
296 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

An Evolutionary Clustering Algorithm for Gene
Expression Microarray Data Analysis
Patrick C. H. Ma, Keith C. C. Chan, Xin Yao, Fellow, IEEE, and David K. Y. Chiu

Abstract—Clustering is concerned with the discovery of in-
teresting groupings of records in a database. Many algorithms
have been developed to tackle clustering problems in a variety of
application domains. In particular, some of them have been used
in bioinformatics research to uncover inherent clusters in gene
expression microarray data. In this paper, we show how some
popular clustering algorithms have been used for this purpose.
Based on experiments using simulated and real data, we also show
that the performance of these algorithms can be further improved.
For more effective clustering of gene expression microarray data,
which is typically characterized by a lot of noise, we propose
a novel evolutionary algorithm called evolutionary clustering
(EvoCluster). EvoCluster encodes an entire cluster grouping in
a chromosome so that each gene in the chromosome encodes one
cluster. Based on such encoding scheme, it makes use of a set
of reproduction operators to facilitate the exchange of grouping
information between chromosomes. The fitness function that the
EvoCluster adopts is able to differentiate between how relevant
a feature value is in determining a particular cluster grouping.
As such, instead of just local pairwise distances, it also takes into
consideration how clusters are arranged globally. Unlike many
popular clustering algorithms, EvoCluster does not require the
number of clusters to be decided in advance. Also, patterns hidden
in each cluster can be explicitly revealed and presented for easy
interpretation even by casual users. For performance evaluation,
we have tested EvoCluster using both simulated and real data.
Experimental results show that it can be very effective and robust
even in the presence of noise and missing values. Also, when corre-
lating the gene expression microarray data with DNA sequences,
we were able to uncover significant biological binding sites (both
previously known and unknown) in each cluster discovered by
EvoCluster.

Index Terms—Bioinformatics, clustering, DNA sequence anal-
ysis, evolutionary algorithms (EAs), gene expression microarray
data analysis.

I. INTRODUCTION

G IVEN a database of records each characterized by a set of
attributes, the clustering problem is concerned with the

discovering of interesting groupings of records based on the
values of the attributes. Many algorithms have been developed
to tackle different clustering problems in a variety of application
domains and they have been proven to be very effective [1]–[3].

Manuscript received April 29, 2004; revised February 2, 2005; July 20, 2005.
This work was supported in part by the Hong Kong Polytechnic University under
Grant RG1E.

P. C. H. Ma and K. C. C. Chan are with the Department of Computing,
Hong Kong Polytechnic University, Kowloon, Hong Kong, China (e-mail:
cschma@comp.polyu.edu.hk; cskcchan@comp.polyu.edu.hk).

X. Yao is with CERCIA, School of Computer Science, University of Birm-
ingham, Birmingham B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

D. K. Y. Chiu is with the Biophysics Interdepartmental Group and the De-
partment of Computing and Information Science, University of Guelph, Guelph,
N1G 2W1 ON, Canada (e-mail: dchiu@snowhite.cis.uoguelph.ca).

Digital Object Identifier 10.1109/TEVC.2005.859371

Recently, some of these algorithms have been used to uncover
hidden groupings in gene expression microarray data [4]–[6].

Gene expression is the process by which a gene’s coded infor-
mation is converted into the structures present and operating in a
cell. Gene expression occurs in two major stages: transcription
and translation. During transcription, a gene is copied to pro-
duce an RNA molecule (a primary transcript) with essentially
the same sequence as the gene; and during translation, proteins
are synthesized based on the RNA molecule. If one would like to
prevent an undesirable genes, such as cancerous genes, from ex-
pressing, the transcription process should be prevented as much
as possible from taking place so that the corresponding undesir-
able functional proteins will not be synthesized [7], [8].

To prevent the transcription process of undesirable genes
from taking place, a set of transcription factor binding sites
must be located. These sites consist of untranscribed nucleotide
sequences located on the promoter regions of the genes and
are responsible for activating and regulating the process. If
they are located, we can then bind appropriate molecules,
such as protein repressors, to these sites so that the genes
they correspond to cannot be activated [8]. To locate these
transcription factor binding sites, coexpressed genes may need
to be identified. Coexpressed genes are genes that have similar
transcriptional responses to the external environment (e.g.,
temperature, pH value, pressure, etc). This can be an indication
that they are coregulated by the same transcription factors and
therefore have common binding sites. To identify coexpressed
genes, one can cluster the gene expression microarray data
obtained by performing DNA microarray experiments [9]–[15]
on these genes. Genes that are grouped into a cluster are likely
to be coexpressed genes. By analyzing the promoter regions
of these genes, we may be able to discover patterns, which
have relatively high occurring frequencies compared with other
sequence fragments, that are possible binding sites of these
genes [16].

Three popular clustering algorithms have been used to cluster
gene expression microarray data. They include the hierarchical
clustering algorithm [4], the -means algorithm [5] and the self-
organizing map (SOM) [6]. Using simulated and real microarray
data, we compared and contrasted the performance of these al-
gorithms (in Section IV). Since various types of noise are nor-
mally introduced at different experimental stages during data
collection, such as when producing the DNA array, preparing
biological samples, and extracting of the results, etc. [17], the
performance of these algorithms are less than ideal [18]. To ef-
fectively handle noisy data, we need an algorithm that is able to
overcome noise. Here, we propose such an algorithm for clus-
tering gene expression microarray data. This algorithm, which

1089-778X/$20.00 © 2006 IEEE

MA et al.: AN EVOLUTIONARY CLUSTERING ALGORITHM FOR GENE EXPRESSION MICROARRAY DATA ANALYSIS 297

we call the EvoCluster algorithm, is based on the use of an
evolutionary approach. Compared with other evolutionary and
nonevolutionary based clustering algorithms, EvoCluster has a
number of desirable characteristics.

1) It encodes the entire cluster grouping in a chromosome1

so that each gene encodes one cluster and each cluster
contains the labels of the data records grouped into it.

2) Given the above encoding scheme, it has a set of crossover
and mutation operators that facilitates the exchange of
grouping information between two chromosomes on one
hand and allows variation to be introduced to avoid trap-
ping at local optima on the other.

3) It makes use of a fitness function that measures the in-
terestingness of a particular grouping of data records en-
coded in a chromosome.

4) Unlike similarity measures that are based on local pair-
wise distances [19] that may not give very accurate mea-
surements in the presence of very noisy data, the proposed
interestingness measure is probabilistic and it takes into
consideration global information contained in a particular
grouping of data.

5) It is able to distinguish between relevant and irrelevant
feature values in the data during the clustering process.

6) It is able to explain clustering results discovered by explic-
itly revealing hidden patterns in each cluster in an easily
understandable if-then rule representation.

7) There is no requirement for the number of clusters to be
decided in advance.

For performance evaluation, we have tested EvoCluster using
both simulated and real data. Experimental results show that it
can be very effective and robust even in the presence of noisy
and missing values.

The rest of this paper is organized as follows. In Section II, we
provide an overview of the existing clustering algorithms used
for identification of coexpressed genes. In Section III, the pro-
posed evolutionary algorithm called EvoCluster is described in
details. In Section IV, we discuss how EvoCluster can be eval-
uated and compared with some existing clustering algorithms
using both simulated and real data. The evaluation results and
the biological interpretation of the clusters discovered by Evo-
Cluster are then presented and discussed. In Section V, we give
a summary of this paper and make a proposal on the directions
for future work.

II. CLUSTERING ALGORITHMS FOR IDENTIFICATION OF

COEXPRESSED GENES

Of the many existing clustering algorithms, some of them, in-
cluding the hierarchical agglomerative clustering algorithm [1],
the -means algorithm [2] and the SOM [3], have been used to
cluster gene expression microarray data. These algorithms can
be described briefly below.

1Since the development of evolutionary algorithms have, in some instances,
taken great liberty with biological terms and theory. Such terms as chromosomes
and genes, when used in a computational context, may not have the same mean-
ings as their biological counterparts. In order to avoid possible confusion, when
referring to these terms in the contexts of evolutionary computation, they are
made italic.

Let us assume that we are given a set of gene expression mi-
croarray data, , consisting of the data collected from genes
in experiments each carried out under different sets of con-
ditions. Let us represent the data set as a set of records,

with each record , 1 , char-
acterized by attributes, whose values,

, where domain represents the
expression value of the th gene under the th experimental
condition.

To discover clusters in the data, the hierarchical agglomera-
tive clustering algorithm [1] performs a series of successive fu-
sion of records into clusters. The fusion process is guided by
a measure of similarity between clusters so that clusters that
are similar to each other are merged. This fusion process is re-
peated until all clusters are merged into a single cluster. The
results of the fusion process are normally presented in the form
of a two-dimensional (2-D) hierarchical structure, called den-
drogram. The records falling along each branch in a dendro-
gram form a cluster. Depending on user preferences, a specific
number of clusters can be obtained from the dendrogram by cut-
ting across the branches at a specific level.

Comparing to the hierarchical agglomerative clustering algo-
rithm that does not require users to specify the number of clus-
ters ahead of time, users of the -means algorithm [2] are re-
quired to do so. Given a data set , the -means algorithm can
group the records, , into clusters by initially
selecting records as centroids. Each record is then assigned to
the cluster associated with its closest centroid. The centroid for
each cluster is then recalculated as the mean of all records be-
longing to the cluster. This process of assigning records to the
nearest clusters and recalculating the position of the centroids
is then performed iteratively until the positions of the centroids
remain unchanged.

The SOM algorithm [3] is one of the best known artificial
neural network algorithms. It can be considered as defining
a mapping from -dimensional input data space onto a
“map”—a regular 2-D array of neurons—so that every neuron
of the map is associated with an -dimensional reference
vector. The reference vectors together form a codebook. The
neurons of the map are connected to adjacent neurons by a
neighborhood relation, which dictates the topology of the
map. The most common topologies used are rectangular and
hexagonal. In the basic SOM algorithm, the topology and
the number of neurons remain fixed from the beginning. The
number of neurons determines the granularity of the mapping,
which has an effect on the accuracy and generalization of the
SOM. During the training phase, the SOM forms an elastic net
that folds onto the “cloud” formed by input data. The algorithm
controls the net so that it strives to approximate the density of
the data. The reference vectors in the codebook drift to the areas
where the density of the input data is high. Eventually, only few
codebook vectors lie in areas where the input data is sparse.
After the training is over, the map should be topologically
ordered. This means that topologically close (based on, say,
the Euclidean distance or the Pearson correlation coefficient)
input data vectors map to adjacent map neurons or even to

298 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

the same single neuron. With this idea, SOM has been used
successfully in various application areas [3].

Despite some successes with existing clustering algorithms
in gene expression data analysis [4]–[6], [20]–[22], there is still
no single clustering algorithm that is the most “dominant” gene
expression microarray data clustering algorithm. This may be a
result of their use of such metrics and functions as the Euclidian
distance measure or the Pearson correlation coefficient, etc. that
do not differentiate between the importances of different vari-
ables when measuring similarities. They also do not give very
accurate measurements when the data concerned are noisy and
contain missing values. Since these metrics and functions mea-
sure only pairwise distances, the measurements obtained could
be too “localized.” Clustering algorithms based only on the local
pairwise information may, therefore, miss important “global”
information.

