D. Parent Selection

Survival from one generation to the next is implemented

using one of two deterministic methods, following the se-

lection schemes described for Evolution Strategies [20]. In

the Comma strategy, after evaluating a population, the K

best children survive and replace the parents of the current

generation. Parents do not survive from one generation to the

next. In the Plus strategy, the K best individuals (child and

parent alike) survive to the next generation. Both strategies

are considered in this analysis.

VI. RESULTS FOR SMALL NETWORK MODEL

Table II provides a comparison between the evolutionary

results and the results from the packet-level simulations

and dynamic programming algorithm. For example, when

placing a single proxy, both the evolutionary algorithm and

the packet-level simulation recommend proxy site P10, while

the dynamic programming approach recommends site P1.

The average transfer time and rank (as determined from the

simulation experiment) for each solution are shown in the

right-hand portion of the table.

The results from the evolutionary algorithm are almost

identical to those from the simulation experiments. The only

difference occurs for m = 3 proxies where the evolutionary

algorithm chose P5 as the third proxy site and the simulation

results indicate that a proxy at P1 is the optimal location

(Figure 5). Note that the set (P5, P6, P10) was the second-

best configuration (rank 2) from the simulations, and the

performance difference between the two choices is only 1

millisecond. Although not shown in the table, beyond m = 4,

the optimal proxy sets in both evolutionary and simulation

results are the same [7].

Fig. 5. Optimal Proxy Set for m = 3

The evolutionary results improve noticeably upon the

results from the dynamic programming approach. The major

reason for this is that the dynamic programming approach

ignores TCP dynamics (such as slow start), cache hit ratios,

and cache filtering effects [8]. These effects are all considered

in the evolutionary algorithm.

Computationally, the simple network model is a triv-

ial problem for the evolutionary algorithm. The algorithm

quickly converges to an optimal solution in a few seconds,

requiring only 10 to 20 generations of evolution. Packet-level

simulations for the same network required extensive time

and computational effort (i.e., multiple simulations, each 5-7

minutes in duration).

The experimental results from the evolutionary approach

on the simple network model are encouraging. However, a

larger, more realistic network model is required to better test

the capabilities of the evolutionary algorithm.

VII. RESULTS FOR LARGE NETWORK MODEL

Figure 7 shows the larger network model used in this study.

It consists of a single server, 130 clients, and 160 candidate

proxy locations. The network uses three hierarchical caching

layers, with 113 institutional caches, 36 regional caches,

and 11 national caches. The structure of the network was

randomly generated. The network is an unbalanced tree with

non-uniform traffic patterns. Each proxy node has between

2 and 7 clients. To spread the overall Web request load

among the clients in the network, random request counts

were assigned to each client. The maximum count was 106,

the minimum 1, the mean was 80, and the median 83.

A. Discussion of Results

Figure 6 provides an overview of the results for the

evolutionary algorithm. The graph shows the fitness function

value as it behaves over 150 generations. The fitness function

value is averaged over 10 separate trial runs in each case.

As expected, it improves (decreases) over time. Each line on

TABLE II

COMPARISON OF RESULTS FOR DYNAMIC PROGRAMMING (DP), SIMULATION (SIM), AND EVOLUTIONARY ALGORITHM (EA)

Num Optimal Proxy Set Relative Mean Transfer

Proxies Solution Rank Time (sec)

m DP SIM EA DP SIM EA DP SIM EA

1 {1} {10} {10} 3 1 1 0.256 0.252 0.252

2 {1,2} {6,10} {6,10} 17 1 1 0.245 0.236 0.236

3 {1,2,5} {1,6,10} {5,6,10} 31 1 2 0.230 0.223 0.222

4 {1,2,5,6} {5,6,8,10} {5,6,8,10} 48 1 1 0.218 0.210 0.210

the graph represents results for a different value for m (the

number of proxies placed in the network).

