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An Evolutionary Approach to the Design of
Controllable Cellular Automata Structure for

Random Number Generation
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Abstract—Cellular automata (CA) has been used in pseudo-
random number generation for over a decade. Recent studies
show that two-dimensional (2-D) CA pseudorandom number
generators (PRNGs) may generate better random sequences than
conventional one-dimensional (1-D) CA PRNGs, but they are
more complex to implement in hardware than 1-D CA PRNGs.
In this paper, we propose a new class of 1-D CA—controllable
cellular automata (CCA)—without much deviation from the
structural simplicity of conventional 1-D CA. We first give a
general definition of CCA and then introduce two types of CCA:
CCA0 and CCA2. Our initial study shows that these two CCA
PRNGs have better randomness quality than conventional 1-D CA
PRNGs, but that their randomness is affected by their structures.
To find good CCA0/CCA2 structures for pseudorandom number
generation, we evolve them using evolutionary multiobjective
optimization techniques. Three different algorithms are presented.
One makes use of an aggregation function; the other two are
based on the vector-evaluated genetic algorithm. Evolution results
show that these three algorithms all perform well. Applying a set
of randomness tests on the evolved CCA PRNGs, we demonstrate
that their randomness is better than that of 1-D CA PRNGs and
can be comparable to that of 2-D CA PRNGs.

Index Terms—Controllable cellular automata, genetic algo-
rithms (GAs), multiobjective optimization.

NOMENCLATURE

CA Cellular automata.

CCA Controllable cellular automata.

EMOO Evolutionary multiobjective optimization.

GA Genetic algorithm.

PBCA Periodic boundary cellular automata.

PCA Programmable cellular automata.

PRNGs Pseudorandom number generators.

SCC Serial correlation coefficient.

VEGA Vector-evaluated genetic algorithm.

I. INTRODUCTION

C
ELLULAR automata (CA) were initiated in the early

1950s to explore self-replicating structures. Later in

1986, Wolfram first applied them in pseudorandom number

generation. Wolfram’s work in [24] proved that the randomness
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of the patterns generated by maximum-length CA is signifi-

cantly better than other widely used methods, such as linear

feedback shift registers. The intensive interest in this field can

be attributed to the phenomenal growth of the VLSI technology

that permits cost-effective realization of the simple structure of

local-neighborhood CA. CA has become one of the commonly

used pseudorandom number generators (PRNGs) [20].

In the last decade, one-dimensional (1-D) CA PRNGs have

been studied extensively [9], [11]–[14], [17]–[19], [21]–[23],

[25]. Recent interest has been focused more on two-dimensional

(2-D) CA PRNGs [3], [15] since their randomness appears

better than that of 1-D CA PRNGs. But taking into account

the design complexity and computation efficiency, it is quite

difficult to conclude which one is better. Compared to 2-D CA

PRNGs, 1-D PRNGs are easier to implement on a large scale.

In this paper, we propose a novel CA PRNG—controllable

cellular automata (CCA) PRNG, which obtains comparable

randomness quality as that of 2-D CA PRNGs without losing

the structural simplicity of 1-D CA PRNGs.

Based on the observation of the tested CCA PRNGs, we find

that the randomness of CCA PRNGs is affected by their struc-

tures. To find some CCA structures for pseudorandom number

generation, we use evolutionary multiobjective optimization

(EMOO) techniques. Three different algorithms based on

EMOO are presented. They generate compatible results on the

CCA structures evolved, with slight difference in performance.

Randomness test results on the evolved CCA PRNGs show

that they can generate good randomness quality and the quality

remains good for a wide range of initial seeds.

The paper is organized as follows. We first give an overview

on CA background and related work in Section II. In Sec-

tion III, two CCA PRNGs—CCA0 and CCA2—are introduced.

Section IV presents three EMOO algorithms. Section V shows

the evolution results on CCA structures and the comparison

on these three techniques. Section VI compares the evolved

CCA PRNGs with 1-D/2-D CA PRNGs. Section VII provides

a Conclusion.

II. RELATED WORK

A. CA PNGs

A CA is an array of cells where each cell is in any one of its

permissible states. At each discrete time step (clock cycle), the

evolution of a cell depends on its transition rule, which is a func-

tion of the present states of its neighbors for a -neighborhood

CA. The cellular array (grid) is -dimensional, where 1, 2,
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3 is used in practice. We define the state of a CA at time to be

the -tuple formed from the states of the individual cells,

. The next-state function of a 3-neighbor-

hood ( ) CA is computed as

.

When each is a linear function, is also a linear function,

mapping -tuples to -tuples. The evolution of the th cell in a

1-D, 3-neighborhood CA can be represented as a function of

the present states of the ( )th, ( )th, and ( )th cells as:

, where represents

the transition rule for the ( )th cell.

Some definitions to characterize the properties of CA are

noted below.

Definition 1: If the rules of a CA cell involve only XOR logic,

then it is called a linear rule. Rules involving XNOR logic are

referred to as complemented rules. In this paper, we use a com-

bination of both linear and complemented rules. A CA having a

combination of XOR and XNOR ( XOR) rules is called an addi-

tive CA [22].

Definition 2: If all the CA cells obey the same rule, then the

CA is said to be a uniform CA; otherwise, it is a nonuniform or

hybrid CA [9].

Definition 3: A CA is said to be a periodic boundary CA

(PBCA) if the extreme cells (the first and last cells) are adjacent

to each other. A CA is said to be a null-boundary CA if every

extreme cell is only connected to its left (right) cell [22].

Generally, there are four aspects affecting the randomness of

CA PRNGs: boundary condition, transition rule, length of CA,

and initial seed. We use the periodic boundary condition because

it is better than the null-boundary condition in random number

generation [23]. The choice of transition rules is important for

both uniform and nonuniform CAs. Since considerable effort

is expended exploring the effect of different rules, we use only

those rules that have proven to be good in random number gen-

eration. Here, we give the Boolean form of the rules used and

their numbers are given in accordance with Wolfram’s conven-

tion [24]. The following rules are either additive or linear except

rule 30.