In addition to these deficiencies, clustering results obtained
with the use of many clustering algorithms could be difficult to
interpret. For example, although one can visualize the result of
hierarchical clustering as a tree-like dendrogram and note corre-
lations between genes, it is the users’ responsibilities to discover
the similarities and differences between various clusters and to
decide on the number of clusters and the cluster boundaries to
form. To do so, users need to have prior knowledge about the
data. Similarly, for the -means algorithm and SOM, users have
to decide on the number of clusters to partition a data set into.
They also have to use a separate technique to uncover under-
lying patterns in the clusters.

Given the increased popularity of DNA microarray technolo-
gies [23]–[26] in the study of gene variations and given that
more and more such data are generated as a result of advances in
these technologies, there is a great need to develop clustering al-
gorithms that can overcome the limitations of the existing ones.
Toward this goal, we propose a novel clustering algorithm that
is based on evolutionary computation techniques.

III. AN EVOLUTIONARY CLUSTERING ALGORITHM

For a clustering algorithm to discover the best data grouping,
it has to consider

1
1 (1)

possibilities, where is the total number of records and is the
number of clusters [27]. To find the optimal grouping among the
very large number of possibilities, we propose to use an evolu-
tionary clustering algorithm called EvoCluster.

Evolutionary algorithms have been successfully used to solve
different data mining problems [28]–[31]. They have, in partic-
ular, been used for clustering [32]–[39]. In [32] and [33], for ex-
ample, the data records are encoded as genes in a chromosome
and are given a label from one to , where is the maximum
number of clusters to be discovered. Such an approach is rela-
tively easy to implement as they do not require special evolu-
tionary operators. Unfortunately, they are not very scalable. As
the length of each chromosome is exactly the size of the training

set, these algorithms are not very practical when handling large
data sets.

An alternative data and cluster representation was proposed
in [34], where the clustering problem is formulated as a graph-
partitioning problem. Based on it, each data record is represented
as a node in a graph and each node is mapped to a certain
position in a chromosome and is encoded as a gene. The indexes
of other records are encoded as alleles so that if a gene
contains value , an edge is created in the graph to link the
nodes and . The alleles in each gene are therefore the
nearest neighbors of , and the users are required to specify the
number of nearest neighbors as input parameter ahead of time.
With this representation, an evolutionary algorithm is used to
find clusters which are represented as connected subgraphs.
This approach is again not very scalable. Other than the length
of the chromosomes being again the same as the size of a
dataset, there is an additional need for the nearest neighbors
of data records to be computed. It also suffers from the same
problems as other clustering algorithms that are based on the
need to compute pairwise distance measures.

One other popular use of evolutionary algorithms (EAs) in
clusteringis tousethemtoidentifythebestclustercenters. In[35],
[36], each chromosome encodes the coordinates of centers and
the standard genetic algorithm (GA) is used to find the best ones.
A similar approach to identifying the best centers is to use an
EA to search for optimal initial seed values for cluster centroids
[37]. As in other problems, in clustering we can use domain
knowledge in several ways to try to improve the performance
of the algorithm. For example, we could design specialized
evolutionary operators or we can hybridize the evolutionary
algorithm with a conventional clustering algorithm such as the

-means algorithm. In [38], [39], each chromosome represents
the coordinates of the cluster centroids and different crossover
methods are used to generate the offspring. After crossover
each chromosome undergoes several iterations of the -means
clustering algorithm. The authors observed that adding the

-means iterations is crucial for obtaining good results, although
there can be a considerable increase of the computation time if
many iterations are used. This kind of hybridization raises the
question of how to allocate the computing time—for example,
using many generations of the EAs and a few iterations of the
local methods or running the EAs for a few generations and
using the local methods to improve the solutions. In principle,
the centroid-based representation has the advantage that the
chromosomes are shorter because they only need to encode the
coordinates of the centroids. This means that the length of the
chromosome is proportional to the dimensionality of the problem
and not the size of the training set. However, just like many
EA-basedclusteringmethods,thedrawbackofthecentroid-based
representationis that thenumberofclustersneededtobespecified
in advance. Moreover, the similarity functions used such as
Euclidean distance or correlation coefficient for measuring
the similarity of the records do not differentiate between the
importances of different attributes. Therefore, they do not give
accurate measurements when the data concerned are noisy and
contain missing values. In addition, these similarity functions
measure only pairwise distances, the measurements obtained
could be too “localized.”

MA et al.: AN EVOLUTIONARY CLUSTERING ALGORITHM FOR GENE EXPRESSION MICROARRAY DATA ANALYSIS 299

Clustering gene expression data as a new area of research
poses new challenges due to its unique problem nature that the
previous EA-based clustering algorithms were not originally
designed to deal with. As discussed in [40], there are some new
challenges in dealing with gene expression data. For example,
the presence of both biological and technical noise inherent
in the data set, the presence of large number of irrelevant
attributes, and the explanatory capability of an algorithm to
help biologists in gaining more understanding of the underlying
biological process. And also, the clustering structure of gene
expression data is usually unknown.

To effectively tackle the challenges posed by gene expression
data, the proposed EvoCluster algorithm has several character-
istics that make it different from existing clustering algorithms.
The differences can be summarized as follows.

1) It encodes the entire cluster grouping in a chromosome so
that each gene encodes one cluster and each record label
of a gene encodes the number of a data record.

2) Given the above encoding scheme, it makes use of
crossover and mutation operators that facilitates the
exchange of grouping information between two chromo-
somes on one hand and allows variation to be introduced
to avoid trapping at local optima on the other.

3) It makes use of a fitness function that measures the in-
terestingness of a particular grouping of data records en-
coded in a chromosome.

4) This measure of interestingness, unlike many similarity
measures that is based on local pairwise distances [19]
which do not give accurate measurements when the data
concerned are noisy and contain missing values, takes into
consideration global information contained in a particular
grouping of data.

5) It is able to distinguish between relevant and irrelevant
feature values in the data during the clustering process.

6) It is able to explain clustering results discovered by explic-
itly revealing hidden patterns in each cluster in an easily
understandable if-then rule representation.

7) There is no requirement for the number of clusters to be
decided in advance.

Like other evolutionary algorithms [41]–[46], the EvoCluster
algorithm consists of the following steps.

1) Initialization of a population of chromosomes with each
representing a unique cluster grouping.

2) Evaluate the fitness of each chromosome.
3) Select chromosomes for reproduction using the roulette

wheel selection scheme.
4) Apply crossover and mutation operators.
5) Replace the least fit chromosomes in the existing popula-

tion by the newly generated offspring.
6) Repeat Steps 2)–5) until the stopping criteria are met.

A. Cluster Encoding in Chromosomes and Population
Initialization

To evolve the best cluster grouping, EvoCluster encodes
different grouping arrangements in different chromosomes so
that one chromosome encodes one particular cluster grouping.
In each such chromosome, each gene encodes one cluster

Fig. 1. Chromosome encoding scheme.

[43]. Hence, if a particular chromosome encodes clusters,
, it has genes. Since each cluster con-

tains a number of data records, a gene encoding a cluster can
be considered as being made up of the labels of a number
of data records in gene expression data. For example, as-
sume that contains , , where

, the unique labels of these
records, , can be encoded in each
gene so that a chromosome that encodes a particular cluster
grouping can then be represented diagrammatically, as shown
in Fig. 1.

For the initial population, each chromosome is randomly gen-
erated by EvoCluster in such a way that the number of clusters

to be encoded in a chromosome is first generated randomly
from within a certain range of acceptable numbers. Each of the
records in is then assigned, also ran-
domly, to one of the clusters [41], [42].

B. Selection and Reproduction

Reproduction in EvoCluster consists of the application of
both the crossover and mutation operations. As the evolutionary
process enters into reproduction, two chromosomes are selected
as parents for crossover using the roulette-wheel selection
scheme [42] so that each parent’s chance of being selected is
directly proportional to its fitness.

Since it is the cluster grouping encoded in each chromosome
that conveys the most important information, our crossover op-
erators are designed to facilitate the exchange of grouping infor-
mation. And since this process can be “guided” or “unguided,”
our crossover operators are also classified in the same way. We
have a “guided” operator and an “unguided” operator. For the
“guided” crossover (GC) operator, the exchange of grouping in-
formation is not totally random in the sense that the grouping in-
formation of the “best formed” clusters is preserved during the
crossover process. For the “unguided” crossover (UGC) oper-
ator, the exchange of the grouping information between clusters
takes place randomly.

Assume that two parent chromosomes 1 and 2 are chosen
so that 1 encodes genes, (with
each corresponding to a cluster), and 2 encodes genes,

, i.e., the number of clusters encoded
in each chromosome can be different. Assume also that
is a user-defined minimum number of clusters encoded in a
chromosome and is a user-defined maximum number
of clusters encoded in a chromosome. Then the following
are the steps taken by the guided and unguided operators
when crossover is performed. (Note: The probability for a
gene or a record label in a gene to be selected by both
crossover and mutation operators can be randomly generated

300 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

from within a certain range or , respectively,
where 0.0 1.0 and 0.0 1.0, and

, , , and can be set by users or also generated
randomly. Moreover, in guided crossover operator and also
mutation operators (b), (d), and (f), the interestingness of
each gene is determined based on the interestingness measure
described in Section III-C.)

1) The Guided Crossover (GC) and Unguided Crossover
(UGC) Operators:

1) Set , the probability for a gene to be selected for
crossover.

2) Set , the probability for a record label in a gene to
be replaced by another record label from another gene in
another parent.

3) Gene selection procedure.
a) For the UGC, based on and using a random

number generator, each gene in 1 is scanned to
decide if it should be selected. Those selected are
then represented as ,
where and , 1 is in

.
b) For the GC, based on , , ,

the number of interesting genes to be selected can
be determined. Then select of the most in-
teresting ones in 1 and 2, respectively. Rank
them in descending order of interestingness and
represent them as and

so that and
is the most interesting in 1 and 2, respectively.

4) Record label replacement procedure.
a) For the UGC, for each gene in

, say , ran-
domly select one gene from 2, say, that has
not previously been selected, based on and
using a random number generator, each record
label in can be scanned to identify those
that should be replaced by a record label in .
Record labels that are selected for replacement are
then represented as
and removed from . Randomly select or

record labels, whichever is smaller, from
and replace those removed. Repeat the above

steps for all the other selected genes in 1.
b) For the GC, begin with the most interesting

, select the corresponding most interesting
gene from 2. Based on , scan
through each record label in to select those
that should be replaced by that in . Those
record labels to be replaced are represented as

and removed from
. Randomly select or record labels,

whichever is smaller, from and replace those
removed. Repeat the above steps for all the other
selected genes in 1.

