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Abstract

Nowadays, surface defect detection systems for steel strip have replaced traditional artificial inspection systems, and
automatic defect detection systems offer good performance when the sample set is large and the model is stable.
However, the trained model does work well when a new production line is initiated with different equipment,
processes, or detection devices. These variables make just tiny changes to the real-world model but have a significant
impact on the classification result. To overcome these problems, we propose an evolutionary classifier with a Bayes
kernel (BYEC) that can be adjusted with a small sample set to better adapt the model for a new production line. First,
abundant features were introduced to cover detailed information about the defects. Second, we constructed a series
of support vector machines (SVMs) with a random subspace of the features. Then, a Bayes classifier was trained as an
evolutionary kernel fused with the results from the sub-SVM to form an integrated classifier. Finally, we proposed a
method to adjust the Bayes evolutionary kernel with a small sample set. We compared the performance of this
method to various algorithms; experimental results demonstrate that the proposed method can be adjusted with a
small sample set to fit the changed model. Experimental evaluations were conducted to demonstrate the robustness,
low requirement for samples, and adaptiveness of the proposed method.
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1 Introduction
With the growth in competition among producers of steel

strip, the quality of the steel strip surface has become

very important. Steel strip quality and the surface quality

of structural products have assumed increasingly signif-

icant importance [1]. The importance of surface quality

requires that effective and efficient methods be imple-

mented to replace conventional artificial visual inspection

during which an expert can only inspect 0.05% of the

total steel surface, which can be easily impacted by fatigue

and other unfavorable conditions. Artificial inspection

cannot satisfy the quality requirements. Therefore, auto-

matic, high-accuracy steel surface inspection systems

have become essential to the production system.

Surface defect inspection systems mainly consist of

two parts: defect segmentation and defect processing.

Defect processing entails feature extraction and defect

classification. In recent years, abundant research has been
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conducted, and different kinds of feature extraction and

classification methods have been introduced to classify

steel strip surface defect. In [2, 3], the defects were

classified by using K-nearest neighbor (KNN) methods

with a co-occurrence matrix. Santanu Ghorai et al. [4]

described an automated visual inspection systemwith dis-

crete wavelet transform (DWT) features and a support

vector machine (SVM). Wu et al. [5] described an algo-

rithmwith an undecimated wavelet transform (UWT) and

a mathematical morphology to detect geometric defects

that achieved a 90.23% accuracy that is difficult to achieve

in real industrial application in 2008. However, in 2013, a

noise-robust method based on a completed local binary

proposed by Song [6] averaged 98% accuracy and was

shown to be effective enough to be applied to real produc-

tion. A review of vision-based steel surface inspection sys-

tems [1] indicates that most such systems have achieved

>90% accuracy.

For application to real production, some difficulties for

steel surface defect detection remain. In a real production

environment, different products can be produced on a sin-

gle production line, and some products are manufactured
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on several production lines at the same time. With the

passage of time, the physical conditions of the equip-

ment and of the detection device will both change. Each

of these variables has only a small impact on the real-

worldmodel; however, the classifier trained by the original

database will not work well on the changed real-world

model. If we trained every production line and every prod-

uct with a single database, it would take a long time for

a steel company to get a large enough sample set for a

newly built production line without a trained inspection

system.

Unfortunately, most research has focused on algorithms

that work only when a large number of samples is avail-

able, there little research has focused on this production

problem. Solly et al. proposed a rapidly evolving sys-

tem with an expert’s feedback; however, that research

describes an adaptive interactive evolution methodology

for determining parameters to control segmentation of

surface defects on images, and the classification accu-

racy will still be impacted by changing the real-world

model.

Therefore, to solve these issues, we propose an evo-

lutionary classifier with a Bayes kernel (BYEC) that

can be adjusted with small sample sets to fit the

changed model. Because the small changes to the real-

world model will impact some features of the clas-

sifier, the misclassification of the classifier is mainly

impacted by these features. Nevertheless, if we reduce

the impact of these features, we should be able to

restore the classifier to get a relatively high accuracy [7].

Thus, we built a classic classifier with an evolutionary

Bayes kernel and adjusted the kernel with a small sam-

ple set for the changed production model rather than

training every product and every production line with a

single data set.

Our technical contribution includes three points. First,

we propose an evolutionary classifier with a Bayes kernel

(BYEC) for steel defect classification. Second, we adopt

multiple SVMs to predict individual features, enabling

our evolutionary Bayes kernel to fit well with a small

sample set for the changed production model. Third,

and most importantly, we combine five selected fea-

tures and prove that our method has high accuracy, is

adaptive, and has a low requirement for samples in our

experiments.