• Rule 30: XOR [ OR ].

• Rule 90: XOR .

• Rule 105: XNOR [ XOR ].

• Rule 150: XOR XOR .

• Rule 165: XNOR .

The first work applying CA in randomness number genera-

tion was done by Wolfram on rule-30 uniform CA in 1986 [19].

His work demonstrated CA’s ability to produce highly random,

temporal bit sequences [23], [24]. Later, other rules were also

applied in uniform CA PRNGs. Tomassini et al. concluded in

[14] that according to the DIEHARD test results, rule 105 is the

best, followed by rules 165, 90, and 150, with rule 30 coming

in last.

Hortensius proposed the first nonuniform CA [or pro-

grammable CA (PCA)] PRNG using rules 90 and 150 in 1989

[17]. This CA PRNG is referred to hence as PCA 90–150.

PCAs that allow different rules to be used on the same cell

at different time steps have proven better than CA in random

Fig. 1. Programmable cell structure.

number generation. Fig. 1 shows a programmable cell structure.

The rule control signals can be stored in a ROM or generated

by a CA. In the latter case, we call it a two-stage PCA. Unlike

uniform rule-30 CA, adjacent cells in nonuniform CA are not

correlated in both time and space [17]. Hortensius [18] also

proposed another PCA PRNG that uses a combination of rules

30 and 45. This generator can evolve to a random pattern of

outputs, but its bit sequence correlation is much higher than

that of the PCA 90–150 [18].

Later in 1996, Sipper and Tomassini [14] evolved a 50-cell

CA with a mélange of rules 90, 150, and 165. This CA is

henceforth referred to as PCA 90–165. Based on their work,

Tomassini et al. [15] evolved another 50-cell CA with the

rule combination 90, 105, 150, and 165 in 1999. This CA

is henceforth referred to as PCA 90–105. These two 2-bit

PCA were evolved using a cellular programming evolutionary

algorithm while those two CA proposed by Hortensius [18]

were handcrafted. The DIEHARD test results showed that these

two nonuniform CA PRNGs were better than those designed

by Hortensius in [17], [18]; however, they still cannot pass

some of the tests in DIEHARD and are inferior to the classical

generators.

The first work on 2-D CA PRNGs was done by Chowdhury et

al. [3] in 1994. Their results suggest that 2-D CA are superior to

1-D CA of the same size in pseudorandom number generation.

Following their idea, Tomassini et al. [15] evolved several 8 8

2-D CA PRNGs with rules 15, 63, 31, and 47. Their DIEHARD

test results show that some of the evolved CA PRNGs can pass

all the tests. Based on the observation of these evolved 2-D CA

PRNGs, they can handcraft even better PRNGs.

Although 2-D CA PRNGs are better than 1-D CA PRNGs in

random number generation, they lose the structural simplicity

and computation efficiency of 1-D CA PRNGs. Therefore,

finding a set of CA PRNGs that can obtain good randomness

quality without losing the merits of 1-D CA PRNGs becomes

important. Following the idea of PCA, in which a rule control

line is added into each cell to improve the randomness of CA

PRNGs, we add more control lines on CA cells to control the

neighborhood relation and updating of states to further improve

the randomness of 1-D CA PRNGs. This results in a new type

of CA—a CCA.

B. Introduction to Randomness Tests

Statistical (empirical) tests are used widely to evaluate the

randomness of PRNGs. ENT [26] and DIEHARD [8] are

the two commonly used test suites. The former is designed
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(a) (b)

Fig. 2. Controllable cell structure. (a) Programmable controllable cell. (b) Non-programmable controllable cell.

Fig. 3. Structure of a CCA.

according to the criteria set by Knuth [2]; the latter is devised

by Marsaglia [8].

III. CCA PRNGS

A. CCA

In this section, the CCA is introduced. To explain the scheme

explicitly, several new concepts are defined first to identify the

CCA properties.

Definition 4: A CCA is a CA in which the action (how the

state of a cell is updated in each cycle) of some cells can be

controlled via cell control signals. Similar to rule control sig-

nals, cell control signals can be stored in ROM or generated by

a CA.

Definition 5: If a cell is under the control of cell control

signal, it is a controllable cell; otherwise, it is a basic cell. CCA

is the combination of controllable cells and basic cells. Both

controllable cells and basic cells could have rule control signals.

Fig. 2 shows the nonprogrammable/programmable controllable

cell structure. In this paper, we discuss programmable control-

lable cells only, henceforth referred to as controllable cells.

The action of a controllable cell is determined by its current

cell control signal. A controllable cell can be normal (when the

cell control signal is 0) or activated (when the cell control signal

is 1). When the controllable cell is normal, the computation of

the states of the controllable cell and its neighbors is as usual

(according to the current rule control signals and the states of

its neighbors). When the controllable cell is activated, the com-

putation of the states of the controllable cell and its neighbors

is specified by some predefined actions. The actions applied to

the controllable cell and its neighbors could be different. It is

observed that the predefined actions affect the state computa-

tion of controllable cells.

The structure of a CCA is shown in Fig. 3. It has cells in

total. ( cells are controllable cells and the re-

maining cells are basic cells. Here, all the basic cells are

programmable cells. Thus, in this CCA, there are rule con-

trol bits and cell control bits. Compared to an -cell PCA,

which has rule control bits, the extra cost of CCA is the

cell control bits. During the CA transition, the rule control sig-

nals will decide which rule to be employed on both basic and

controllable cells; the cell control signals will decide the status

of controllable cells. In our work, the rule and cell control sig-

nals are generated by two uniform CA separately. All the CCA

discussed in this paper are based on this structure. The only

difference among them is that they could have different types

of controllable cells. The number and location of controllable

cells in CCA are called as “setting” of controllable cells in the

following.