5) Repairing procedure (for producing child 1): scan
through all genes to remove duplicates in such a way that

if a record label is found in another gene, other than the
one containing the replacement, it is removed. For those
record labels that have not been assigned to any gene
after their removals.

a) For the UGC, they are randomly assigned to one of
the genes.

b) For the GC, they are reclassified into one of the
genes using the reclassification algorithm given in
the section below.

6) Repeat Steps 1)–5) with 2 to produce child 2.
After crossover, the children produced undergo mutation in

order to avoid getting trapped at local optima on one hand and
to ensure diversity on the other. EvoCluster makes available
six different mutation operators that can be selected at random
when a chromosome undergoes mutation. These operators can
be classified according to whether or not the mutation process
involves just the removal and reclassification of record labels
or the merging and splitting of the whole gene. They can also
be classified according to whether or not they are “guided” or
“unguided.” Based on these classification schemes, EvoCluster
makes use of six operators.

a) The unguided remove-and-reclassify-record mutation
(UGRRM) operator.

b) The guided remove-and-reclassify-record mutation
(GRRM) operator.

c) The unguided merge-gene mutation (UGMGM) operator.
d) The guided merge-gene mutation (GMGM) operator.
e) The unguided split-gene mutation (UGSGM) operator.
f) The guided split-gene mutation (GSGM) operator.

The merge and split mutation operators (i.e., UGMGM,
GMGM, UGSGM, and GSGM) were specifically designed to
allow the length of chromosomes to be changed dynamically as
the evolutionary process progresses. The advantage with this
feature is that the number of clusters that need to be formed
does not need to be specified by the users ahead of time. In the
following, the details of these operators are given.

2) The Guided (GRRM) and Unguided Remove-and-Reclas-
sify-Record Mutation (UGRRM) Operators:

1) Set , the probability for a gene to be selected.
2) Set , the probability for a record label in a gene to

be removed.
3) Gene selection procedure.

a) For the UGRRM, based on , scan through
each gene in the chromosome to decide if it
should be selected. Those selected are then rep-
resented as , where

and , 1 is a member of
.

b) For the GRRM, based on , determine
, the number of uninteresting genes to

be selected. Then select the least interesting
genes and represent them in ascending order of
interestingness as so
that is the least interesting gene.

4) Record label replacement procedure: For each gene
in , based on , scan
through each record label in each of to select those

MA et al.: AN EVOLUTIONARY CLUSTERING ALGORITHM FOR GENE EXPRESSION MICROARRAY DATA ANALYSIS 301

that should be removed. These record labels are repre-
sented as and removed from

.
5) Children repairing procedure: for those record labels that

have not been assigned to any gene after their removals.
a) For the UGRRM, they are randomly classified into

one of the genes.
b) For the GRRM, they are reclassified into one of the

genes using the reclassification algorithm given in
the section below.

3) The Guided (GMGM) and Unguided Merge-Gene Muta-
tion (UGMGM) Operators:

1) Set , the probability for a gene to be merged.
2) Gene selection procedure.

a) For the UGMGM, based on , scan through
each gene in the chromosome to randomly select
a gene for merging. Those selected are then rep-
resented as , where

and , 1 is a member of
.

b) For the GMGM, based on , determine
, the number of uninteresting genes

to be merged. Then select least interesting
genes and represent them in ascending order of
interestingness as so
that is the least interesting.

3) Merging procedure: for each gene in
, randomly select one other gene to

be merged in this set. The number of genes remaining
after merging should be greater than . Otherwise,
the mutation operator terminates.

4) The Guided (GSGM) and Unguided Split-Gene Mutation
(UGSGM) Operators:

1) Set , the probability for a gene to be split.
2) Gene selection procedure.

a) For the UGSGM. Based on , scan through
each gene in the chromosome to decide if it should
be selected for splitting. Those selected are then
represented as where

and , 1 is a member of
.

b) For the GSGM. Based on , determine
the number of uninteresting genes

to be split. Then select least interesting
genes, and arrange them into ascending order of
interestingness, so that

is the least interesting.
3) Splitting procedure: for each gene in

, randomly split it into two clusters.
The resulting number of genes has to be smaller than

. Otherwise, the mutation operator terminates.
After reproduction, EvoCluster constructs a classifier based

on each of the two children chromosomes using a reclassifica-
tion algorithm described in [47]. Record labels that have not
been assigned to any gene are then reclassified into one of the
genes encoded in a chromosome.

A simple evolutionary algorithm typically uses a generational
replacement technique. This technique replaces the entire popu-
lation after enough children are generated. However, the poten-
tial drawback of such a replacement approach is that many good
chromosomes also get replaced, making it difficult for the good
traits to survive. To overcome this problem, EvoCluster adopts
a steady-state reproduction approach [45] so that only two least
fit chromosomes are replaced whenever two new children are
generated after each reproduction.

C. Fitness Function

To evaluate the fitness of each chromosome, we used an
objective interestingness measure based on that described in
[47]–[52]. This measure has the advantage that it is able to
handle the potential noise and inconsistency resulting from
the clustering process. It is able to take into consideration
both local and global information by distinguishing between
feature values that are relevant and irrelevant in a particular
cluster grouping. This makes EvoCluster very robust even in
the presence of noisy data.

The fitness evaluation procedure is invoked after new chromo-
somes are formed. The fitness function accepts a chromosome as
a parameter and its fitness is evaluated in two steps. In Step 1, it
attempts to discover statistically significant association patterns
in the cluster grouping encoded in the chromosome. To do so,
a subset of records from different clusters encoded in a chro-
mosome is selected randomly to form a training set for pattern
discovery. In Step 2, those records not selected in Step 1 are
reclassified into one of the clusters based on the discovered pat-
terns in order to determine the reclassification accuracy of the
chromosome. As discussed above, if a clustering algorithm is
effective, the clusters that are discovered should contain hidden
patterns that can be used to accurately reclassify the records in
the testing data. And if this is the case, the reclassification ac-
curacy measure is an indication of how good the quality of the
cluster grouping is. For this reason, the reclassification accuracy
is then taken to be the fitness of each chromosome. The details
of the two-step algorithm are given below.

• Discovery of statistically significant association patterns:
We begin by detecting the association between the values
of an attribute (i.e., the gene expression values under a
specific experimental condition) of the records that belong
to a particular cluster and the cluster label itself. To do so,
we let be the total number of records in the dataset
that belong to cluster and are characterized by the same
attribute value , where and

. We also let be the expected
total under the assumption that being a member of is
independent of whether a record has the characteristic
(where , and ,
and is the total number of distinct attribute values of
an attribute , is the total number of clusters discov-
ered, and due to possible missing
values in the data). The statistical significance of the asso-
ciation can be evaluated using the following test statistic:

(2)

302 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

where the maximum likelihood estimate of its asymptotic
variance is defined by

1 1 (3)

Then

(4)

This statistics has an approximate standard normal distri-
bution and the attribute value can then be selected based
on a statistically significant cluster-dependency.

• Classification and reclassification using a weight-of-evi-
dence information measure: Using the test statistics given
in (4), we can determine if of is associated with
cluster , say, at the 95% confidence level. If it is the
case, then we can compute an uncertainty measure called
the weight of evidence measure for a record character-
ized by to belong to against its belonging to other
clusters

Cluster Cluster (5)

where is defined in terms of the mutual information
as follows:

Cluster Cluster
(6)

where

(7)

The weight of evidence measures the amount of positive
or negative evidence that is provided by supporting or
refuting the labeling of the record as . Given a collection
of the selected attribute values , the weight of
evidence from all observed attribute values is defined as a
summation of the total weights

Cluster Cluster

Cluster Cluster (8)

Therefore, the cluster label is inferred if is maxi-
mized. Based on this, the predicted label can be compared
with the original label of each record encoded in the chro-
mosome to determine the reclassification accuracy and
based on it, the fitness value of the cluster grouping en-
coded in a chromosome can be determined.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of EvoCluster, we have tested it
using both simulated and real data. In this section, we describe
the experiments we carried out and present the results of these
experiments.

A. Experimental Data

For performance evaluation, we used a set of simulated data
consisting of 300 records each characterized by 50 different at-
tributes that takes on values from [0.0, 1.0]. Initially, all these
records were sampled from a uniform distribution and they were
preclassified into one of three clusters so that each cluster con-
tains 100 records. To embed hidden patterns in the data, 10%
of the attributes in each cluster were randomly selected. For
each selected attribute, 40% of its values in that cluster were
randomly generated from within a certain range , where
0.0 1.0 so that was selected uniformly from [0.0,
1.0] first, and was then also selected uniformly from 1.0 .

In addition to the simulated data, to test the effectiveness of
EvoCluster, we also used two different sets of real gene ex-
pression microarray data given in [53] and [54] respectively.
Dataset 1 (Spellman’s data) contains about 800 cell cycle reg-
ulated genes measured under 77 different experimental condi-
tions. According to [11], these cell cycle regulated genes could
be partitioned into six to ten clusters. Following this, we tried
in our experiments to partition the data set also into different
clusters from six to ten. Dataset 2 (Cho’s data) contains 384
genes measured under 17 different experimental conditions. Ac-
cording to [12], the data could be partitioned into four to eight
clusters. Following this again, we tried to partition Dataset 2
also into different clusters from four to eight. In our experi-
ments, the data values were normalized using the zero-mean
normalization method [55], which is the most commonly used
method for microarray normalization [56].

B. Validating Cluster Grouping

With the above datasets, how effective EvoCluster is at its
tasks is evaluated objectively based on three objective measures:
i) the Davies–Bouldin validity index (DBI) measure [57]; ii) the
F-measure [58]; and iii) a predictive power measure of the dis-
covered clusters.

The DBI measure is a function of the inter and intracluster
distances. These distances are considered good indicators of the
quality of a cluster grouping as a good grouping should be re-
flected by a relatively large intercluster distance and a relatively
small intracluster distance. In fact, many optimization clustering
algorithms are developed mainly to maximize intercluster and
minimize intracluster distances. The DBI measure combines
these two distances in a function to measure the average sim-
ilarity between a cluster and its most similar one. Assume that
a cluster grouping consisting of clusters has been formed. Its
DBI measure is then defined as follows:

DBI
1

(9)

where ,
, denotes the total number of clusters, and de-

note the centroid intracluster and intercluster distances, respec-
tively, and is the number of records in cluster . The intra-
cluster distance for a given cluster is therefore defined to be the
average of all pairwise distances between records in cluster

MA et al.: AN EVOLUTIONARY CLUSTERING ALGORITHM FOR GENE EXPRESSION MICROARRAY DATA ANALYSIS 303

TABLE I
SUMMARY OF THE NUMBER OF EXPERIMENTS PERFORMED BY EVOCLUSTER, k-MEANS, AND SOM

and its centroid and the intercluster distance between two
clusters and is computed as the distance between their cen-
troids and . For the experiments described below, the Eu-
clidean distance was chosen as the distance metric when com-
puting the DBI measure, and a low value of DBI therefore indi-
cates good cluster grouping.