The rest of the paper is organized as follows: Section 2

depicts the procedures of the surface defect inspection

system. Section 3 presents the features we used in this

paper. The method to build SVM subclassifiers on a ran-

dom subspace of features is provided in Section 4. The

method to build the Bayes kernel and evolve the ker-

nel is discussed in Section 5. Section 6 gives compara-

tive experimental results of this algorithm and research

on factors that affect the results. Finally, we conclude

this paper in Section 7 and give some suggestions for

future work.

2 Structure of the evolutionary classifier for steel
surface defects

An evolutionary surface defect inspection system should

be trained as a classic classifier and evolve to fit the

changed real world on the real production line with a

small sample set. The structure of the inspection sys-

tem is presented in Fig. 1. Our system mechanism

mainly involves three processes: defect acquisition, fea-

ture extraction, and defect classification.

The image acquisition system has been discussed in

much of the literature [8–10] and has become a mature

field, so we will not discuss it in this paper again.

As it illustrated in the Fig. 1, five kinds of features

were introduced in this system. The reason of this is

because the penalize of some features in the adjust-

ment process drop some useful information of the defect

and may lead to misclassification, so superfluous features

were imported. We integrated the uniform local binary

patterns (ULBP) [11], gray-level co-occurrence matrix

(GLCM) features [12], the histogram of oriented gradient

(HOG) feature, and gray-level histogram and Gabor fil-

ter features. These abundant features guarantee enough

information for the classifier. To utilize these features, a

multiple classifier system was imported into this classifier.

The classification part has two components in Fig. 1:

multiple SVM classifiers and a Bayes kernel classifier.

Compared with the classic steel surface inspection system,

the fuser Bayes kernel makes the key contribution to this

system by fusing the results from the multiple classifiers

and adjusting the hybrid parameters.

The SVM [13] is a popular small sample set learning

method. It offers very good performance for pat-

tern classification problems by minimizing the Vapnik-

Chervonenkis (VC) dimension and achieving a minimal

structural risk. Because of its small sample set require-

ment, fast learning capability, and good performance,

SVM is a good choice for this method. Because each SVM

classifier is trained by a subspace of the feature space,

we can evaluate and penalize the features by using the

corresponding SVM classifier.

A multiple classifier system (MCS) offers many

alternatives for unorthodox handing of realistic complex

problems [14], allowing us to exploit the potential of the

individual classifiers and get enhanced performance by

their combination. It can perform better than the individ-

ual classifiers and is easily implemented on parallel, mul-

tithreaded, and distributed architectures, which is very

important for the real-time production environment. The

critical aspect of a MCS is that it is well suited to treat-

ing drift, which means that the statistical dependencies

between object features and its classification may change
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Fig. 1 Structure of the evolutionary classifier for steel surface defects using a Bayes kernel

in time so that future data may be badly processed if we

maintain the same classification. Drift decreases the accu-

racy of the classification result, the individual classifier

evaluation is done on their accuracy on the new data.

The best performing classifiers are selected to constitute

the MCS committee after every loop. Kolter et al. [15]

described a dynamic weighted majority algorithm. We

also use an evolvable weighted method to change our

classifier with time.

The method to fuse the subclassifiers must be adjusted

with a small sample set and the accuracy of the subclas-

sifiers must be evaluated; therefore, the Bayes classifier

is a good candidate as it builds a reference from prior

probability to posterior probability. We can score the per-

formance of the classifiers on the changed model by the

posterior probability. With a small sample set, we can get

the approximate posterior of the classifiers and use it to

reweight the integrated classifier to fit the real model. A

Bayes kernel was built based on this concept.

Figure 2 depicts the processes to adjust the Bayes ker-

nel, which is executed in three steps. First, defect images

are classified by the SVM subclassifiers, then the defect

images are classified by the expert, and, finally, the results

of the classifiers and the corresponding tagged data are
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Fig. 2 Process to adjust the classifier with samples from a changed production line

used to train the Bayes kernel classifier. This Bayes clas-

sifier is combined with the multiple SVM classifiers as an

integrated classifier.

3 Extraction of features
To avoid the lack of information after integration, we

introduce redundant features to overcome this weakness.

Five different kinds of features are extracted in the inspec-

tion system to describe the properties of texture, color,

and shape, respectively. The feature space consists of a

gray-level co-occurrence matrix, a uniform local binary

pattern, a histogram of oriented gradient, a gray-level

histogram, and a Gabor filter.