The usage of controllable cells in a CCA differentiates it from

a PCA, in which only rule control signals exist. Once the actions

of controllable cells and basic cells are specified, the setting

of controllable cells will decide the performance of CCA. The

common idea in PCA and CCA is that they both use some con-

trol lines on the CA cells to make the CA transition more unpre-

dictable and flexible. The difference is that in PCA, all the cells

have uniform structures, while obviously in CCA, the structure

of controllable cells are not the same as that of basic cells. To

achieve similar CA performance, we may use other methods;

for example, increasing the radius (i.e., number of neighbors),

using more states in each cell, or evolving the rule tables for

each cell as some researchers do in [15], [16]. It is hard to say

which method is better in performance or hardware design since

their costs are not comparable.

Instead of evolving rule tables, we propose a scheme to

control the status of CA cells so that different computation
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approaches could be applied when a cell status changes. Based

on this, we propose a new class of CA—CCA, capable of

changing cell status on the fly. Our work then focuses on

finding good configurations of CCA that can obtain good

randomness quality. In the following, we introduce two con-

trollable cell types and use them as examples of CCA to further

study their performance.

B. Two Types of CCA: CCA0 and CCA2

As we have just introduced, when the cell control signal is

zero, a controllable cell acts the same as a basic cell, while when

the cell control signal is one, the controllable cell performs some

predefined action, which can be different from the action it per-

forms when it is normal. This means that the action a control-

lable cell performs when it is activated decides the property of

controllable cell. The simplest action that an activated control-

lable cell can take is to keep its state during the CA computation

process. In the meantime, the states of its neighbors are com-

puted as usual. This type of controllable cell is called a Type 0

controllable cell. A CCA that is a combination of Type 0 con-

trollable cells and basic cells is henceforth referred to as CCA0.

A Type 2 controllable cell is found when a controllable cell

is activated, and it keeps its latest state, while its neighbors will

bypass it. This means the activated controllable cell will not be

involved in the sate computation of its neighbors. In this way,

the neighborhood relationship is changed dynamically during

the CA computation process. A CCA that is a combination of

Type 2 controllable cells and basic cells is referred to as CCA2

or neighbor-changing CA (NCA). CCA2 cannot be simulated

by any PCA due to its neighbor-changing behavior.

C. CCA PRNGs

As we have introduced in Section III-A, the rule control sig-

nals and cell control signals for CCA are generated by two

CA separately. The CA generating rule (cell) control signals is

called as rule (cell) control CA. In each cycle, the bit combina-

tion of rule (cell) control signals for CCA cells is termed the rule

(cell) control word. The length of rule control word is the same

as that of CCA, while the length of cell control word is decided

by the number of controllable cells in CCA.

Fig. 4 shows the structure of a CCA PRNG. The running se-

quence of a CCA PRNG is described as the following. Initial

seeds and transition rules are input to the rule/cell control CA

and CCA to initialize them. The two control CA run synchro-

nously with CCA to generate rule/cell control words for CCA

cells. In each cycle, the previous states of CCA cells plus the

rule/cell control words decide CCA cells’ current states. The

current states of some CCA cells are recorded in every cycle

as the output bit sequence. We call these cells output cells. The

bit sequence is then converted into an 8-bit random number se-

quence as the final output. Each CCA runs cycles to gen-

erate the random number sequences. Generally, a long random

number sequence is needed to evaluate CCA PRNG’s random-

ness. Considering computation feasibility, we set to 10 000

cycles.

Because considerable work has been done on the searching of

good transition rules in PCA PRNGs [17], [18], we follow the

recommended choice of rules here instead of evolving the rules

Fig. 4. CCA PRNG structure.

ourselves. The four additive rules used in our work are rules 90,

150, 105, and 30. Rules 90 and 150 are used as the transition

rules in CCA; this is to facilitate the comparison with 1-bit PCA

90–150. Rule 30 is used in the rule control CA and rule 105 is

used in the cell control CA, since these two rules are said to be

among the best ones in random number generation according to

Hortensius [17].

Traditionally, CA PRNGs are handcrafted. The design

process is time consuming and troublesome. During the past

ten years, researchers began to use evolutionary algorithm to

evolve CA PRNGs. Recently, Tomassini et al. [14] successfully

evolved the rule tables of 2-D CA PRNGs using their cellular

programming algorithm. Because our objective is to evolve

the setting of controllable cells but not rule tables, cellular

programming is not suitable in our work. EMOO is employed

here to evolve CCA PRNGs.

IV. EMOO APPROACHES

A. Objectives

With the introduction of controllable cells in CCA, the struc-

ture of CCA is not uniform, as that of conventional CA. The ob-

jective of our work is to find good settings of controllable cells

in CCA0/CCA2 PRNGs. Moreover, because controllable cells

may affect the choice of output cells, we also have to consider

how to choose output cells (the CCA cells generating output bits

per cycle) other than by using cell spacing, which is a conven-

tional method used in uniform CA and PCA. Thus, we evolve

the setting of controllable cells and output cells. By “setting” we

mean the number and location of the controllable (output) cells

in concern. The chromosome in our evolutionary algorithm is an

bitstring. The first bits identify the controllable cells’ set-

ting in which “1” stands for controllable cell, and “0” stands for

none-controllable cell. The remaining bits identify the output

cells’ setting in which 1 stands for output cell, and 0 stands for

nonoutput cell.

In [15], entropy was used as a fitness measure. Randomness

tests show that some generators obtain good entropy values but

still cannot pass the chi-square test. To get a better evaluation

on the randomness of CCA PRNGs, we use chi-square, en-

tropy, and serial correlation coefficient (SCC) tests instead of

entropy alone. Furthermore, realizing that the randomness of

CCA PRNGs may differ under different initial seeds, we test

the CCA PRNGs under a group of randomly generated initial

seeds.

To ensure that the results obtained under one group of initial

seeds are valid, we do the following test to decide the number

of initial seeds to be included in one group. We set the number
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Fig. 5. Entropy variance under different number of initial seeds. Note: Tests 1–100 are independent. S is the number of initial seeds tested.