The top line in the graph represents the case when only

5% of the nodes in the overall network are designated as

proxy sites (9 in total). The solution set for m = 9 proxies

determined by the evolutionary algorithm consisted of 6 na-

tional level caches and 3 regional caches. The regional caches

were those along the routes to the busiest clients. Since

this scenario contains the fewest proxies, the overall mean

transfer time (and hence the fitness value) was the highest

(worst) compared with the others. The evolutionary algorithm

converges towards a solution quickly and consistently, as

evidenced by the stable fitness values after 50 generations.

Fig. 6. Overview of evolutionary algorithm results

The bottom line in the graph represents the case when

50% of the network nodes are selected as proxy sites (80

proxies). The decline for this curve is more gradual than in

the m = 5% case. The fitness function continues to decrease

in value even after 200 generations, albeit at a much slower

rate than initially.

Figure 7 shows an overview of the network and the proxy

placement configuration determined by the evolutionary al-

gorithm. The solution set contains 45 institutional caches, 24

regional caches, and all 11 national level caches.

While we cannot verify the optimality of this configura-

tion, we can make several qualitative observations about its

structure. Without exception, the sites chosen for institutional

caches are all near the busiest clients. For example, the clus-

ter circled in the upper left corner of Figure 7 represents the

largest subtree and contains a relatively large proportion of

the busiest clients. As expected, this cluster contains a higher

proportion of proxies. Similarly, the cluster highlighted by

the dashed box on the right represents the subtree containing

the fewest busy clients. In this case, the cluster contains few

proxies. The regional caches tend to be placed where the

subtree contains many nodes or where there are fewer proxies

located at the level below. Interestingly, for the regional and

institutional levels, no proxies are placed along routes leading

to low-traffic clients (clusters highlighted by the smaller

dashed circles in Figure 7).

The foregoing solution was determined by running the

evolutionary algorithm for 900 generations (half hour run

time). Each generation included a population of 500 children

and 50 parents. Initially, the mutation rate was set at 30%

with a step size of 40. The probability of recombination was

50%. Both genetic operations were made highly probable

so as to consider a broad set of potential proxy locations.

After the evolutionary algorithm had run for 300 genera-

tions, the genetic operator probabilities were modified. The

mutation rate was reduced to 5% with a step size of 5,

and the probability of recombination was also reduced to

5%. At this point, the important proxy locations had already

been identified by the algorithm. Therefore, to encourage

convergence towards the optimal solution, consideration of

radically different proxy set combinations was no longer

necessary. Finally, after 600 generations, the genetic operator

values were reduced to very low levels. The mutation rate

was set to 1% with a step size of 2, and the probability

of recombination was set to 1%. At this point, only single

elements within the array data structure would be tweaked,

if at all. Therefore, assuming that the solution thus far was

generally correct, a single poor choice for a proxy location

could be corrected if necessary. A detailed sensitivity analysis

of program parameters follows in the next section.

B. Sensitivity of Program Parameters

In evolutionary computation, there is never a single “cor-

rect” setting for the genetic operators and program parame-

ters. To broaden the scope of the evolutionary experiments,

we varied evolutionary control parameters in an attempt

to understand sensitivities in the results. In particular, we

consider the effects of the mutation rate, step size, selection

strategy, and recombination rate.

1) Mutation Rate: Figure 8 shows the behaviour of the

evolutionary algorithm under different mutation rates (all

other program parameters remaining constant). The fitness

Fig. 7. Network topology and evolutionary algorithm results for m = 80 proxies in large network model

Fig. 8. Evolutionary algorithm sensitivity to mutation rate

function value for each mutation rate represents the average

of 10 trial runs. Initially, higher mutation rates appear to

speed up the process of finding better solutions. However, at

a certain point, as the algorithm starts to converge towards a

good solution, a higher mutation rate perturbs the algorithm,

preventing the population from ‘landing’ on the optimal set

of proxies. The mutation rate of 30% seems to perform best

initially. However, in the long run, beyond 10 generations, the

evolutionary algorithm behaves best with a lower mutation

rate of 5%.

2) Mutation Step Size: Figure 9 shows the behaviour of

the evolutionary algorithm for different mutation step sizes.

The step size represents the mean of a Gaussian distribution.