3.1 Gray-level co-occurrence matrix

Gray-level co-occurrencematrix is aNg×Ng matrix where

Ng is the number of gray levels in the image, this matrix

reflects the direction, adjacent distance, and change range

of the image. Every value in the matrix represents a joint

probability that two gray-level pixels exist with a distance

of d and a direction θ , it is defined in Eq. 1. Where matrix

C is computed over an n × m image I , d and θ are

described by �x and �y that �x = sin(θ) × d, �y =

cos(θ) × d. Where i and j are the image intensity values of

the image, p and q are the spatial positions in the image.

C�x,�y(i,j)=

p=1
∑

n

q=1
∑

m

{

1, if I(p, q)= i and I(p+�x, q+�y)= j

0, otherwise

(1)

The GLCM is sensitive to rotation, so we choose four

directions 0°, 45°, 90°, and 135° to cover more information

and select a distance of 8. The dimensions of the GLCM is

too large for us to process, so we choose Haralick features

[12] to describe it which calculates the correlation, energy,

contrast, entropy, and inertia quadrature of the GLCM.

Finally, we get a vector to describe the GLCM feature.

3.2 Histogram of oriented gradient and gray level

The histogram is a key tool in image processing, it is one of

themost useful techniques in gathering information about

a matrix. The gray-level histogram of the defect image

represents the distribution of the pixels over the gray-level

scale and reflects the contrast, gray level, and other infor-

mation of the image. It can be visualized as if each pixel

is placed in a bin corresponding to the color intensity of

that pixels. We make the histogram of the defect image to

40 bins and turn it into a feature vector as the gray-level

feature.

Dalal Navneet and Triggs Bill proposed the histogram of

oriented gradient in 2005 [16], this feature is used in com-

puter vision and image processing for object detection,

which counts the occurrences of the oriented gradient in

an image. The image can be described by the distribution

of intensity gradients and edge directions. In convention-

ally procedure, the image is divided into many small cells

and calculated respectively, but in this paper, we make the

histogram on the whole picture.

Gx = H(x + 1, y) − H(x − 1, y)

Gy = H(x, y + 1) − H(x, y − 1)

G(x, y) =

√

Gx(x, y)
2 + Gy(x, y)

2

α(x, y) = tan−1

(

Gy(x, y)

Gx(x, y)

)

(2)

Equation 2 defines the gradient orientation and value,

Gx is the gradient value of x orientation, Gy is the gradi-

ent value of y orientation, G(x, y) represents the gradient

value, and α(x, y) represents the orientation of the pixel.

As the Fig. 3 described, we firstly convert the defect image

to the orientation image (gray level range from 0° to 180°),
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Fig. 3 Process to convert defect image to HOG feature vector

then we make the histogram of the image with 50 chan-

nels. Finally, we get the value of every bin and convert it to

a feature vector to represent the HOG.

3.3 Uniform local binary pattern

The local binary pattern (LBP) is one of the most success-

ful statistical approaches for texture classification due to

its gray-scale and rotation invariance, this feature reflects

the local texture of the image. LBP filter is a 3 × 3 win-

dow. As it defined in Eq. 3, the gray level of the center pixel

is set as the threshold, gray value of the adjacent 8 pixels

around center pixel is compared with the threshold. If the

value of a surrounding pixel is larger than the threshold,

the position of this pixel is marked as 1, otherwise 0.

LBPP =

P−1
∑

p=0

s(gp − gc)2
p, s(x) =

{

1 if x � 0

0 if x < 0
(3)

One local binary filter can produce 2p different values,

and this dimension is too high for us to process. Ojala [11]

proposedULBP to reduce the dimension of the LBP. ULBP

introduces a uniformity measure U which corresponds to

the number of spatial transitions (between [0, 1]) in the

pattern. For example, U(000000012) and U(000000102)

equal 2 as they have two transitions between [0, 1] . The

U value of most LBPs is not greater than 2, and the num-

ber of these LBPs is 57. The ULBP is defined as Eq. 4, a

unique id is assigned to a pattern that its U value is not

greater than 2, so we reduce the dimension from 256 to

58. As Fig. 4 described, to get the ULBP feature, firstly, we

convert the defect image to a ULBP image and then we

make the histogram of the ULBP image and convert the

histogram to a feature vector.

ULBPP =

{

id(LBP) if U (LBP(x)) � 2

58 if U (LBP(x)) < 2
(4)

3.4 Gabor filter

The Gabor filter is used for edge detection in image pro-

cessing, the frequency and orientation representations of

Gabor filters are similar to those of the human visual

system and efficient to describe the texture. Its impulse

response is defined by a sinusoidal wave multiplied

by a Gaussian function. Because of the multiplication

convolution property (Convolution theorem), the Fourier

transform of a Gabor filter’s impulse response is the con-

volution of the Fourier transform of the harmonic func-

tion and the Fourier transform of the Gaussian function.