(a) (b)

Fig. 6. Relationship among chi-square, entropy, and SCC values. (a) Entropy and SCC values (chi-square=1). (b) Chi-square, entropy, and SCC values.

of initial seeds ( ) in one group to 100, 1000, and 10 000. The

variance of the entropy is used to decide whether or not the

performance of CCA PRNGs becomes stable. If the variance

gets to a stable value, we conclude that the performance of CCA

PRNGs is also stable. Fig. 5 shows the test results. We can see

that the entropy variances in all the 100 tests obtain a stable

value of 0.000 003 when is set to 10 000. Using the variance of

chi-square or SCC as indication, we get results similar to those

presented here.

The randomness of CCA PRNGs is represented by the av-

erage value of chi-square, entropy, and SCC tests on 10 000 ini-

tial seeds. We use the variance of these values to indicate the

performance stability of CCA PRNGs. As a whole, the per-

formance of CCA PRNGs is evaluated using the average value

and variance of the chi-square, SCC, and entropy, respectively.

Thus, the number of the objectives in our evolutionary approach

is six, not just one. Since traditional genetic algorithms (GAs)

cannot handle multiobjective optimization effectively, EMOO

techniques are introduced.

Various EMOO techniques have been developed [1], [6]. Al-

though surveys and comparative study have been conducted on

them [1], [6], none can claim to be the best, since there are still

some open questions in this field. Generally, most of the tech-

niques known work in a convex space, while they may have dif-

ficulties in a concave space. Before we introduce the EMOO

techniques, we first analyze the relationship of the six objec-

tives which to some extent decides whether EMOO is suitable

or not.

The chi-square test result is a percentage and any value be-

tween 10%–90% means the tested sequence cannot be declared

to be nonrandom. We convert the chi-square test result as the

following: the chi-square value is 1 if the percentage is between

10%–90%, the chi-square value is 0 if the percentage is greater

than 99% or less than 1%; otherwise, the chi-square value is 0.5.

The entropy value is between 0 and 8. A larger value means the

randomness of the tested sequence is better. Generally, the en-

tropy value is greater than 7. The SCC test result is a real number

close to 0, which can be positive or negative. Only the absolute

value is meaningful and the sign does not affect the randomness.

Generally, absolute SCC values falls in [0, 1] and 0 is the op-

timal value. We convert the SCC value to SCC . Thus, in

the adjusted SCC value, 1 is the optimal value and a larger value

is better.

Running CCA2 PRNGs under 10 000 randomly configured

structures, we get the distribution of chi-square, entropy, and

SCC values as presented in Fig. 6. We can see that most CCA2

PRNGs obtain a chi-square value at 1. Fig. 6(a) shows the rela-

tion of entropy and SCC values while the chi-square value is

1. Obviously, the search space shown in Fig. 6(a) is convex.

And it is evident that the average value and variance are not re-

lated because the variance can be high or low no matter the av-

erage value is high or low. Thus, the search space is most likely
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convex. Because most EMOO techniques work well in a convex

search space, we have a wide range of choices here.

Taking computation efficiency into account, we choose the

vector-evaluated genetic algorithm (VEGA) as our basic algo-

rithm. VEGA was developed by Schaffer in 1985 [7]. It is the

first multiobjective optimization algorithm proposed. The main

strength of this technique is its simplicity but it has several prob-

lems, such as “middling” as described in Schaffer’s paper [7]. To

overcome the problems of VEGA, Cvetkovic et al. [5] proposed

two approaches. One is to wait for a certain number of genera-

tions before shuffling the subpopulations together; the other is to

avoid shuffling individuals, instead migrating or copying a cer-

tain number of individuals from one subpopulation to another.

Reference [5] showed that these two methods obtain better re-

sults than Schaffer’s and can be comparable to the other EMOO

techniques. Following the ideas of Schaffer and Cvetkovic, we

propose two EMOO approaches here. These two approaches are

both based on VEGA, but the evolution algorithm on the whole

population is different. In addition to these two approaches, we

also use an aggregation function to evolve CCA PRNGs.

B. Algorithm 1 and 2—VEGA-Based Approaches

We develop two EMOO algorithms based on VEGA. One is

to copy chromosomes among subpopulations; the other is to use

a weighted fitness function to help select individual chromo-

somes from the whole population into subpopulations. The de-

tail of these two algorithms is presented in Algorithms 1 and 2

individually. The common parameters in these two algorithms

are set to the same value.

In both algorithms, the whole population is divided into

( , number of objectives) subpopulations. In each subpop-

ulation, we have ( ) chromosomes. is set to 20 so

that the computation time in one generation will not be too long.

During the evolution process, the population size is fixed. Each

CCA has ( ) cells. is set to 64 because it is a widely

used number in both real applications and simulations. To de-

scribe the setting of controllable cells and output cells, each

chromosome has bits. Each CCA runs ( )

cycles to generate the random number sequence. For each CCA,

( ) initial seeds are tested. The subpopulation evo-

lution algorithms are identical in both Algorithms 1 and 2. Each

subpopulation evolves ( ) steps before being mixed

together or copied. is set to 3 because a smaller value may

weaken the effect of subpopulation evolution. And a large value

may waste computation time on subpopulation evolution be-

cause we find that from the 4th step onward, the best chromo-

somes’ fitness may become stable. The crossover rate is set to 1

and mutation rate is set to 0.01. RATE is set to 0.5 when se-

lecting parent and child chromosomes into the next generation.

Because the population size is small, the selection rate—RATE1

and RATE2 is set to 0.1. Stopping criteria is set to the maximum

stagnation steps. If the best chromosome in each subpopulation

remains unchanged for ( ) steps continuously, the

evolution process will stop.

In Algorithm 1, the subpopulations will not be mixed to-

gether. To copy some good chromosomes from the current gen-

eration of the whole population to the next generation of sub-

population ( 1–6), we rank the chromosomes in the cur-

rent generation of each subpopulation ( 1–6) according to

objective and copy the best RATE1 (RATE1 0.1,

RATE1 2) chromosomes into the next generation of subpop-

ulation . It is likely that the chromosomes in subpopulation

( 1–6) can still generate relatively good results in objective

, since they have been evolved for steps in subpopulation

. The total number of the chromosomes being copied from all

the subpopulations into subpopulation is ( ). The

remaining ( ) chromosomes in the next generation of

subpopulation are generated by crossbreeding (crossover and

mutation between two individuals that are from two different

subpopulations). This is based on the assumption that utopian

individuals are more likely to result from crossbreeding than in-

breeding [7].