Similar to the mutation rate operator, a somewhat larger step

size (e.g., 40 or 60) produces faster initial improvements, but

the earlier gains disappear as the generations continue. Oddly,

the higher step sizes (e.g., 60 and 90) do not seem to disrupt

the evolutionary algorithm in the long run, which is an

unusual finding. Typically, low mutability is associated with

fine tuning to a local or global optimum. One explanation

for the absence of this phenomenon is that in our model, the

numerical proxy labels do not reflect topological location.

That is, a nearby proxy may have a vastly different numerical

label and hence would require a larger step size to be found

randomly by the evolutionary algorithm.

Fig. 9. Evolutionary algorithm sensitivity to step size

3) Selection Strategy: When the parents of a population

are not included as part of the next generation, the resulting

children may not be as fit. As a result, the evolutionary

process will go ‘backwards’ for a short while, so to speak. In

nature, parents normally die before their offspring, and there

Fig. 10. Evolutionary algorithm sensitivity to parent selection

can be deterioration from one generation to another. In fact,

this is an important means of preventing a group or species

from ‘freezing’ genetically. However, excluding parents from

a population in successive generations can sometimes prevent

an evolutionary algorithm from converging.

Figure 10 shows the fitness function value over 50 gen-

erations for the case in which parent solution sets are

excluded from the surviving group, and for the case in which

parent sets are included in the selection process. The line

representing the ‘parent exclusion’ case is more jagged. If

the parent population was included among the survivors, the

fitness value behaves more consistently.

Fig. 11. Prevalence of the recombination operation over 256 generations

4) Recombination: Figure 11 presents a time series plot

that shows the influence of the recombination operator. Re-

call that the recombination operator is applied with a certain

probability, which means that there is an on/off impulse

property to its effect on the behaviour of the evolutionary

algorithm and on the population. The graph shows the

generations in which the fittest individual emerged as a

result of the recombination of parental sets. Initially, the

recombination operator is dominant, as shown early in the

graph. However, as the best solution set in a given generation

approaches the optimal solution over time, recombination is

rare, and the mutation operator becomes the most influential.

VIII. SUMMARY AND CONCLUSIONS

This paper proposed an evolutionary approach to the

Web proxy placement problem. The approach was applied

to a simple network and the results compared to packet-

level simulation experiments and a dynamic programming

algorithm. The results look very promising.

The dynamic programming algorithm has the advantage

of being scalable to larger networks. However, the optimal

proxy sets from the dynamic programming algorithm did not

match those determined by simulation experiments. The most

likely explanation is that the dynamic programming method

considers only network traffic volume and link transmission

latency. It does not consider network influences such as

cache filtering effects and TCP dynamics. The packet-level

simulation experiments show that these network influences

are significant.

While the combinatorial simulation approach to the proxy

placement problem guarantees an optimal solution for a given

network topology and client workload (since all possible

cases are simulated), the effort required becomes prohibitive

as the size of the network and the number of proxies grow in

scale. Unfortunately, for most practical network topologies,

this approach is not economically or computationally viable.

The evolutionary approach provides the best of both

worlds. The results for the simple network closely match

those determined by the packet-level simulations, indicating

that the fitness function captures the essential elements of the

network and caching implications. As well, the evolution-

ary approach can handle much larger network topologies,

although for these networks the proxy placement solution

cannot be proven optimal. Fortunately, given the many uncer-

tainties about Web workloads and TCP dynamics in a large

internetwork, robust good solutions are more desirable than

perfectly optimal solutions [8]. The evolutionary approach

can quickly find good solutions to the proxy placement prob-

lem, dramatically narrowing the search space for subsequent

optimization efforts.

ACKNOWLEDGEMENTS

Financial support for this research was provided by iCORE

(Informatics Circle of Research Excellence) in the Province

of Alberta, and by the Natural Sciences and Engineering Re-

search Council of Canada, through NSERC Research Grant

OGP0121969 and an NSERC Postgraduate Scholarship.