The filter has a real and imaginary component represent-

ing orthogonal directions [17]. We only take the real part

of the Gabor filter in this paper. The real Gabor filter

kernel is defined as Eq. 5.

g(x, y; λ, θ ,ψ , σ , γ )=exp

(

−
x

′2 + λ2y
′2

2θ2

)

cos

(

2π
x

′

λ
+ ψ

)

(5)

λ is the wavelength of the sinusoidal factor, θ repre-

sents the orientation of the normal to the parallel stripes

of the Gabor function,ψ represents the phase offset of the

sinusoidal function, σ represents the sigma deviation of

the Gaussian envelope, and γ represents the spatial ratio.

As depicted in Fig. 5, in this paper, we make a Gabor fil-

ter bank with λ(2, 3, 4, 5, 6) and θ
(

0, 18π ,
2
8π ,

3
8π ,

4
8π ,

5
8π ,

6
8π ,

7
8π

)

, totally with 40 Gabor filter kernels, and apply

convolution on the defect image with these Gabor filters

and get 40 Gabor images. Wemake a Gabor feature vector

composed of the energy of these Gabor images.

4 The SVM subclassifiers on a random subspace
of features

After feature extraction, we get a feature vector of dimen-

sions. In general, when the feature dimensions are too

large compared with the scale of the sample set, over-

fitting problems can arise. Therefore, instead of training

one classifier to cover all the feature space, we separate

the features with a random sampling scheme without

replacement and keep almost equal dimensions for every
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Fig. 4 Process to convert defect image to ULBP feature vector

subspace. We choose a feature subspace with the ran-

dom sampling scheme rather than with a feature category

or in sequence for two reasons: (1) the feature punished

will involve features nearby that may contain some useful

information and not interfered by the real-world model,

and (2) features nearby may contain the same information

and the classifier will not get a good result with nearby

features.

To overcome the small sample set issue on the produc-

tion line, we introduce a support vector machine, which

has been widely used in many areas, such as computer

vision, natural language processing, and neuroimaging,

for its good performance, fast training capability, and

small sample set requirements for labeled samples.

There are six kinds of defects in the database which we

used for the experiment, as SVM is a binary classifier, we

implemented the multiclass classification with the “one-

against-one” scheme which is usually applied for binary

classifier [18, 19]. For every multiclass SVM classifier in

this paper, the number of binary SVM classifiers we need

Fig. 5 Process to convert defect image to Gabor feature vector
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is defined as Eq. 6, the k is the number of classes exists in

data set.

nSVM = k(k − 1)/2 , where k ≥ 1. (6)

Corinna describes the standard SVM for two classifica-

tions in [20] within the structural risk minimization. The

key of SVM is to find the hyperplane to minimize the

distance between the two classes to be separated.

With a training vectors xi ⊆ Rn, i = 1, . . . , l, belong to

two classes, and vector y ⊆ Rl such that yi ⊆ {1,−1} indi-

cate the class of the corresponding data, the SVM try to

solve the following minimization problem in Eq. 7:

min
w,b,ξ

1

2
wTw + C

l
∑

i=1

ξi

subject to yi

(

wTφ(xi) + b
)

≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , l,

(7)

the ξi is a map function which maps xi into higher feature

space make the points easily to be separated and C > 0 is

the regularization parameter,w is the weight vector for the

feature space. To solve the possible high dimensionality of

the vector w, we usually convert it to the dual problem as

Eq. 8 presents:

min
α

1

2
αTQα − eTα

subject to yTα = 0,

0 ≤ αi ≤ C, i = 1, . . . , l.

(8)

In which e = [1, . . . , 1]T is the vector of all ones, Q

represents an l by l positive semidefinite matrix, Qij ≡

yiyjK(xi, xj), and K(xi, xj) ≡ φ(xi)
Tφ(xj) is the kernel

function.

Then, the problem is solved with the primal dual rela-

tionship, we can calculate the w with Eq. 9.

w =

l
∑

i=1

yiαiφ(xi) (9)

Finally, we can classify the data points with the Eq. 10:

sgn
(

wTφ(x) + b
)

= sgn

⎛

⎝

l
∑

i=1

yiαiK(xi, x) + b

⎞

⎠ . (10)

For the classification of ith and jth classes, we solve it

with the Eq. 11 deduced from Eq. 7.

min
wij ,bij ,ξ ij

1

2
wijTwij + C

∑

t

(

ξ ij
)

t

subject to wijTφ(xt) + bij ≥ 1 − ξ
ij
t , if xt in the ith class

wijTφ(xt) + bij ≥ 1 − ξ
ij
t , if xt in the jth class

ξ
ij
t ≥ 0 (11)

We combine the results from the binary classifier with

a voting scheme: every binary classifier has a vote, and a

data point is classified into the class with the maximum

number of votes. To solve the clash of the same votes, we

simply choose the class with the greater sequence num-

ber. In addition, we increase the sequence number for the

classes with every multiclass SVM to avoid accumulated

deviations. A simple example indicates the risks without

this strategy: Assumewe have three classes,A, B, andC, all

with the same accuracy and scale. Then, samples classified

into A are least.