The F-measure that is typically used for cluster evaluation
combines the “precision” and “recall” ideas from information
retrieval [59]. When the correct classification of the data is
known, the F-measure is useful in the sense that it would pro-
vide objective information on the degree to which a clustering
algorithm is able to recover the original clusters. According to
the F-measure, the discovered set of records in cluster can be
considered as if they are retrieved by a certain query; and the
known set of records in cluster can be considered as if they are
the desired records that can be retrieved by the same query. The
F-measure of each cluster can then be calculated as follows:

2
(10)

where and
and is the number of records with

cluster label in the discovered cluster , count is the number
of records with cluster label , and count is the number of
records in discovered cluster . The F-measure values are in the
interval [0, 1], and the larger its values, the better the clustering
quality is.

The predictive power measure is actually a measure of classi-
fication accuracy. If the clusters discovered are valid and of good
qualities, we should expect patterns to be discovered in them. If
these patterns are used to classify some testing data, the classifi-
cation accuracy can reflect how valid and how good the qualities
of the discovered clusters are. In order to determine the clas-
sification accuracy, a set of training samples can be randomly
selected from each cluster to construct a decision-tree classifier
using C4.5 [60]. C4.5 is a greedy algorithm that recursively par-
titions a set of training samples by selecting attribute that yield a
maximum information gain measure at each step in the tree-con-
struction process. After a decision tree is built, it then makes use
of a postpruning procedure to compensate for any overfitting of
training samples. Based on the pruned tree, the cluster mem-
berships of those records that were not selected for training are
then predicted. The percentage of accurate predictions can then
be determined as classification accuracy. This accuracy mea-
sure is also referred to as the predictive power measure. If a
clustering algorithm is effective, the clusters that are discovered
should contain hidden patterns that can be used to accurately
predict the cluster membership of the testing data. And if this
is the case, the predictive power of a cluster grouping should

be high. Otherwise, if a clustering algorithm is ineffective, the
clusters it discovers are not expected to contain too many hidden
patterns and the grouping is more or less random. And if this
is the case, the predictive power is expected to be low. Hence,
the greater the predictive power, the more interesting a cluster
grouping is and vice versa. In our experiments, the predictive
power measure was computed based on a tenfold cross valida-
tion approach. For each fold, 90% of the data records in each
cluster were randomly selected for training and the remaining
10% used for testing. After ten experiments corresponding to the
ten folds of data were performed, the average predictive power
of the discovered clusters was computed as the average classifi-
cation accuracy over the ten experiments.

C. The Results

The effectiveness of EvoCluster has been compared with a
number of different clustering algorithms using both simulated
and real data. Since the Pearson correlation coefficient is more
commonly used for gene expression data [4] and is known to be
better than the Euclidean distance in dealing with noise, it was
used as the distance function in these clustering algorithms.

In our experiments, we used the SOM clustering algorithm [6]
and we adopted the default settings for all the parameters as de-
scribed in [61] (i.e., we used the bubble neighborhood function,
the initial learning weight was set to 0.1, the final
learning weight was set to 0.005, the initial sigma

was set to five, and the final sigma was
set to 0.5, etc.). Since a given number of clusters (say, six) can
represent multiple SOM geometries (e.g., 1 6 2 3, etc.), we
also tried all these geometries [61] in order to obtain the best
cluster grouping with SOM. For both SOM and the -means al-
gorithms, 5000 iterations were performed. Also, to ensure that
the best results for SOM and the -means algorithm were ob-
tained, 100 runs were performed for each of them with each
run using different randomly generated initial cluster centroids.
Only the best result from among these 100 runs was recorded.
In order for enough samples to be collected for statistical testing
purposes, such 100-run test was repeated ten times. The ten best
results obtained from each 100-run test were then used in sub-
sequent statistical tests (i.e., in Table VII).

In the case of EvoCluster, we also performed ten trials in our
experiments. For each such trial, we randomly generated dif-
ferent initial populations of size fixed at 50. Using a steady-state
reproduction scheme, the evolutionary process was terminated
either when the maximum chromosome fitness converged or
when the maximum number of reproductions reached 5000. As
summarized in Table I, therefore, the total number of iterations
performed with -means and SOM is 100 times more than the
total number of reproductions carried out using EvoCluster. This
was done to ensure that EvoCluster would not use any more

304 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

TABLE II
PARAMETER SETTINGS OF EVOCLUSTER USED IN SIMULATED DATA (P =P REPRESENT THE PROBABILITY OF

GUIDED OR UNGUIDED CROSSOVER/MUTATION OPERATOR SELECTED)

computational resources (in terms of the number of trial-and-er-
rors through iterations/reproductions and in terms of computa-
tional time) than other clustering algorithms it was being com-
pared against.

During the evolutionary process, the probabilities of selection
of a gene or a record label in a gene, used by the crossover
and mutation operators, were randomly generated from within
[0.2, 0.8] using a random number generator. In order to evaluate
the fitness of each chromosome, the data were first discretized
using the approach given in [62] so as to ensure minimum loss
of information during the discretization process. Discretization,
it should be noted, was preformed only for EvoCluster but not
for the other techniques.

In order to evaluate the effectiveness of EvoCluster, in addi-
tion to the traditional clustering algorithms, we also compared
its performance with a clustering algorithm that represents one
of the most successful attempts to use EA in clustering [36].
Each gene in it encodes one dimension of a cluster center and
a chromosome encodes a fixed number of clusters. For our ex-
periment with it, we set the crossover rate to 0.8 and the mu-
tation rate to 0.001, i.e., the same as that used in [36]. Other
parameter settings, including population size, number of repro-
ductions, etc., were set exactly the same as that with EvoCluster.

Since one of the desirable features of EvoCluster is its ability
to distinguish relevant from irrelevant feature values during the
evolutionary process, we also compared its performance against
various “hybrid” clustering algorithms that use a feature se-
lection technique in combination with a clustering algorithm.
Specifically, we used an effective feature selection technique to-
gether with the -means algorithm, SOM, the hierarchical clus-
tering algorithm, and the EA-based algorithm [36] to see how
much improvement the performance of these algorithms can
have when features were first filtered for clustering.

Among different feature selection techniques that can be used
for this purpose [63]–[70], we chose to consider the one de-
scribed in [70]. This is because this technique, which makes use
of the -statistic measure, has previously been used to reduce the
number of attributes in gene expression data [66], [70]. Given
an initial cluster grouping, the feature selection was performed
in several steps as follows.

i) A cluster grouping is first determined using say, the
-means algorithm (or SOM, or the hierarchical clus-

tering algorithm, the EA-based algorithm [36], or
whatever other clustering algorithm) that the feature
filtering method is hybridizing with.

ii) Given the initial cluster grouping, a -statistic measure is
then computed for each attribute to determine how well
it is able to distinguish one cluster from the rest of the
others.

iii) Based on the -statistic, a new subset of attributes with
the largest -statistic values is obtained by first selecting
10% of the attributes that has the largest -statistic values.
With this new attribute subset, a classifier is then gen-
erated using C4.5 [60] and its classification accuracy is
measured using ten-fold cross-validation. Afterward, the
process of adding another 5% of the attributes with the
largest -statistic values to this new attribute subset and
measuring the accuracy of the resulting new classifier
was repeated. The final attribute subset is determined
when the performance of the classifier converge [56].

iv) With this final attribute subset, a new and improved
cluster grouping is then determined.

1) Simulated Data: Since the number of clusters 3
to discover was known in advance for the simulated data, the
length of the chromosome was fixed in our experiment to be
three. Table II shows the parameter settings of EvoCluster used
in the simulated data.

As discussed in the previous section, EvoCluster has a set of
“guided” and “unguided” operators. For the “guided” operators,
the exchange of grouping information is not totally random in
the sense that the grouping information of the “best formed”
clusters is preserved during the evolutionary process. For the
“unguided” operators, the exchange of the grouping information
between clusters takes place randomly. To determine if there is
a real need for both types of operators, three separate experi-
ments were carried out. In the first experiments, a 50/50 mixture
of “guided” or “unguided” operators were used whereas in the
second and third, only “guided” operators and only “unguided”
operators were used respectively. The average number of repro-
ductions performed by each algorithm until convergence, the av-
erage predictive power measures, DBI measures, and F-measure
are given in Table III.

As shown in Table III and as expected, when only “guided”
operators were used alone, it appeared that the results converged
only to some local optima and when only “unguided” operators
were used alone, not only a longer evolutionary process was
required, the results obtained were unsatisfactory. The perfor-
mance of EvoCluster is at its best when both “guided” and “un-
guided” operators were used together even though it required
more reproductions to converge. Based on these results, we con-
clude that both the “guided” and “unguided” operators have a
role to play in the evolutionary process. When they are used to-
gether, they can facilitate the exchange of grouping information
in a way that such information in the “best formed” clusters is
preserved as much as possible during the evolutionary process
on one hand but variations can be introduced at the same time on
the other so as to avoid trapping at local optima too early. The
performance of EvoCluster has been compared with the other
clustering algorithms and the results are given in Tables IV–VI.

MA et al.: AN EVOLUTIONARY CLUSTERING ALGORITHM FOR GENE EXPRESSION MICROARRAY DATA ANALYSIS 305

TABLE III
COMPARING THE CLUSTERING PERFORMANCE USING “GUIDED + UNGUIDED” OPERATORS,

“GUIDED” OPERATORS, OR “UNGUIDED” OPERATORS (SIMULATED DATA)

TABLE IV
COMPARING THE MEAN OF AVERAGE PREDICTIVE POWER USING SIMULATED DATA (TEN TRIALS) (A REPRESENTS

THE FINAL NUMBER OF ATTRIBUTES USED AND FS REPRESENTS FEATURE SELECTION)

TABLE V
COMPARING THE MEAN OF DBI USING SIMULATED DATA (TEN TRIALS)

TABLE VI
COMPARING THE MEAN OF F-MEASURE USING SIMULATED DATA (TEN TRIALS)

As shown in the above tables, compared with other clustering
algorithms, EvoCluster performs better in terms of all measures.
Moreover, it seems that none of the EA-based, -means, SOM,
and hierarchical algorithms (with or without feature selection)
is particularly effective when handling very noisy data such as
the simulated data. In order to decide if the differences between
these clustering algorithms are significantly different, we per-
formed one-sided pairwise -test [71] on the null and alterna-
tive hypotheses of and , respec-
tively, for the case of the predictive power and the F-measure
and on the null and alternative hypotheses of and

, respectively, for the case of the DBI measure.
The results of the -tests confirm that the differences are all sta-
tistically significant at the 95% confidence level (in Table VII).

This shows that EvoCluster is very robust in the presence of
a very noisy environment. Being able to effectively discover
hidden patterns, it should be noted that EvoCluster has the addi-
tional advantage of being able to provide a “justification” of the
cluster grouping it discovers. EvoCluster can make explicit the
hidden patterns in a set of rules characterizing each cluster. Ex-
amples of such rules are given in Table VIII. The hidden patterns
are expressed in rules of the form “If , then
[0.95]” where it should be understood as “If the gene expression
value of a gene under experimental condition is within the in-
terval from to , then there is a probability of 0.95 that it be-
longs to cluster .” As described above, the simulated data was

generated by randomly selecting 10% of the attributes in each
cluster and randomly making 40% of its values in that cluster to
fall within a certain range , where 0.0 1.0.
The rules EvoCluster discovered are therefore consistent with
the way the patterns were generated.