REFERENCES

[1] M. Arlitt and C. Williamson, “Internet Web Servers: Workload Char-
acterization and Performance Implications”, IEEE/ACM Trans. Net-

working, Vol. 5, No. 5, pp. 631-645, October 1997.
[2] L. Breslau, P. Cao, G. Phillips, and S. Shenker, “Web Caching and

Zipf-like Distributions: Evidence and Implications”, Proceedings of

IEEE INFOCOM, pp. 126-134, March 1999.
[3] L. Breslau et al., “Advances in Network Simulation”, IEEE Computer,

Vol. 28, No. 5, pp. 59-67, May 2000.
[4] M. Busari and C. Williamson, “Simulation Evaluation of a Het-

erogeneous Web Proxy Caching Hierarchy”, Proceedings of IEEE

MASCOTS, pp. 379-388, 2001.
[5] M. Busari and C. Williamson, “On the Sensitivity of Web Proxy

Cache Performance to Workload Characteristics”, Proceedings of IEEE

INFOCOM, Vol. 3 pp. 1225-1234, 2001.

[6] C. Cameron, S. Low, and D. Wei, “High Density Model for Server Al-
location and Placement”, Proceedings of ACM SIGMETRICS, pp. 152-
159, June 2002.

[7] G. Houtzager, Optimizing Web Proxy Cache Placement and Perfor-

mance, M.Sc. Thesis, University of Calgary, 2005.
[8] G. Houtzager and C. Williamson, “A Packet-Level Simulation Study

of Optimal Web Proxy Cache Placement”, Proceedings of IEEE

MASCOTS, pp. 324-333, October 2003.
[9] C. Jacob, Illustrating Evolutionary Computation with Mathematica.

Morgan Kaufmann Publishers, 2001.
[10] X. Jia, D. Li, X. Hu, H. Huang, and D. Du, “Optimal Placement

of Proxies of Replicated Web Servers in the Internet”, Proceedings of

1
st Int’l Conference on Web Information Systems Engineering (WISE),

Vol. 1, pp. 55-59, 2000.
[11] X. Jia, D. Li, and X. Hu, “Placement of Read-Write Web Proxies in

the Internet”, Proceedings of IEEE ICDCS, pp. 687-690, April 2001.
[12] P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location Problem”,

ACM Transactions on Networking, Vol. 8, No. 5, pp. 568-582, October
2000.

[13] B. Li, M. Golin, X. Deng, and K. Sohraby, “On the Optimal Placement
of Web Proxies in the Internet: Linear Topology”, 8th IFIP Conference

on High Performance Networking, September 1998.
[14] B. Li, M. Golin, G. Italiano, X. Deng, and K. Sohraby, “On the

Optimal Placement of Web Proxies in the Internet”, Proceedings of

IEEE INFOCOM, Vol. 3, pp. 1282-1290, March 1999.
[15] Y. Li and C. Williamson, “A Hysteresis Model for Web/TCP Transfer

Latency”, Proceedings of IEEE MASCOTS, pp. 167-174, October
2004.

[16] A. Mahanti, C. Williamson, and D. Eager, “Traffic Analysis of a Web
Proxy Caching Hierarchy”, IEEE Network, Vol. 4, No. 3 pp. 16-23,
May/June 2000.

[17] N. Markatchev and C. Williamson, “WebTraff: A GUI for Web
Proxy Cache Workload Modeling and Analysis”, Proceedings of IEEE

MASCOTS, pp. 356-363, October 2002.
[18] N. Markatchev and C. Williamson, “Network-Level Impacts on User-

Level Web Performance”, Proceedings of SCS SPECTS, July 2003.
[19] M. Rabinovich and O. Spatscheck, Web Caching and Replication.

Addison-Wesley Press, 2001.
[20] I. Rechenberg, Evolutionsstrategie:Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution. Frommann-Holzboog,
1973.

[21] P. Rodriguez, C. Spanner, and E. Biersack, “Web Caching Archi-
tectures: Hierarchical and Distributed Caching”, Proceedings of 4th

International Web Caching Workshop, pp. 37-48, April 1999.
[22] C. Williamson, “On Filter Effects in Web Caching Hierarchies”, ACM

Transactions on Internet Technology, Vol. 2, No. 1, pp. 47-77, February
2002.