The main idea in Algorithm 1 is that we think the two chro-

mosomes copied from the current generation of objective to

the next generation of objective are likely to be good at both

objective and after some generations. Thus, those chromo-

somes that obtain good values in more than one objective will

have a greater chance of being maintained during the evolution.

Algorithm 1: VEGA With Elitist Copying

//initialization

randomly generate the initial population with

a fixed size P �K;

randomly divide the whole population into

K subpopulations (groups), each one has P

chromosomes;

//evolution

while (stopping criteria is not true) do

// evolution of subpopulations

for (m = 1 to K) do in parallel

for (t = 1 to ts) do

//fitness calculation of subpopulation

mmm

calculate each chromosome’s fitness

value according to objective m;

//crossover & mutation

� in each subpopulation, roulette-

wheel select parents, do crossover to gen-

erate child chromosomes;

� mutate child chromosomes according

to mutation ratio r;

//selection

� calculate child chromosomes’ fit-

ness;

� copy the best P � RATE parents into

the next generation;

� copy the best P�P � RATE child chro-

mosomes into the next generation;

end for (t)

end for (m)

// whole population evolution: select and

copy among subpopulations

for (i = 1 to K) do

for (j = 1 to K) do

� rank the chromosomes in group j ac-

cording to objective i;
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� copy the best P � RATE1 chromosomes

into the next generation of subpopulation i;

end for (j)

for (n = P �K � RATE1 to P; n = n+ 2) do

� randomly select two chromosomes

among the whole population, make sure the two

parents selected are from different subpopu-

lation (crossbreeding);

� do crossover and mutation to gen-

erate 2 child chromosomes;

� copy the two child chromosomes into

the next generation of subpopulation i;

end for (n)

end for (i)

end while

In Algorithm 2, the subpopulations are mixed together after

being evolved. Crossover and mutation are performed on the

whole population to generate child chromosomes. Dif-

ferent from the selection procedure in the basic VEGA algo-

rithm, we use a weighted fitness function to select the parent

and child chromosomes in the next generation. The function

is (the value of objective ) 1/6 ( to 6).1 This func-

tion aims at finding those chromosomes that can generate good

results in all the objectives. Both the parent and child chromo-

somes are ranked according to the weighted fitness value and

the best ( ) chromosomes are copied into each sub-

population ( 1–6). is set empirically according to some

initial test results. A smaller value of may degrade the ef-

fect of weighted fitness function while a larger value may re-

sult in a quick convergence of chromosomes. Moreover, we rank

all the parent and child chromosomes according to objective

( 1–6) and copy the best RATE2 (RATE2 0.1,

RATE2 2) chromosomes into subpopulation . After these two

steps, there are RATE2 chromosomes in each subpopu-

lation. The remaining chromosomes are selected randomly from

the whole population. During the selection, we avoid choosing

those that have been selected. This is to avoid rapid convergence

in the population. The main idea of Algorithm 2 is that we use

a weighted fitness function to ensure that the chromosomes that

obtain relatively good values in all objectives are maintained

during evolution.

C. Algorithm 3—An Aggregation Function Approach

The simplest way to evaluate multiple objectives in evolu-

tionary algorithm is to combine them into a single weighted-sum

function using arithmetical operations. Here, we use a fitness

function that is different from the one used in Algorithm 2.

If a sequence cannot pass the chi-square test, it is thought to

be unsatisfactory in randomness. That is to say, the chi-square

value is an important indication as to the randomness of the se-

quences tested. Thus, we think that the chi-square test is more

important than the entropy and SCC tests in evaluating the ran-

domness of CCA PRNGs. It is difficult to decide which between

entropy and SCC is more important because they are testing

1The value of object 1 (entropy) is adjusted as jentropy�7j.

different aspects of randomness. Taking into account these fac-

tors, we assign entropy and SCC the same ratio while giving the

chi-square test a slightly higher ratio for emphasis. We use the

function as follows to evaluate the overall randomness of the

CCA PRNGs

entropy value

chi-square value (1)

We describe this value as the randomness value hence-

forth. A higher randomness value represents better randomness

and the optimal value is 1. For the entropy value, 7 is deducted

from the original value and the adjusted value most likely falls

within [0, 1]. It is based on our observation from the ENT test re-

sults of CCA PRNGs under 10 000 initial seeds. Generally, there

is no sequence that earns an entropy value less than 7. To em-

phasize the difference of the randomness of tested CCA PRNGs,

we deduct the common value (7) they obtained from the orig-

inal test results. The optimal value of the adjusted entropy test

result is 1. The larger the adjusted entropy value, the better the

randomness. Generally, absolute SCC test values fall into [0,

1]. Contrary to the other two tests in which a better random se-

quence gets a larger adjusted result, a smaller absolute value gets

a better randomness in the SCC test. To adjust an SCC value to

the same direction as the other two tests, we deduct its absolute

value from 1.

Except randomness, we also consider the performance sta-

bility of CCA PRNGs using the variance of chi-square, entropy,

and SCC values. We set the same ratio on these three variances

as indicated in the following function

chi-square value variance entropy value variance

SCC value variance (2)

Taking into account that both good and bad CCA PRNGs can

yield small variance, the value of is a more important in-

dication than variance in evaluating the performance of CCA

PRNGs. We emphasize the randomness in the overall fitness

function

value value (3)

The ratios in function and are set empirically. Further

study may be done to replace it using fuzzy functions or other

techniques, while we think that it is acceptable in our algorithm.

In Algorithm 3, the population size is (120). The crossover

rate, mutation rate, selection RATE, and stopping criteria are

the same as the settings in Algorithms 1 and 2. Algorithm 3 is a

standard GA.

V. RESULTS OF THE EVOLUTIONARY APPROACHES

AND DISCUSSIONS

A. Preference

In addition to measurement and searching, decision making is

also an important step for multiobjective evolution problems [4].