2) Gene Expression Data:
a) Statistical analysis: In the following, the performance

of EvoCluster is evaluated using real expression data. The min-
imum and maximum number of clusters considered for both
Datasets 1 and 2 were set at (MIN 6, MAX 10) and (MIN
4, MAX 8), respectively. Table IX shows the parameter set-
tings of EvoCluster used in Datasets 1 and 2.

As with the simulated data, the experiments with Datasets 1
and 2 were repeated three times with a mixture of guided and
unguided operators, unguided operators alone, and guided oper-
ators alone, respectively. Based on the results shown in Tables X
and XI, we found that using both “guided” and “unguided” op-
erators together, once again, gave us the best clustering results.
The performance of EvoCluster in comparison with other algo-
rithms is given in Tables XII–XV. The F-measure was not com-
puted for the experiments with real datasets as the “original”
correct clustering results are not known. EvoCluster again per-
forms better than others even with the combination of the fea-
ture selection method. It is worth noting that the performance of
EvoCluster and most other clustering algorithms is at their best
when equals to six for Dataset 1 and when equals to five for

306 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

TABLE VII
RESULTS OF t-TEST (TEN TRIALS) (DEGRESS OF FREEDOM: N1 +N2 � 2) (SIMULATED DATA)

TABLE VIII
ASSOCIATION RULES DISCOVERED IN THE SIMULATED DATA

TABLE IX
PARAMETER SETTINGS OF EVOCLUSTER IN GENE EXPRESSION DATA

Dataset 2. This seems to indicate that cluster quality may dete-
riorate if is not set properly.

To confirm that these differences are also statistically signif-
icant, we performed some statistical tests (as the sample size is
large enough, the -test is used rather than the -test and they
are carried out at the 95% confidence level) [71]. The results of
these tests are shown in Tables XVI and XVII.

b) Biological interpretation: Based on the clustering re-
sults obtained by EvoCluster, we are able to discover some very
interesting patterns that may have great biological significance.
For example, for Dataset 1, when 6 (which gives the best
results), and for Dataset 2, when 5 (which gives the best

results), we discovered the rules, as shown in Tables XVIII and
XIX, respectively.

These rules can be interpreted as follows. In Table XVIII, for
the discovered rule “If alpha21 0.45 2.12 , then C0 [0.86],”
it states that if the gene expression value of a gene, under exper-
imental condition alpha21, is within the interval from 0.45 to
2.12, then there is a probability of 0.86 that it belongs to cluster
0. In Table XIX, the rule “If Cond3 2.874 1.413 then
C2 [0.94]” means that if the gene expression value of a gene,
under experimental condition Cond3, is within the interval from

2.874 to 1.413, then there is a probability of 0.94 that it be-
longs to cluster 2.

MA et al.: AN EVOLUTIONARY CLUSTERING ALGORITHM FOR GENE EXPRESSION MICROARRAY DATA ANALYSIS 307

TABLE X
COMPARING THE CLUSTERING PERFORMANCE USING “GUIDED + UNGUIDED” OPERATORS,

“GUIDED” OPERATORS, OR “UNGUIDED” OPERATORS (DATASET 1)

TABLE XI
COMPARING THE CLUSTERING PERFORMANCE USING “GUIDED + UNGUIDED” OPERATORS,

“GUIDED” OPERATORS, OR “UNGUIDED” OPERATORS (DATASET 2)

TABLE XII
COMPARING THE MEAN OF AVERAGE PREDICTIVE POWER USING SPELLMAN’S GENE EXPRESSION

DATA (DATASET 1) (TEN TRIALS) (AVG REPRESENTS AVERAGE)

The discovery of these expression patterns is of biological
significance in several ways.

1) Based on the discovered rules, we found that genes within
a cluster share similar expression patterns. For example,
for Dataset 1, genes in Cluster 1, expressed very similarly

to each other, under the conditions of cdc15_170 and
alpha35 and genes in Cluster 2, expressed very simi-
larly to each other, under the conditions of elu360 and
cdc15_30, etc. This kind of cluster-specific expression
patterns discovered by EvoCluster is new and has not

308 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

TABLE XIII
COMPARING THE MEAN OF DBI USING SPELLMAN’S GENE EXPRESSION DATA (DATASET 1) (TEN TRIALS)

TABLE XIV
COMPARING THE MEAN OF AVERAGE PREDICTIVE POWER USING CHO’S GENE EXPRESSION DATA (DATASET 2) (TEN TRIALS)

TABLE XV
COMPARING THE MEAN OF DBI USING CHO’S GENE EXPRESSION DATA (DATASET 2) (TEN TRIALS)

TABLE XVI
RESULTS OF z-TEST (TEN TRIALS) (DATASET 1—OVER ALL kS)

previously been discovered before in microarray data
analysis by the existing clustering algorithms [4]–[6],
[20]–[22].

2) The patterns discovered in each cluster can lead to the
discovery of functionally similar genes. For example, by
closely examining the results with Dataset 1, we found
that genes such as YBL023C, YEL032W, YLR103C,
YLR274W, YBR202W, and YPR019W, etc., which are

directly involved in DNA replication [72], [73], satisfied
the rule “If alpha42 2.24 0.21 then C3 [0.88].”
We also found that many genes that are involved in
mitosis, such as YPR119W, YGR108W, YDR146C,
YGR109C, and YML027W [73] satisfied the rules “If
elu270 0.32 1.32 then C5 [0.9].”

3) Since it is well known that functionally similar genes
have similar expression patterns [4], biologists can make

MA et al.: AN EVOLUTIONARY CLUSTERING ALGORITHM FOR GENE EXPRESSION MICROARRAY DATA ANALYSIS 309

TABLE XVII
RESULTS OF z-TEST (TEN TRIALS) (DATASET 2—OVER ALL kS)

TABLE XVIII
RULES DISCOVERED FOR SPELLMAN’S GENE EXPRESSION DATA (DATASET 1)

TABLE XIX
RULES DISCOVERED FOR CHO’S GENE EXPRESSION DATA (DATASET 2)

TABLE XX
KNOWN TRANSCRIPTION FACTOR BINDING SITES IN BIOLOGICAL CELL CYCLE

TABLE XXI
KNOWN TRANSCRIPTION FACTOR BINDING SITES REVEALED FROM THE CLUSTERS IN

SPELLMAN’S GENE EXPRESSION DATA (DATASET 1)

use of the expression patterns discovered in each cluster
to classify other newly found genes of the same organism
in order to infer their potential biological functions
[74].

4) In addition to the possible identification of functionally re-
lated genes, the discovered patterns are expected to help
biologists better understanding their expression data. For
example, they can help biologists better planning and de-

310 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

TABLE XXII
KNOWN TRANSCRIPTION FACTOR BINDING SITES REVEALED FROM THE CLUSTERS IN

CHO’S GENE EXPRESSION DATA (DATASET 2)

TABLE XXIII
SIGNIFICANT POTENTIAL TRANSCRIPTION FACTOR BINDING SITES REVEALED FROM THE CLUSTERS IN

SPELLMAN’S GENE EXPRESSION DATA (DATASET 1)

TABLE XXIV
SIGNIFICANT POTENTIAL TRANSCRIPTION FACTOR BINDING SITES REVEALED FROM THE CLUSTERS IN

CHO’S GENE EXPRESSION DATA (DATASET 2)

TABLE XXV
DISCOVERY OF KNOWN TRANSCRIPTION FACTOR BINDING SITES IN EACH CLUSTER BY DIFFERENT CLUSTERING

ALGORITHMS—DATASET 1 (SITE NAME AND THE NUMBER OF OCCURRENCES)

signing their experiments by focusing on the transcrip-
tional responses of genes in one cluster at a time and by
reducing the number of experimental tests required [75].

5) The discovered patterns can also help biologists closely
investigating into the relationships between the exper-
imental conditions and the corresponding expression
levels under which genes express so that the gene net-
works [76], which describe the gene–gene interactions,
could be discovered and better modeled.

6) With the fact that the gene expression patterns discov-
ered in each cluster are different, we attempted to see if

there are any well-known binding sites in each discov-
ered cluster. To do so, we looked at the corresponding
promoter regions for the genes in each cluster by down-
loading the sequences from the Saccharomyces Genome
Database [73], [77]. We used a popular motif-discovery
algorithm described in [78] to try to search for transcrip-
tion factor binding sites in the DNA sequences. A motif
is a DNA sequence pattern that is widespread and has bi-
ological significance. Since the essential element of most
binding sites found is in the form of six-character motif
such as ATTCGT [78], we also tried to detect six-char-

MA et al.: AN EVOLUTIONARY CLUSTERING ALGORITHM FOR GENE EXPRESSION MICROARRAY DATA ANALYSIS 311

TABLE XXVI
DISCOVERY OF KNOWN TRANSCRIPTION FACTOR BINDING SITES IN EACH CLUSTER BY DIFFERENT CLUSTERING

ALGORITHMS—DATASET 2 (SITE NAME AND THE NUMBER OF OCCURRENCES)

TABLE XXVII
TOTAL NUMBER OF KNOWN AND POTENTIAL TRANSCRIPTION FACTOR BINDING SITES DISCOVERED IN

EACH CLUSTER BY DIFFERENT CLUSTERING ALGORITHMS—DATASET 1

TABLE XXVIII
TOTAL NUMBER OF KNOWN AND POTENTIAL TRANSCRIPTION FACTOR BINDING SITES DISCOVERED IN

EACH CLUSTER BY DIFFERENT CLUSTERING ALGORITHMS—DATASET 2

acter patterns in the DNA sequences of each cluster. All
discovered sites in each cluster were then checked against
the well-known binding sites given in Table XX (Note: R
is A or G; M is A or C; S is C or G; D is A, G or T; Y is C or
T; W is A or T; N is any base). As shown in Tables XXI and
XXII, we did discover the patterns that are well-known
transcription factors binding sites for being involved in
the cell cycle [11], [79]. Moreover, in addition to known
binding sites, we were able to discover some other poten-
tially important sites (Tables XXIII and XXIV). The va-
lidity of these sites can be confirmed by biologists using
different biochemical methods [80].

Comparing against EvoCluster, other clustering algorithms
are only able to discover some of the known binding sites in
some of the clusters they discovered (Tables XXV and XXVI).
This is an indication that the cluster groupings discovered by
EvoCluster are more biologically meaningful and significant
than the groupings discovered by others. The total numbers of
confirmed and suspected binding sites discovered in the clus-
ters found by the various clustering algorithms are also given in
Tables XXVII and XXVIII for Datasets 1 and 2, respectively.
In both data sets, EvoCluster is able to find many more such
binding sites.