5 Combining subclassifiers by using the Bayes
kernel

The combination of the subclassifiers is very important

to this evolutionary classifier because it not only response

for improving the performance of the final integrated clas-

sifier but also for the ability to evolve itself to fit the

new changed model. Many ensemble methods have been

presented [21–23]; however, these methods do not suit

this adaptive inspection system. This is because (1) these

methods are sensitive to the size of the training sample set

(although, even for a mature production line, there are not

too many labeled samples), and (2) the fusion of classifiers

may be biased from the combination of samples from the

changed model.

For these reasons, we propose a new fusion strategy

based on a native Bayes classifier. This is a highly practi-

cal Bayesian learning method deduced from the Bayesian

theorem

P(Bi|A) =
P(Bi)P(A|Bi)

∑n
i=1 P(Bi)P(A|Bi)

(12)

This theorem was proposed for about 300 years by

Thomas Bayes 12 and has developed into a great branch

of machine learning. In some domains, it is presented

as comparable to neural networks and to other machine

learning methods. The naive Bayes classifier f (x) is

described by a conjunction of attribute values when the

f (x) is limited to a finite set V.

In Bayes learning, the training examples are described

by a feature vector (a1, a2, a3. . .an)
T ; the Bayes classi-

fier makes decisions based on the probability for every

possible value and selects the most portable target.

In this model, we assign every subclassifier as a fea-

ture in the feature vector and described it as a prob-

ability matrix. The feature vector of the Bayes vector

is defined as (D1,D2,D3. . .Dm)T , the Di is the deci-

sion made by the ith classifier, and the decision of the

Bayes classifier is taken from a finite set V (v1, v2. . .vn).
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The prior probability that the ith classifier make decision

k and the real class is j is defined as Eq. 13.

P(R = j|Di = k) =
1

m

m
∑

i=1

{

1 if Di = k and R = j

0 otherwise

(13)

The variable m describes the number of the samples;

then, we can deduce the post probability of the decision j,

that the ith classifier make decision k, defined by Eq. 14:

P(Di = k|R = j) =
P(R = j|Di = k)

∑n
l=1 P(R = j|Di = l)

. (14)

The advisable number of decisions that the classifier can

make is defined by the variable n. With this post prob-

ability for every individual classifier, the Bayes classifier

can make decisions based on a multinomial model [24].

The naive Bayes classifier uses the simplifying assump-

tions that the attribute values are conditionally indepen-

dent and that individual classifiers are independent in this

model. The probability of observing the conjunction of

classifiers D1,D2,D3 . . .Dm is just the product of the post

probability of the individual classifiers, in which case, our

Bayes classifier will make a decision based on Eq. 15.

v = argmax
vl∈V

P(R = l)

m
∐

i=0

P(R = l|Di) (15)

The key structure of the naive Bayes fusion kernel in this

model is the post probability matrix for individual classi-

fiers that we trained with labeled samples. To adjust our

model to fit the changed real-world model, we changed

the post probability matrix.

As depicted in Fig. 2, to evolve the Bayes kernel, a new

post probability matrix was trained to replace the old one

with the labeled samples from the changed production

line. The new classifier model is combined by the naive

Bayes kernel with a new post probability matrix and SVM

subclassifiers. The Bayes classifier takes advantage of not

only the true positive result but also the true negative

result from the subclassifiers. Because some subclassi-

fiers may lose efficacy after a real-world model change

and make a biased classification, this message can also be

utilized by the integrated classifier.

6 Experimental results
To evaluate the effectiveness of the inspection system

for surface defects, a surface defect data set was used.

We then compared this approach with some other

classification methods. In addition, some factors were

examined that demonstrate how they affected classifica-

tion accuracy.

6.1 Experiment implementation details

The accuracy of this evolutionary classifier has been

compared with other classifiers such as SVM [25], NN-

BP [26], and KNN [3]. To reveal the fairness of the clas-

sifier, a surface defect database, the NEU surface defect

database1 [6] was used. There are six kinds of typical

defects of the hot-rolled steel strip surface in the database

and 1800 gray-scale images, with 300 samples for every

defect: rolled in scale (RS), crazing (CR), inclusion (IN),

patches (PA), scratches (SC), and pitted surface (PS).