In Algorithm 3, the decision making process is not necessary

(i.e., it is implicit in the search itself). In Algorithms 1 and 2, the

evolution results are a group of nondominated chromosomes.
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To decide which chromosome obtains the best randomness, we

set the preference as follows: the chi-square value is the most

important, the entropy value and the SCC value come next, and

the variance of these three statistics is less important.
We first compare the chi-square values of the nondom-

inated chromosomes; the one with the highest chi-square
value is regarded as obtaining the best randomness quality.
If their chi-square values are identical, then we compare the
entropy value; if the entropy values are identical, then we
compare the SCC values, and so on. This preference is used
to differentiate the performance of the three algorithms, too.
The algorithm whose nondominated chromosome obtains
the highest chi-square value is believed to achieve the best
performance. The preference used is simple; we could use a
more complicated method such as a fuzzy function to make the
final decision. Looking at the experimental results, we feel the
preference chosen is acceptable.

B. Evolved CCA2/CCA0 Structure

The evolution results of CCA2/CCA0 PRNGs are presented
in this subsection. The evolution result of CCA2 from Algo-
rithm 1 is the best among the three algorithms according to the
preference set, with Algorithms 2 and 3 following. The evolved
CCA2 structure (Algorithm 1) is as follows:

In the evolved CCA2 PRNG, there are 35 controllable cells
and 35 output cells, in which 20 are controllable cells. The per-
formance of the evolved CCA2 PRNG and the average perfor-
mance of CCA2 PRNGs before evolution are compared to ex-
amine the evolution result. The evolved CCA2 PRNG is tested
1000 times. In each test, the randomness value and variance of
chi-square, entropy, and SCC tests are recorded. At the same
time, 1000 randomly configured CCA2 PRNGs are tested to
compare with the evolved one. We present the comparison on
the randomness value in Fig. 7.

We can see the average chi-square value improved (by the
evolved one) from 0.75 to 0.945; the entropy value improved
from 7.9795 to 7.9816; the SCC value decreased from 0.0096
to 0.0082. As shown in Fig. 7, we can see that the improvement
on the entropy and SCC values is not as significant as that of
the chi-square value in CCA2 PRNGs. Considering the output
efficiency of evolved CCA PRNGs, we find that the evolved
chromosomes have a range from 28 to 38 cells as output cells.

Differing with the evolution results of CCA2 PRNGs, the
chromosome which obtains the best chi-square value in CCA0
PRNGs is generated by Algorithm 2. Algorithm 1 obtains the
second best results and Algorithm 3 comes in last. The evolved
CCA0 structure is as follows:

The evolved CCA0 has 35 controllable cells too, but it has only
27 output cells, which is less than 35 output cells in CCA2.
And among the 27 output cells, only 12 cells are controllable
cells. Similarly, we compare the performance of evolved CCA0
PRNGs with the average performance of CCA0 PRNGs before
evolution and the results are similar to that of CCA2.

The major difference is that in CCA0, the chi-square value

improved greatly from 0.1245 to 0.745 after evolution, and the

entropy and SCC value became more stable than those before

evolution. Referring to Fig. 7, we can see that the difference of

chi-square values in CCA2 PRNGs before and after evolution

is only around 0.195. But in CCA0 PRNGs, it is 0.6. It shows

that a good setting of controllable cells and output cells is more

critical in CCA0 PRNGs to generate good random number

sequences. The performance of CCA2 PRNGs is more stable

than that of CCA0 PRNGs. Moreover, we find that the evolved

CCA2 PRNGs yield better performance than CCA0 PRNGs

in general. The average performance of CCA2 PRNGs before

evolution is even comparable to the performance of CCA0

PRNGs after evolution. Considering output efficiency, the

evolved CCA0 PRNGs have from 19 to 35 cells as output cells.

This range is larger than that of CCA2 PRNGs and the output

efficiency of CCA0 is noticeably lower. It shows that CCA2 is

generally better than CCA0 in random number generation.

C. Comparison on the Performance of the Three Algorithms

We have presented the three algorithms and their evolution re-

sults above. Here, we compare their performance and give some

recommendation on the choice of algorithms in CCA PRNG

evolution. We have pointed out that Algorithms 1 and 2 obtain

the best results in CCA2 and CCA0 PNRG evolution individ-

ually, and their relative performance is comparable. Although

the evolution results of Algorithm 3 in both CCA PRNGs are

the worst, its results differ only slightly from the best results.

Thus, we can say that Algorithm 3 is also effective. Fig. 8 shows

the randomness value of the evolved CCA structure under each

algorithm.

In addition to comparing the randomness of the evolved CCA

PRNGs, we also need to consider their evolution speed when

comparing their performance. The computation time of Algo-

rithms 1 and 2 in one generation is around 4900 and 5300 s (cal-

culated under 1.4-GHz, 256-MB PC), individually, while that

of Algorithm 3 is only 1000 s. Our stopping criteria is the max-

imum stagnation steps. Algorithms 1 and 2 both stop evolution

after 1700 evolution steps, while Algorithm 3 stops around 3800

evolution steps. The total computation time of Algorithm 3 is

shorter than that of Algorithms 1 and 2.

Realizing that one generation in Algorithms 1 and 2 costs

three generations of subpopulation evolution and one generation

of the whole population evolution, we can see that the evolution

steps of Algorithm 3 actually cost less than those of Algorithms

1 and 2. In conclusion, we can say that both Algorithms 1 and

2 obtain good performance, while Algorithm 3 gets comparable

performance. While taking into account the evolution speed and

effort, we may claim that Algorithm 3 is also a good choice.
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(a)

(b)

(c)

Fig. 7. Comparison of the randomness values between the evolved CCA2 PRNG and the average performance of 1000 randomly configured CCA2 PRNGs. Left
column: the evolved CCA2. Right column: the average performance. (a) Chi-square value. (b) Entropy value. (c) SCC value. The straight line across (a) and (c) is
the average value in 1000 tests.