V. CONCLUSION

With the advent of microarray technology, we are now able
to monitor simultaneously the expression levels of thousands of

genes during important biological processes. Due to the large
number of data collected everyday and due to the very noisy
nature in the data collection process, interpreting and compre-
hending the experimental results has become a big challenge.
To discover hidden patterns in gene expression microarray data,
we presented a novel clustering algorithm, EvoCluster.

EvoCluster encodes an entire cluster grouping in a chromo-
some so that each gene encodes one cluster. Based on such a
structure, it makes use of a set of reproduction operators to fa-
cilitate the exchange of grouping information between chromo-
somes. The fitness function it adopts is able to differentiate be-
tween how relevant a feature value is in determining a partic-
ular cluster grouping. As such, instead of just local pairwise
distances, it also takes into consideration how clusters are ar-
ranged globally. EvoCluster does not require the number of clus-
ters to be decided in advance. Patterns hidden in each cluster
can be explicitly revealed and presented for easy interpreta-
tion. We have tested EvoCluster using both simulated and real
data. Experimental results show that EvoCluster is very robust
in the presence of noise. It is able to search for near optimal
solutions effectively, and discover statistically significant asso-
ciation patterns/rules in the noisy data for meaningful group-
ings. The results also show that, under some common perfor-
mance measures, our proposed method is better than other al-
gorithms used in gene expression data analysis, and the discov-
ered clusters by EvoCluster contain more biologically mean-
ingful patterns. In particular, we could correlate the clusters of
coexpressed genes discovered by EvoCluster to their DNA se-

312 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

quences, and found that we were able to uncover significant
well-known and new biological binding sites in each cluster
of sequences. Since DNA microarrays only measure mRNA
levels rather than protein levels of genes, it should be noted
that gene expression microarray data alone does not present re-
searchers with a complete picture of the underlying gene ex-
pression process. However, although it may be incomplete, gene
expression data are still worth exploring as they contains a sig-
nificant amount of information pertaining to the actual protein
levels.

Compared with other clustering algorithms such as -means
or SOM, EvoCluster is about 12–18 times slower than other
clustering algorithms when the time it takes for a reproduction
to be performed is compared against the time it takes for per-
forming an iteration in these algorithm. However, as shown in
the experiments above, if the same computational resources are
given to these clustering algorithms. EvoCluster will likely be
giving the best clustering results. For microarray analysis, since
the results are normally not required immediately, the relatively
longer evolutionary process that EvoCluster takes to find a better
solution is not very important. In order to cope with very large
gene expression data sets, the inherently parallel nature of the
problem solving process of EvoCluster can be exploited. In ad-
dition, for future research, we intend also to investigate into the
effect of varying the parameters used by EvoCluster has on its
performance. We believe that both its efficiency and effective-
ness can be used with an adaptive learning process.

ACKNOWLEDGMENT

The authors are grateful to the acting Editor-in-Chief of this
paper, Dr. G. Fogel, and anonymous associate editor and ref-
erees for their constructive comments.

REFERENCES

[1] J. H. Ward, “Hierarchical grouping to optimize an objective function,”
J. Amer. Stat. Assoc., vol. 58, pp. 236–244, 1963.

[2] J. MacQueen, “Some methods for classification and analysis of multi-
variate observation,” in Proc. Symp. Math. Stat. Prob. Berkeley, vol. 1,
1967, pp. 281–297.

[3] T. Kohonen, Self-Organization and Associative Memory. New York:
Springer-Verlag, 1989.

[4] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,” Proc. Nat.
Acad. Sci. USA, vol. 95, no. 25, pp. 14 863–14 868, Dec. 1998.

[5] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church,
“Systematic determination of genetic network architecture,” Nat. Genet.,
vol. 22, no. 3, pp. 281–285, Jul. 1999.

[6] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitro-
vsky, E. S. Lander, and T. R. Golub, “Interpreting patterns of gene
expression with self-organizing maps: Methods and application to
hematopoietic differentiation,” Proc. Nat. Acad. Sci. USA, vol. 96, no.
6, pp. 2907–2912, Mar. 1999.

[7] D. L. Hartl and E. W. Jones, Genetics: Analysis of Genes and
Genomes. Sudbury, MA: Jones & Bartlett, 2001.

[8] T. M. Cox and J. Sinclair, Molecular Biology in Medicine. Oxford,
U.K.: Blackwell Science, 1997.

[9] P. M. Fernandes, T. Domitrovic, C. M. Kao, and E. Kurtenbach, “Ge-
nomic expression pattern in Saccharomyces cerevisiae cells in response
to high hydrostatic pressure,” FEBS Lett., vol. 556, no. 1–3, pp. 153–160,
Jan. 2004.

[10] J. Lapointe, C. Li, J. P. Higgins, M. Van De Rijn, E. Bair, K. Mont-
gomery, M. Ferrari, L. Egevad, W. Rayford, U. Bergerheim, P. Ekman,
A. M. DeMarzo, R. Tibshirani, D. Botstein, P. O. Brown, J. D. Brooks,
and J. R. Pollack, “Gene expression profiling identifies clinically rele-
vant subtypes of prostate cancer,” Proc. Nat. Acad. Sci. USA, vol. 101,
no. 3, pp. 811–816, Jan. 2004.

[11] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M.
B. Eisen, P. O. Brown, D. Botstein, and B. Futcher, “Comprehensive
identification of cell cycle-regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization,” Mol. Biol. Cell, vol. 9, no. 12,
pp. 3273–3297, Dec. 1998.

[12] R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway, L.
Wodicka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lock-
hart, and R. W. Davis, “A genome-wide transcriptional analysis of the
mitotic cell cycle,” Mol. Cell, vol. 2, no. 1, pp. 65–73, Jul. 1998.

[13] R. J. Cho, M. Huang, M. J. Campbell, H. Dong, L. Steinmetz, L.
Sapinoso, G. Hampton, S. J. Elledge, R. W. Davis, and D. J. Lockhart,
“Transcriptional regulation and function during the human cell cycle,”
Nat. Genet., vol. 27, no. 1, pp. 48–54, Jan. 2001.

[14] J. L. DeRisi, V. R. Iyer, and P. O. Brown, “Exploring the metabolic and
genetic control of gene expression on a genomic scale,” Science, vol.
278, pp. 680–686, Oct. 1997.

[15] D. A. Lashkari, J. L. DeRisi, J. H. McCusker, A. F. Namath, C. Gentile,
S. Y. Hwang, P. O. Brown, and R. W. Davis, “Yeast microarrays for
genome wide parallel genetic and gene expression analysis,” Proc. Nat.
Acad. Sci. USA, vol. 94, no. 24, pp. 13 057–13 062, Nov. 1997.

[16] J. Zheng, J. Wu, and Z. Sun, “An approach to identify over-represented
CIS-elements in related sequences,” Nucleic Acids Res., vol. 31, no. 7,
pp. 1995–2005, Apr. 2003.

[17] D. P. Berrar, W. Dubitzky, and M. Granzow, A Practical Approach to
Microarray Data Analysis. Boston, MA: Kluwer Academic, 2003.

[18] G. Sherlock, “Analysis of large-scale gene expression data,” Curr. Opin.
Immunol., vol. 21, pp. 201–205, 2000.

[19] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Engle-
wood Cliffs, NJ: Prentice-Hall, 1998.

[20] J. Quackenbush, “Computational analysis of microarray data,” Nat. Rev.
Genet., vol. 2, no. 6, pp. 418–427, Jun. 2001.

[21] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene expression
patterns,” J. Comp. Biol., vol. 6, no. 3–4, pp. 281–297, Fall-Winter 1999.

[22] J. Herrero, A. Valencia, and J. Dopazo, “A hierarchical unsupervised
growing neural network for clustering gene expression patterns,” Bioin-
formatics, vol. 17, no. 2, pp. 126–136, Feb. 2001.

[23] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative
monitoring of gene expression patterns with a complementary DNA mi-
croarray,” Science, vol. 270, no. 5235, pp. 467–470, 1995.

[24] D. J. Lockhart and E. A. Winzeler, “Genomic, gene expression and DNA
arrays,” Nature, vol. 405, no. 6788, pp. 827–836, 2000.

[25] A. Brazma, A. Robinson, G. Cameron, and M. Ashburner, “One-stop
shop for microarray data,” Nature, vol. 403, no. 6771, pp. 699–700,
2000.

[26] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent, “Expres-
sion profiling using cDNA microarrays,” Nat. Genet., vol. 21, no. 1, pp.
10–14, Jan. 1999.

[27] C. L. Liu, Introduction to Combinatorial Mathematics. New York:
McGraw-Hill, 1968.

[28] D. P. Muni, N. R. Pal, and J. Das, “A novel approach to design classifiers
using genetic programming,” IEEE Trans. Evol. Comput., vol. 8, no. 2,
pp. 183–196, Apr. 2004.

[29] Z. Chi, X. Weimin, T. M. Tirpak, and P. C. Nelson, “Evolving accurate
and compact classification rules with gene expression programming,”
IEEE Trans. Evol. Comput., vol. 7, no. 6, pp. 519–531, Dec. 2003.

[30] J. R. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms
as instance selection for data reduction in KDD: An experimental study,”
IEEE Trans. Evol. Comput., vol. 7, no. 6, pp. 561–575, Dec. 2003.

[31] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an
ant colony optimization algorithm,” IEEE Trans. Evol. Comput., vol. 6,
no. 4, pp. 321–332, Aug. 2002.

[32] C. A. Murthy and N. Chowdhury, “In search of optimal clusters using
genetic algorithms,” Pattern Recognit. Lett., vol. 17, no. 8, pp. 825–832,
1996.

[33] K. C. C. Chan and L. L. H. Chung, “Discovering clusters in databases
containing mixed continuous and discrete-valued attributes,” in Proc.
SPIE AeroSense’99 Data Mining and Knowledge Discovery: Theory,
Tools, and Technology, 1999, pp. 22–31.

[34] Y. Park and M. Song, “A genetic algorithm for clustering problems,”
in Proc. 3rd Genetic Programming Annual Conf., San Francisco, CA,
1998, pp. 568–575.

MA et al.: AN EVOLUTIONARY CLUSTERING ALGORITHM FOR GENE EXPRESSION MICROARRAY DATA ANALYSIS 313

[35] L. O. Hall, I. B. Ozyurt, and J. C. Bezdek, “Clustering with a geneti-
cally optimized approach,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp.
103–112, Jul. 1999.

[36] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based clustering
technique,” Pattern Recognit., vol. 33, pp. 1455–1465, 2000.

[37] G. P. Babu and M. N. Murty, “Clustering with evolution strategies,” Pat-
tern Recognit., vol. 27, no. 2, pp. 321–329, 1994.

[38] P. Franti, J. Kivijarvi, T. Kaukoranta, and O. Nevalainen, “Genetic algo-
rithms for large-scale clustering problems,” Comput. J., vol. 40, no. 9,
pp. 547–554, 1997.

[39] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE Trans.
Syst., Man, Cybern. B, vol. 29, no. 3, pp. 433–439, Jun. 1999.

[40] Y. Lu and J. Han, “Cancer classification using gene expression data,” Inf.
Syst., vol. 28, no. 4, pp. 243–268, 2003.