Defect images collected and sampled at resolution are

presented in Fig. 6.

The bias between different production lines is mainly

caused by electronic circuit noise and sensor noise owing

poor illumination and/or high temperature and these fac-

tors often lead to Gaussian noise in image acquisition [27],

so we added Gaussian noise to the NEU database with

different variances to simulate the defect images from

different changed production lines. Fourteen contrasting

data sets are used with standard deviations from (0− 13),

the data with 0 deviation are the original data set. Paired

photographs are shown in Fig. 7.

6.2 Adaptiveness of the classifier

To evaluate the adaptiveness of this evolutionary inte-

grated classifier, the original NEU defect data set and 13

defect data sets formed by adding noise to the NEU defect

data set were used. The standard deviations of the noise

added to the NEU defect set were used (0–13), with an

equal mean of 0. A total of 212 features were extracted

from every defect image.

A BYEC classifier composed of 25 SVM subclassi-

fiers was trained by 70% of the original NEU defect

data set, and the remaining 30% of the data were used

to evaluate the accuracy of the BYEC classifier on the

original data set. Then, we randomly sampled 10% of

the processed data sets to adjust our BYEC classifier.

Finally, the accuracy of the adjusted BYEC classifier and

the original classifier on the processed data set were tested

by the remaining 90% of the processed data. As for the

BYEC classifier, 70% of the original data set were used

to train the KNN, BPNN, and SVM classifier and 30%

were used to evaluate the accuracy on the original data

set, then the accuracy of these classifiers on the processed

data set was tested by 90% of the processed data set. The

BPNN and KNN parameters were determined by cross-

validation testing. The average accuracy of the classifiers

on every data set was run 100 times, and the data sets were

sampled individually.

Figure 8 depicts the accuracy obtained by using the

KNN, BPNN, SVM, original BYEC, and BYEC classifiers.

The standard deviation of the defect samples ranges from

0 to 13 and increases by 1 at each iteration, so the first

data set is the original data set, the second has added



Xiao et al. EURASIP Journal on Image and Video Processing  (2017) 2017:48 Page 9 of 13

Fig. 6 Defect images, with each row being one of the six typical surface defects in the NEU database of sampling from 300 samples for one class

Gaussian noise with standard deviation 1, and so on. The

accuracy associated with the SVM is higher than the cor-

responding values for the KNN, original BYEC, and BYEC

classifiers for the original data set, but the accuracies of

the SVM, KNN, BPNN, and original BYEC classifiers all

decline as the standard deviation increases. The accura-

cies of the KNN, SVM, and BPNN classifiers decline by

nearly 30%, and the original BYEC classifier declines a lit-

tle more slowly than them. One possible reason for the

slower decrease of the original BYEC classifier may be

Fig. 7 Paired photographs of defects
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Fig. 8 Accuracy of different classifiers on the defect samples with different standard deviations (0 − 13)

that more subclassifiers balance the bias from the original

data set.

However, the increase of standard deviation has little

impact on our BYEC classifier. It can be observed that this

proposed method is more adaptive to different standard

deviations in comparison with other classifiers. The accu-

racy of the BYEC classifier on the original data is lower

than that of the SVM classifier, perhaps because of infor-

mation loss from the combination of SVM classifiers. The

original BYEC classifier without an adjustment process

also suggests a relatively high adaptiveness compared with

other classifiers.

6.3 Number of the sub-SVM classifiers

The number of sub-SVM classifiers, defined as k, is a key

parameter for our BYEC classifier. It decides the particle

size to which our system can be adjusted. The purpose of

this section is to examine how k affects the accuracy and

the adaptiveness of the BYEC classifier.

We trained five BYEC classifiers with k=5, 15, 25, 35,

and 45. These classifiers were trained as described in

Section 6.2 with the original defect set, and they were

adjusted with 10% of the processed data and tested with

90% of the data set for evaluation. The experimental

results are presented in Fig. 9. The highest accuracy on

the original defect set is acquired by the classifier with

k = 5, but the accuracy dropsmore rapidly compared with

the other classifiers that perform at lower accuracy on the

defect set with highest noise. The classifier with k = 25

gives the third highest accuracy compared to the original

data set but acquires the highest accuracy on the defect set

with the highest bias to the original data set. This figure

Fig. 9 Accuracy of BYEC classifiers with different k values (5, 15, 25, 35, and 45) on the defect samples with different standard deviations (0 − 13)
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suggests that the BYEC classifier is more adaptive with a

larger k value, but lower accuracy will be achieved with

the BYEC classifier on the original data set.