D. Analysis of the Evolved CCA0 and CCA2 Structures Under

Different Output Methods

In this section, we further study how the settings of con-
trollable cells and output cells affect the performance of CCA
PRNGs. At first, we explore the effect of output cells in both
CCA2 and CCA0 PRNGs. We compare the performance of the
evolved controllable cells’ settings under three different output

methods: evolved output, cell spacing (cell spacing is set to
1), and randomly configured output. The randomness under
the evolved output and the cell spacing method is calculated
based on ( ) randomly generated initial seeds.
The randomness of the randomly configured output method is
the average of ( ) randomly configured outputs
under the evolved controllable cell settings. The tested initial
seeds are identical in these three methods. Fig. 9 shows the
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(a)

(b)

(c)

Fig. 8. Comparison on the evolution results of Algorithms 1–3. (a) Chi-square value and variance. (b) Entropy value and variance. (c) SCC value and variance.

randomness values of CCA PRNGs under the tested three
output methods.

We can see in Fig. 9 that the evolved output method in CCA2

yields the highest chi-square value, while the other two methods

obtain similar results. The results may mean that the setting of

output cells is not as important as that of controllable cells in

CCA2. That is to say, the performance of CCA2 PRNGs is de-

cided mainly by the setting of controllable cells. Once the con-

trollable cell setting has been evolved, the output cell setting can

be flexible if the performance requirement is not strict. Note that

the number of output cells in the evolved CCA2 structure is 35,

which is more than the 32 used in the conventional cell spacing

method. We can say that the generation of random number se-

quence in the evolved CCA2 structure is more efficient than that

in the conventional cell spacing method.

Also shown in Fig. 9, we can see that in CCA0, only the

evolved method can generate good randomness value while the

other two methods yield peer results. It shows that in CCA0

PRNGs, the setting of output cells is as important as that of con-

trollable cells. To find a good CCA0 PRNG in random number

generation, we have to evolve them together. The evolved CCA0

PRNGs has 27 cells (results of Algorithm 2), which is fewer than

32 cells. This means that output efficiency may have to be sac-

rificed to generate good randomness in CCA0 PRNGs.
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Fig. 9. Comparison on the chi-square values of the evolved controllable cell
configuration under different output methods (S = 10 000).

E. Discussions on the Evolved 16-Cell CCA0/CCA2 Structures

The discussion in Section V-B is only concerned with some

individual evolved CCA2/CCA0 PRNGs. To find out more

about the interrelations between the setting of controllable cells

and output cells in a wide range, we conducted the following

experiment. The output method is fixed using the conventional

cell spacing method (cs 1) in both CCA PRNGs and we

evolve the setting of controllable cells alone. Due to the huge

computation effort involved, to simplify the analysis we use

Algorithm 3 and evolve 16- instead of 64-cell CA. The setting

of controllable cells is encoded as chromsome1 in this evolution

approach. The crossover, mutation, and selection rates in this

approach are the same as those in Algorithm 3.

Setting the stopping criteria to 100, 200, 300, and 400 evolu-

tion steps, we observe the results as shown in Fig. 10. It shows

the distribution of evolved chromosome1 in CCA0/CCA2

according to the number of controllable cells included in the 8

output cells. Referring to the results in Fig. 10(a), we can see

that most CCA0 PRNGs have zero, one, or two controllable

cells within eight output cells. No CCA0 has four or more

controllable cells within its output cells. This means a good

CCA0 PRNG generally has zero, one, or two controllable cells

in its output cells. CCA0 PRNGs with one controllable cell

their output cells are most common. It shows that the trend of

evolution is to avoid choosing too many controllable cells in

the output cells in CCA0.

Referring to Fig. 10(b), we can see that most CCA2 chro-

mosome2s have three to five controllable cells within the eight

output cells. This means that the number of basic cells and con-

trollable cells in the output cells are nearly the same. Thus, we

can say that the probability of a controllable cell to be chosen

as an output cell is similar to that of a basic cell.

Fig. 11 presents the evolution results of CCA0 and CCA2 sep-

arately. Referring to Fig. 11(a), we can see that in CCA0 most

evolved chromosome1s have 4–8 controllable cells. No chromo-

some1s have fewer than 2, or more than 10, controllable cells.

Only a small number of chrosomosome1s have 9–10 control-

lable cells. That is to say, when we design CCA0 PRNGs, it is

generally better to have 4–8 controllable cells if the total number

of cells is 16. Note that all the chromosome1s have at least 2 con-

trollable cells. This means that CCA0 is a better scheme than

PCA, which corresponds to a CCA with no controllable cells.

Fig. 11(a) also shows that there is a tradeoff for the number of

controllable cells in a CCA0. Too many controllable cells may

degrade the randomness of CCA0; too few controllable cells

may not have the desired “randomizing” effect on the basic cells.

Fig. 11(b) presents the evolution results of CCA2. We can

see that in CCA2, evolved chromosomes1s generally have

3–12 controllable cells, which has a wider range than CCA0.

In CCA2, most chromosome1s have 5–10 controllable cells;

while in CCA0, they generally have 4–7 controllable cells. This

shows that in evolved CCA2, the ratio of controllable cells is

higher than that in CCA0. Combining the results presented in

Figs. 10 and 11, we can see that a suitable number and location

of controllable cells is more critical for CCA0 than CCA2 to

generate good random numbers. CCA2 PRNGs can get good

results under a wider range. This conclusion is compatible with

our previous evolution results obtained on 64 cells.

VI. COMPARISON ON THE RANDOMNESS OF EVOLVED CCA

PRNGS VERSUS 1-D/2-D CA PRNGS

In this section, the randomness of the evolved 64-cell

CCA2/CCA0 PRNGs is compared to that of 1-D/2-D CA

PRNGs [15], [17].

First, we present the average chi-square, entropy, and SCC

values of the evolved CCA2/CCA0 PRNGs and 1-bit/2-bit

PRNGs in Table I. The evolved CCA2 PRNG obtains the

highest chi-square value with 2-bit PCA and the evolved CCA0

PRNGs following it. These three generators obtain similar

entropy and SCC values. The 1-bit PCA PRNG gets the lowest

chi-square, entropy, and SCC values. The randomness of the

evolved CCA2/CCA0 PRNGs are highly improved compared

to that of 1-bit PCA PRNG, and the evolved CCA2 PRNG

outperforms the 2-bit PCA 90–105 PRNG.