[41] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. New York: Addison-Wesley, 1989.

[42] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams. New York: Springer-Verlag, 1996.

[43] E. Falkenauer, Genetic Algorithms and Grouping Problems. Chich-
ester, U.K.: Wiley, 1998.

[44] T. Baeck, D. Fogel, and Z. Michalewicz, Handbook of Evolutionary
Computation, U.K.: Institute of Physics, 1997.

[45] , Evolutionary Computation 1: Basic Algorithms and Opera-
tors. Bristol, U.K.: Institute of Physics, 2000.

[46] , Evolutionary Computation 2: Advanced Algorithms and Opera-
tors. Bristol, U.K.: Institute of Physics, 2000.

[47] K. C. C. Chan and A. K. C. Wong, “A statistical technique for extracting
classificatory knowledge from databases,” in Knowledge Discovery in
Databases, G. Piatesky-Shapiro and W. J. Frawley, Eds. Menlo Park,
CA: AAAI/MIT Press, 1991, pp. 107–123.

[48] Y. Wang and A. K. C. Wong, “From association to classification: Infer-
ence using weight of evidence,” IEEE Trans. Knowl. Data Eng., vol. 15,
pp. 764–767, May–Jun. 2003.

[49] W. H. Au, K. C. C. Chan, and X. Yao, “A novel evolutionary data
mining algorithm with applications to churn modeling,” IEEE Trans.
Evol. Comput. (Special Issue on Data Mining and Knowledge Discovery
With Evolutionary Algorithms), vol. 7, pp. 532–545, Dec. 2003.

[50] W. H. Au and K. C. C. Chan, “Discovering fuzzy association rules in a
bank database,” IEEE Trans. Fuzzy Syst. (Special Issue on Fuzzy Systems
in Knowledge Discovery and Data Mining), vol. 11, pp. 238–248, Apr.
2003.

[51] K. C. C. Chan and W. H. Au, “Mining fuzzy association rules,” in Proc.
ACM 6th Int. Conf. Inf. Knowl. Management, Las Vegas, NV, 1997, pp.
209–215.

[52] K. C. C. Chan, A. K. C. Wong, and D. K. Y. Chiu, “Learning sequential
patterns for probabilistic inductive prediction,” IEEE Trans. Syst., Man,
Cybern., vol. 24, no. 10, pp. 1532–1547, Oct. 1994.

[53] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B.
Eisen, P. O. Brown, D. Botstein, and B. Futcher, “Comprehensive iden-
tification of cell cycle-regulated genes of the yeast Saccharomyces cere-
visiae by microarray hybridization,” Mol. Biol. Cell., vol. 9, no. 12, pp.
3273–3297, Dec. 1998. [Online]. Available: http://genome-www.stan-
ford.edu/cellcycle.

[54] R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway, L.
Wodicka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lock-
hart, and R. W. Davis, “A genome-wide transcriptional analysis of the
mitotic cell cycle,” Mol. Cell., vol. 2, no. 1, pp. 65–73, Jul. 1998. [On-
line]. Available: http://genome-www.stanford.edu.

[55] J. Han, Data Mining: Concepts and Techniques. San Francisco, CA:
Morgan Kaufmann, 2001.

[56] D. Stekel, Microarray Bioinformatics. Cambridge, U.K.: Cambridge
Univ. Press, 2003.

[57] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 1, no. 2, pp. 224–227, 1979.

[58] B. Larsen and C. Aone, “Fast and effective text mining using linear-
time document clustering,” in Proc. KDD-99 Workshop, San Diego, CA,
1999.

[59] G. Kowalski, Information Retrieval Systems—Theory and Implementa-
tion. Norwell, MA: Kluwer Academic, 1997.

[60] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA: Morgan Kaufmann, 1993.

[61] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E.
Dmitrovsky, E. S. Lander, and T. R. Golub, “Interpreting patterns
of gene expression with self-organizing maps: Methods and ap-
plication to hematopoietic differentiation,” Proc. Nat. Acad. Sci.
USA, vol. 96, no. 6, pp. 2907–2912, Mar. 1999. [Online]. Available:
http://www.broad.mit.edu/cancer/software/genecluster2/gc2.html.

[62] D. K. Y. Chiu, B. Cheung, and A. K. C. Wong, “Information synthesis
based on hierarchical maximum entropy discretization,” J. Exp. Theor.
Artif. Intell., vol. 2, pp. 117–129, 1990.

[63] W. Li and Y. Yang, “How many genes are needed for a discriminant mi-
croarray data analysis,” in Critical Assessment Techniques Microarray
Data Mining Workshop, 2000, pp. 137–150.

[64] M. Xiong, X. Fang, and J. Zhao, “Biomarker identification by feature
wrappers,” Genome Res., vol. 11, pp. 1878–1887, 2001.

[65] E. P. Xing and R. M. Karp, “CLIFF: clustering of high-dimensional mi-
croarray data via iterative feature filtering using normalized cuts,” Bioin-
formatics, vol. 17, no. 1, pp. S306–S315, 2001.

[66] J. Jaeger, R. Sengupta, and W. L. Ruzzo, “Improved gene selection for
classification of microarrays,” in Pacific Symp. Biocomputing, vol. 8,
2003, pp. 53–64.

[67] T. R. Golub, “Molecular classification of cancer: Class discovery and
class prediction by gene expression monitoring,” Science, vol. 286, pp.
531–537, 1999.

[68] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and
A. J. Levine, “Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide
arrays,” Proc. Nat. Acad Sci. USA, vol. 96, pp. 6745–6750, 1999.

[69] C. Ding, “Analysis of gene expression profiles: Class discovery and leaf
ordering,” in Proc. 6th Int. Conf. Research Computational Molecular
Biology (RECOMB), 2002, pp. 127–136.

[70] Y. Su, T. M. Murali, V. Pavlovic, M. Schaffer, and S. Kasif, “RankGene:
Identification of diagnostic genes based on expression data,” Bioinfor-
matics, vol. 19, no. 12, pp. 1578–1579, Aug. 2003. [Online]. Available:
http://genomics10.bu.edu/yangsu/rankgene/.

[71] M. H. DeGroot and M. J. Schervish, Probability and Statistics. Boston,
MA: Addison-Wesley, 2002.

[72] S. Chevalier and J. J. Blow, “Cell cycle control of replication initiation
in eukaryotes,” Curr. Opin. Cell Biol., vol. 8, pp. 815–821, 1996.

[73] C. A. Ball, H. Jin, G. Sherlock, S. Weng, J. C. Matese, R. Andrada,
G. Binkley, K. Dolinski, S. S. Dwight, M. A. Harris, L. Issel-Tarver,
M. Schroeder, D. Botstein, and J. M. Cherry, “Saccharomyces genome
database provides tools to survey gene expression and functional anal-
ysis data,” Nucleic Acids Res., vol. 29, no. 1, pp. 80–81, Jan. 2001.

[74] R. Matoba, K. Kato, C. Kurooka, C. Maruyama, Y. Sakakibara, and K.
Matsubara, “Correlation between gene functions and developmental ex-
pression patterns in the mouse cerebellum,” Eur. J. Neurosci., vol. 12,
no. 4, pp. 1357–1371, Apr. 2000.

[75] M. Schena, DNA Microarrays: A Practical Approach. Oxford, U.K.:
Oxford Univ. Press, 1999.

[76] A. de la Fuente, P. Brazhnik, and P. Mendes, “Linking the genes: Infer-
ring quantitative gene networks from microarray data,” Trends Genet.,
vol. 18, no. 8, pp. 395–398, Aug. 2002.

[77] K. Dolinski, R. Balakrishnan, K. R. Christie, and M. C. Costanzo.
(2003) Saccharomyces Genome Database. [Online]. Available:
ftp://ftp.yeastgenome.org/yeast/

[78] J. V. Helden, B. Andre, and J. Collado-Vides, “Extracting regulatory
sites from the upstream region of yeast genes by computational anal-
ysis of oligonucleotide frequencies,” J. Mol Biol., vol. 281, no. 5, pp.
827–842, Sep. 1998.

[79] J. V. Helden, A. F. Rios, and J. Collado-Vides, “Discovering regulatory
elements in noncoding sequences by analysis of spaced dyads,” Nucleic
Acids Res., vol. 28, no. 8, pp. 1808–1818, Apr. 2000.

[80] M. Suzuki, S. E. Brenner, M. Gerstein, and N. Yagi, “DNA recognition
code of transcription factors,” Protein Eng., vol. 8, no. 4, pp. 319–328,
Apr. 1995.

Patrick C. H. Ma received the B.A. degree in com-
puter science from the Hong Kong Polytechnic Uni-
versity, Hong Kong, China. He is currently working
towards the Ph.D. degree at the Department of Com-
puting, Hong Kong Polytechnic University.

His research interests are in bioinformatics, data
mining, and computational intelligence.

314 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006

Keith C. C. Chan received the B.Math. degree in
computer science and statistics and the M.A.Sc. and
Ph.D. degrees in systems design engineering from the
University of Waterloo, Waterloo, ON, Canada.

He was with IBM Canada Laboratory, Toronto,
ON, where he was involved in the development
of software engineering tools. In 1993, he joined
the Department of Electrical and Computer Engi-
neering, Ryerson University, Toronto, ON, Canada,
as an Associate Professor. In 1994, he joined the
Department of Computing, Hong Kong Polytechnic

University, Hong Kong, China, where he is now Professor and Head. He is
also a Guest Professor of the Graduate School and an Adjunct Professor of the
Institute of Software, Chinese Academy of Sciences, Beijing. He has served as
a Consultant to government agencies and various companies in Hong Kong,
China, Singapore, Malaysia, and Canada. His research interests are in data
mining, computational intelligence, bioinformatics, and software engineering.

Xin Yao (M’91–SM’96–F’03) received the B.Sc.
degree from the University of Science and Tech-
nology of China (USTC), Hefei, in 1982, the M.Sc.
degree from North China Institute of Computing
Technology, Beijing, in 1985, and the Ph.D. degree
from USTC in 1990, all in computer science.

He worked in China and Australia before joining
the University of Birmingham, Birmingham, U.K.,
in 1999, as a Professor of Computer Science. He is a
Distinguished Visiting Professor at USTC, and a Vis-
iting Professor at three other universities. He is the

Director of The Centre of Excellence for Research in Computational Intelli-
gence and Applications, which is focused on applied research and knowledge
transfer to the industry. He is an Associate Editor or an Editorial Board Member
of ten international journals. He is the Editor of the World Scientific Book Series
on Advances in Natural Computation, and a Guest Editor of several journal spe-
cial issues. He has been invited to present 40 keynote or plenary speeches at con-
ferences worldwide. He has more than 200 research publications. His research
interests include evolutionary computation, neural network ensembles, global
optimization, data mining, computational time complexity of evolutionary al-
gorithms, and real-world applications. In addition to basic research, he works
closely with many industrial partners on various real-world problems.