As the results indicate in Fig. 9, k should be set with

the real production environment. The BYEC classifier

should be set with a larger k value when higher adaptive

performance is needed. However, to avoid information

loss, we should set the BYEC classifier with a smaller k

value when the changed model has a small bias with the

original model.

6.4 Set size of the sub-SVM classifiers

An important characteristic of classifiers is the size of the

sample set that used to train the classifier. The more sam-

ples that are supplied, the more information the classifier

machine can learn about the model. For our BYEC clas-

sifier, the accuracy of the subclassifiers can be evaluated

more precisely with more samples.

The Fig. 10 depicts the accuracy of BYEC classifiers

adjusted by different sizes of the samples. All the classifier

were performed on the data set described at Section 6.2.

We can see that the classifiers trained by 10% reach a low-

est accuracy and have least adaptive, but the classifiers

trained by 30% reached fairly good performance that the

classifiers with more samples adjusted have little advan-

tage over this classifier on accuracy and adaptive. Even in

the defect set with standard deviation 13, the gap between

the BYEC classifier trained by 10 and 50% is 1.01%. This

illustrated that our BYEC converged very fast and the low

requirement for the sample size.

Figure 10 depicts the accuracy of BYEC classifiers

adjusted by different sizes of the samples. All the classi-

fiers were used on the data set described in Section 6.2.

We can see that the classifiers trained by 10% reach the

lowest accuracy and are the least adaptive, but the clas-

sifiers trained by 30% reach fairly good performance and

classifiers with more samples adjusted have little advan-

tage over this classifier in terms of accuracy and adap-

tiveness. Even in the defect set with a standard deviation

of 13%, the gap between the BYEC classifier trained by

10% and that trained by 50% is only 1.01%. This illustrates

that our BYEC classifier converged very fast and the low

requirement for sample size.

6.5 Evaluating the effect of features

The five types of features selected are able to capture the

properties of texture, color, and shape, respectively. Those

features are described in detail by Neogi and proved

to be very important for classifying steel defects [1].

To evaluate the effect of each feature, when the num-

ber of features is less than four, we observe that the

accuracy of our method dropped very significantly, with

accuracy barely reaching 70%. Therefore, we discuss the

meaningful situation in which four features are used to

classify the steel.

The Fig. 11 shows the accuracy of EFIC classifiers

adjusted by different features. All the classifiers were used

on the data set described at Section 6.2.

As shown in Fig. 11, the accuracy of EFIC classifiers

without the Gabor feature is the lowest. However, the

Fig. 10 Accuracy of BYEC classifiers adjusted by different sizes (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6) on the defect samples with different standard deviations
(0 − 13)
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Fig. 11 The accuracy of BYEC classifiers adjusted by different features on the defect samples with standard deviations (0 − 13)

Gabor feature is the most suitable for texture representa-

tion and discrimination of steel defect classification.

In contrast, the accuracy of EFIC classifiers without

GLH is the highest. This demonstrates that the GLH fea-

ture is the least suitable for steel defect classification. The

main reason for this is that the GLH feature can only cap-

ture gray features but not texture and or shape. Other

good performance features followed by four features no

HOG, GLCM, and LBP.

In conclusion, in our experiments, the absence of any

one feature of EFIC classifiers significantly reduced the

accuracy. Therefore, by combining these five features, our

method can obtain satisfactory accuracy for steel defect

classification.

7 Conclusions
Because accuracy decreases in steel surface classifica-

tion systems with a changed production line model, in

this research, we propose an evolutionary method that

can be adjusted with a small sample set to fit a changed

model and maintain relatively high accuracy. First, to

overcome information loss in the process of evolution, we

proposed five kinds of features that cover texture, color,

and shape, respectively. Second, random subspace SVM

classifiers are proposed to conquer the overfitting prob-

lem and fit for adjustment. Then, we introduced a naive

Bayes machine to fuse the results from SVM subclassi-

fiers that suits the adjustment and requires a small sample

set. Finally, we introduced a simple method to adjust the

Bayes kernel. The experimental results indicate that the

BYEC algorithm is more adaptive with changed steel sur-

face defect data set compared with other algorithms. Our

research suggests that the adaptiveness of the classifier is

highly related to the parameter k; with the growth of k, the

BYEC classifier shows a greater adaptiveness but, unfor-

tunately, with some accuracy loss on the original data set.

The small sample set requirement was shown to have been

fulfilled from the experiment results.