Until now, CCA PRNGs were evaluated using the ENT

test suite only. During the evolution process, the randomness

of CCA PRNGs is evaluated using the ENT test suite. To

validate our evolution results, the randomness of the evolved

CCA PRNGs is examined from three aspects: DIEHARD,

cycle length, and time–space diagram. Furthermore, their

randomness is compared to those well-known 1-D/2-D CA

PRNGs [15], [17].

A. DIEHARD Test Results

The DIEHARD test suite is said to currently be the most dif-

ficult test suite to pass. Table II presents the DIEHARD test re-

sults of the evolved CCA0/CCA2 PRNGs, 1-bit PCA 90–150

PRNG, 2-bit PCA 90–105 PRNG, and 2-D 8 8 CA PRNG.

The tested sequence length is 10 Mbytes. The results show that

except for 1-bit PCA, which can pass only 15 tests, the other

three PRNGs can pass all the tests. Thus, the evolved CCA

PRNG is comparable to the well-known 2-bit PCA and 2-D CA

PRNGs. Furthermore, we apply DIEHARD to all the nondomi-

nated chromosomes obtained from the three algorithms. We find

that each of them can pass all the tests in DIEHARD.
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(a) (b)

Fig. 10. Distribution of evolved chromosome1s with different number of controllable cells in the output cells. (a) Evolution results of CCA0. (b) Evolution results
of CCA2.

(a) (b)

Fig. 11. Distribution of evolved chromosome1s with different number of controllable cells. (a) Results of CCA0. (b) Results of CCA2.

TABLE I
AVERAGE CHI-SQUARE, ENTROPY, AND SCC VALUES OF PCA/CCA PRNGS (C = 10 000; S = 10000)

B. Cycle Length

In addition to statistical tests, cycle length (the length of a

CA’s state cycle) is also important to determine whether or not

a CA is suitable for random number generation. We do not con-

sider it one of the objectives when evolving CCA PRNGs be-

cause the calculation of cycle length is too time consuming and

the value may not be stable under different initial seeds. To

verify our evolution results, we calculate the cycle lengths of

evolved CCA2/CCA0 PRNGs. Fig. 12 shows the cycle lengths

of 1-bit PCA 90–150, 2-bit PCA 90–105, evolved CCA0/CCA2

and 2-D CA PRNGs. The cycle lengths are calculated as average

values over 20 random initial seeds.

The results show that the cycle length of PCA 90–150 is the

smallest. The cycle length of CCA0 is greater than 2-bit PCA,

but less than CCA2. This matches with the conclusion we have

derived from the ENT tests that CCA2 is better than CCA0 in

random number generation. The average cycle length of 2-D CA

is greater than CCA0 but less than CCA2. It means that CCA

PRNGs can be better than or comparable to 2-D CA PRNGs.

The evolved three CCA0 PRNGs get closer cycle lengths and

it is the same case in CCA2. We can say that the randomness
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TABLE II
DIEHARD TEST RESULTS OF CCA/CA PRNGS

In each algorithm, the chromosome that obtains the best chi-square value is tested here.

Fig. 12. Average cycle lengths of CA PRNSs. Note: All the tested 1-D CA
PRNGs have 16 cells. 1: PCA90–150 PRNG. 2–4: evolved CCA0 PRNGs. 5–7:
evolved CCA2 PRNGs. 8: 2-D 4 � 4 CA PRNG. 9: 2-bit PCA90–105 PRNG.
Results are based on 20 initial seeds.

of evolved CCA PRNGs is stable. It will not vary greatly under

different evolved structures.

C. Time–Space Diagram

We present the 2-D time–space diagram of the evolved

CCA2/CCA0 PRNGs and 2-bit PCA PRNG in Fig. 13. Each

generator has 64 cells and runs for 200 time steps. The -axis

(a) (b) (c)

Fig. 13. Time–space diagram of evolved CCA2/CCA0 and 2-bit PCA.
(a) CCA2. (b) CCA0. (c) 2-bit PCA 90–105.

stands for cells from cell 1 to 64, while the -axis traces each cell

from time step 0 to 200 (from top to bottom). We can see that

none of the generators have obvious patterns in their diagrams.

Tomassini et al. presented the time–space diagram of their 2-D

CA PRNGs in [15]. The diagram shows that there is no obvious

pattern in 2-D CA PRNGs. From this point of view, we can say
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that the evolved CCA2/CCA0 PRNGs are as good as 2-D CA

PRNGs or 2-bit PCA PRNGs.

VII. CONCLUSIONS

Controllable CA is proposed in this paper and two types of
CCA—CCA0 and CCA2 are introduced. CCA0/CCA2 PRNGs
are evolved using the EMOO techniques. Two EMOO algo-
rithms based on VEGA and an evolutionary algorithm using an
aggregation function are described. Each of them can produce
good CCA PRNGs while the performance of Algorithms 1 and
2 is slightly better than that of Algorithm 3. The evolution re-
sults show that EMOO helps improve the randomness of CCA
PRNGs by evolving the setting of controllable cells and output
cells in them.

The evolved CCA2 PRNGs not only obtain good random-
ness quality, but also generate a better output efficiency than the
conventional cell spacing method. Comparison of the evolved
CCA2/CCA0 PRNGs shows that CCA2 is better than CCA0 in
random number generation. The setting of controllable cells and
output cells is more critical for CCA0 than CCA2 in generating
good random number sequences. Randomness test results on
the evolved CCA0/CCA2 PRNGs show they can be comparable
to the well-known 2-bit PCA and 2-D CA PRNGs. Moreover,
the cycle length and time–space diagram of these PRNGs are
presented. In our current work, we only consider average ran-
domness value and variance as objectives when evolving CCA
structures. Further, we may take into account other parameters
together as evolution objectives. For example, output efficiency
and cycle length are also important to evaluate the performance
of CA PRNGs and they can be considered as two objectives in
addition to the current six objectives used.
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