Dr. Yao won the 2001 IEEE Donald G. Fink Prize Paper Award and several
other best paper awards. He is the Editor-in-Chief of the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION.

David K. Y. Chiu received the M.Sc. degree in com-
puting and information science from Queen’s Uni-
versity, Kingston, ON, Canada, and the Ph.D. degree
in systems design engineering from the University of
Waterloo, Waterloo, ON.

Currently, he is a Full Professor in the Department
of Computing and Information Science and Graduate
Faculty of the Biophysics Interdepartmental Group,
University of Guelph, Guelph, ON, Canada. He has
done consulting work with NCR Canada, Ltd., and
VIRTEC Vision, Intelligence, Robotics Technology

Canada, Ltd., on unconstrained character recognition. He was a Visiting
Researcher to Electrotechnical Laboratory (currently National Institute of
Advanced Industrial Science and Technology). He has broad research interests
in knowledge discovery and pattern analysis, and in particular, bioinformatics
and comparative genomics. He has published more than 100 technical papers
in these areas.

Prof. Chiu received the Science and Technology Agency Fellowship of Japan.

	toc
	An Evolutionary Clustering Algorithm for Gene Expression Microar
	Patrick C. H. Ma, Keith C. C. Chan, Xin Yao, Fellow, IEEE, and D
	I. I NTRODUCTION
	II. C LUSTERING A LGORITHMS FOR I DENTIFICATION OF C O EXPRESSED
	III. A N E VOLUTIONARY C LUSTERING A LGORITHM
	A. Cluster Encoding in Chromosomes and Population Initialization

	Fig.€1. Chromosome encoding scheme.
	B. Selection and Reproduction
	1) The Guided Crossover (GC) and Unguided Crossover (UGC) Operat
	2) The Guided (GRRM) and Unguided Remove-and-Reclassify-Record M
	3) The Guided (GMGM) and Unguided Merge- Gene Mutation (UGMGM) O
	4) The Guided (GSGM) and Unguided Split- Gene Mutation (UGSGM) O

	C. Fitness Function
	IV. E XPERIMENTAL R ESULTS
	A. Experimental Data
	B. Validating Cluster Grouping

	TABLE€I S UMMARY OF THE N UMBER OF E XPERIMENTS P ERFORMED BY E
	C. The Results

	TABLE€II P ARAMETER S ETTINGS OF E VO C LUSTER U SED IN S IMULA
	1) Simulated Data: Since the number of clusters $(k=\hbox{3})$ t

	TABLE€III C OMPARING THE C LUSTERING P ERFORMANCE U SING G UIDE
	TABLE€IV C OMPARING THE M EAN OF A VERAGE P REDICTIVE P OWER U
	TABLE€V C OMPARING THE M EAN OF DBI U SING S IMULATED D ATA (T
	TABLE€VI C OMPARING THE M EAN OF F-M EASURE U SING S IMULATED D
	2) Gene Expression Data:
	a) Statistical analysis: In the following, the performance of Ev

	TABLE€VII R ESULTS OF t -T EST (T EN T RIALS) (D EGRESS OF F
	TABLE€VIII A SSOCIATION R ULES D ISCOVERED IN THE S IMULATED D
	TABLE€IX P ARAMETER S ETTINGS OF E VO C LUSTER IN G ENE E XPRES
	b) Biological interpretation: Based on the clustering results ob

	TABLE€X C OMPARING THE C LUSTERING P ERFORMANCE U SING G UIDED
	TABLE€XI C OMPARING THE C LUSTERING P ERFORMANCE U SING G UIDED
	TABLE€XII C OMPARING THE M EAN OF A VERAGE P REDICTIVE P OWER U
	TABLE€XIII C OMPARING THE M EAN OF DBI U SING S PELLMAN ' S G E
	TABLE€XIV C OMPARING THE M EAN OF A VERAGE P REDICTIVE P OWER U
	TABLE€XV C OMPARING THE M EAN OF DBI U SING C HO ' S G ENE E XP
	TABLE€XVI R ESULTS OF z -T EST (T EN T RIALS) (D ATASET 1 O
	TABLE€XVII R ESULTS OF z -T EST (T EN T RIALS) (D ATASET 2 O
	TABLE€XVIII R ULES D ISCOVERED FOR S PELLMAN ' S G ENE E XPRESS
	TABLE€XIX R ULES D ISCOVERED FOR C HO ' S G ENE E XPRESSION D A
	TABLE€XX K NOWN T RANSCRIPTION F ACTOR B INDING S ITES IN B IOL
	TABLE€XXI K NOWN T RANSCRIPTION F ACTOR B INDING S ITES R EVEAL
	TABLE€XXII K NOWN T RANSCRIPTION F ACTOR B INDING S ITES R EVEA
	TABLE€XXIII S IGNIFICANT P OTENTIAL T RANSCRIPTION F ACTOR B IN
	TABLE€XXIV S IGNIFICANT P OTENTIAL T RANSCRIPTION F ACTOR B IND
	TABLE€XXV D ISCOVERY OF K NOWN T RANSCRIPTION F ACTOR B INDING
	TABLE€XXVI D ISCOVERY OF K NOWN T RANSCRIPTION F ACTOR B INDING
	TABLE€XXVII T OTAL N UMBER OF K NOWN AND P OTENTIAL T RANSCRIPT
	TABLE€XXVIII T OTAL N UMBER OF K NOWN AND P OTENTIAL T RANSCRIP
	V. C ONCLUSION
	A CKNOWLEDGMENT
	J. H. Ward, Hierarchical grouping to optimize an objective funct
	J. MacQueen, Some methods for classification and analysis of mul
	T. Kohonen, Self-Organization and Associative Memory . New York:
	M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Clust
	S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M.
	P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmit
	D. L. Hartl and E. W. Jones, Genetics: Analysis of Genes and Gen
	T. M. Cox and J. Sinclair, Molecular Biology in Medicine . Oxfor
	P. M. Fernandes, T. Domitrovic, C. M. Kao, and E. Kurtenbach, Ge
	J. Lapointe, C. Li, J. P. Higgins, M. Van De Rijn, E. Bair, K. M
	P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders,
	R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conw
	R. J. Cho, M. Huang, M. J. Campbell, H. Dong, L. Steinmetz, L. S
	J. L. DeRisi, V. R. Iyer, and P. O. Brown, Exploring the metabol
	D. A. Lashkari, J. L. DeRisi, J. H. McCusker, A. F. Namath, C. G
	J. Zheng, J. Wu, and Z. Sun, An approach to identify over-repres
	D. P. Berrar, W. Dubitzky, and M. Granzow, A Practical Approach
	G. Sherlock, Analysis of large-scale gene expression data, Curr.
	A. K. Jain and R. C. Dubes, Algorithms for Clustering Data . Eng
	J. Quackenbush, Computational analysis of microarray data, Nat.
	A. Ben-Dor, R. Shamir, and Z. Yakhini, Clustering gene expressio
	J. Herrero, A. Valencia, and J. Dopazo, A hierarchical unsupervi
	M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Quantitative
	D. J. Lockhart and E. A. Winzeler, Genomic, gene expression and
	A. Brazma, A. Robinson, G. Cameron, and M. Ashburner, One-stop s
	D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, and J. M. Trent,
	C. L. Liu, Introduction to Combinatorial Mathematics . New York:
	D. P. Muni, N. R. Pal, and J. Das, A novel approach to design cl
	Z. Chi, X. Weimin, T. M. Tirpak, and P. C. Nelson, Evolving accu
	J. R. Cano, F. Herrera, and M. Lozano, Using evolutionary algori
	R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, Data mining wi
	C. A. Murthy and N. Chowdhury, In search of optimal clusters usi
	K. C. C. Chan and L. L. H. Chung, Discovering clusters in databa
	Y. Park and M. Song, A genetic algorithm for clustering problems
	L. O. Hall, I. B. Ozyurt, and J. C. Bezdek, Clustering with a ge
	U. Maulik and S. Bandyopadhyay, Genetic algorithm-based clusteri
	G. P. Babu and M. N. Murty, Clustering with evolution strategies
	P. Franti, J. Kivijarvi, T. Kaukoranta, and O. Nevalainen, Genet
	K. Krishna and M. N. Murty, Genetic k-means algorithm, IEEE Tran
	Y. Lu and J. Han, Cancer classification using gene expression da
	D. E. Goldberg, Genetic Algorithms in Search, Optimization and M
	Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
	E. Falkenauer, Genetic Algorithms and Grouping Problems . Chiche
	T. Baeck, D. Fogel, and Z. Michalewicz, Handbook of Evolutionary
	K. C. C. Chan and A. K. C. Wong, A statistical technique for ext
	Y. Wang and A. K. C. Wong, From association to classification: I
	W. H. Au, K. C. C. Chan, and X. Yao, A novel evolutionary data m
	W. H. Au and K. C. C. Chan, Discovering fuzzy association rules
	K. C. C. Chan and W. H. Au, Mining fuzzy association rules, in P
	K. C. C. Chan, A. K. C. Wong, and D. K. Y. Chiu, Learning sequen
	P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders,
	R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conw
	J. Han, Data Mining: Concepts and Techniques . San Francisco, CA
	D. Stekel, Microarray Bioinformatics . Cambridge, U.K.: Cambridg
	D. L. Davies and D. W. Bouldin, A cluster separation measure, IE
	B. Larsen and C. Aone, Fast and effective text mining using line
	G. Kowalski, Information Retrieval Systems Theory and Implementa
	J. R. Quinlan, C4.5: Programs for Machine Learning . San Francis
	P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmit
	D. K. Y. Chiu, B. Cheung, and A. K. C. Wong, Information synthes
	W. Li and Y. Yang, How many genes are needed for a discriminant
	M. Xiong, X. Fang, and J. Zhao, Biomarker identification by feat
	E. P. Xing and R. M. Karp, CLIFF: clustering of high-dimensional
	J. Jaeger, R. Sengupta, and W. L. Ruzzo, Improved gene selection
	T. R. Golub, Molecular classification of cancer: Class discovery
	U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack
	C. Ding, Analysis of gene expression profiles: Class discovery a
	Y. Su, T. M. Murali, V. Pavlovic, M. Schaffer, and S. Kasif, Ran
	M. H. DeGroot and M. J. Schervish, Probability and Statistics .
	S. Chevalier and J. J. Blow, Cell cycle control of replication i
	C. A. Ball, H. Jin, G. Sherlock, S. Weng, J. C. Matese, R. Andra
	R. Matoba, K. Kato, C. Kurooka, C. Maruyama, Y. Sakakibara, and
	M. Schena, DNA Microarrays: A Practical Approach . Oxford, U.K.:
	A. de la Fuente, P. Brazhnik, and P. Mendes, Linking the genes:
	K. Dolinski, R. Balakrishnan, K. R. Christie, and M. C. Costanzo
	J. V. Helden, B. Andre, and J. Collado-Vides, Extracting regulat
	J. V. Helden, A. F. Rios, and J. Collado-Vides, Discovering regu
	M. Suzuki, S. E. Brenner, M. Gerstein, and N. Yagi, DNA recognit