With the advantages and disadvantages of the BYEC

algorithm, in a new production line, we can use the orig-

inal BYEC algorithm without any labeled samples on the

changed model; with the growth of the sample set size, we

can adjust the BYEC model to become more adaptive. A

new classifier can be trained to replace the old classifier as

the relatively low accuracy on large sample set. Our future

work will focus on increasing the accuracy on both a large

sample set and a changed production model. Meanwhile,

more noise-robust methods can be combined with this

method to increase the adaptiveness.

Endnote
1NEU surface defect database is the the Northeastern

University (NEU) surface defect database, download link:

http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_

database.html.
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21. M Göksedef, Ş Gündüz-Öğüdücü, Combination of web page
recommender systems. Expert Syst. Appl. 37(4), 2911–2922 (2010)

22. C Porcel, A Tejeda-Lorente, M Martínez, E Herrera-Viedma, A hybrid
recommender system for the selective dissemination of research
resources in a technology transfer office. Inf. Sci. 184(1), 1–19 (2012)

23. C Cabral, M Silveira, P Figueiredo, Decoding visual brain states from fMRI
using an ensemble of classifiers. Pattern Recognit. 45(6), 2064–2074 (2012)

24. M Vangelis, L Androutsopoulos, P Georgios, in CEAS 2006 Third Conference

on Email and AntiSpam (CEAS 2006). Spam filtering with naive bayes-which
naive bayes? (Mountain View, 2006). www2.aueb.gr/users/ion/docs/
ceas2006_paper.pdf

25. Y-J Jeon, D-C Choi, JP Yun, C Park, SW Kim, in Control, Automation and

Systems (ICCAS) 2011 11th International Conference on. Detection of scratch
defects on slab surface (IEEE, 2011), pp. 1274–1278. http://ieeexplore.ieee.
org/document/6106307/

26. M Yazdchi, M Yazdi, AG Mahyari, in Digital Image Processing, 2009

International Conference on. Steel surface defect detection using texture
segmentation based on multifractal dimension (IEEE, 2009), pp. 346–350.
http://ieeexplore.ieee.org/document/5190595/

27. RC Gonzalez, Digital image processing. (Pearson Education, India, 2009).
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/
Digital_Image_Processing_3rdEd_truncated.pdf

http://dx.doi.org/10.1109/TIM.2012.2218677
http://ieeexplore.ieee.org/document/4566708/
http://ieeexplore.ieee.org/document/4636548/
http://ieeexplore.ieee.org/document/4636548/
http://ieeexplore.ieee.org/document/5579393/
http://ieeexplore.ieee.org/document/5579393/
http://www.il-photonics.com/cdv2/Illumination%20tech-Light%20Sources/white%20papers/surface_inspection.PDF
http://www.il-photonics.com/cdv2/Illumination%20tech-Light%20Sources/white%20papers/surface_inspection.PDF
http://www.il-photonics.com/cdv2/Illumination%20tech-Light%20Sources/white%20papers/surface_inspection.PDF
http://ieeexplore.ieee.org/document/4309314/
http://ieeexplore.ieee.org/document/4309314/
http://ieeexplore.ieee.org/document/1250911/
http://ieeexplore.ieee.org/document/1250911/
http://ieeexplore.ieee.org/document/1467360/
http://ieeexplore.ieee.org/document/1467360/
https://www.yumpu.com/en/document/view/44234347/3d-surface-tracking-and-approximation-using-gabor-filters-covil
https://www.yumpu.com/en/document/view/44234347/3d-surface-tracking-and-approximation-using-gabor-filters-covil
https://www.yumpu.com/en/document/view/44234347/3d-surface-tracking-and-approximation-using-gabor-filters-covil
http://dl.acm.org/citation.cfm?id=299108
http://dl.acm.org/citation.cfm?id=299108
www2.aueb.gr/users/ion/docs/ceas2006_paper.pdf
www2.aueb.gr/users/ion/docs/ceas2006_paper.pdf
http://ieeexplore.ieee.org/document/6106307/
http://ieeexplore.ieee.org/document/6106307/
http://ieeexplore.ieee.org/document/5190595/
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Digital_Image_Processing_3rdEd_truncated.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Digital_Image_Processing_3rdEd_truncated.pdf

	Abstract
	Keywords

	Introduction
	Structure of the evolutionary classifier for steel surface defects
	Extraction of features
	Gray-level co-occurrence matrix
	Histogram of oriented gradient and gray level
	Uniform local binary pattern
	Gabor filter

	The SVM subclassifiers on a random subspace of features
	Combining subclassifiers by using the Bayes kernel
	Experimental results
	Experiment implementation details
	Adaptiveness of the classifier
	Number of the sub-SVM classifiers
	Set size of the sub-SVM classifiers
	Evaluating the effect of features 

	Conclusions
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

