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Abstract—Evolutionary deep learning (EDL) as a hot topic
in recent years aims at using evolutionary computation (EC)
techniques to address existing issues in deep learning. Most
existing work focuses on employing EC methods for evolving
hyper-parameters, deep structures or weights for neural networks
(NNs). Genetic programming (GP) as an EC method is able to
achieve deep learning due to the characteristics of its repre-
sentation. However, many current GP-based EDL methods are
limited to binary image classification. This paper proposed a new
GP-based EDL method with convolution operators (COGP) for
feature learning on binary and multi-class image classification.
A novel flexible program structure is developed to allow COGP
to evolve solutions with deep or shallow structures. Associated
with the program structure, a new function set and a new
terminal set are developed in COGP. The experimental results
on six different image classification data sets of varying dif-
ficulty demonstrated that COGP achieved significantly better
performance in most comparisons with 11 effectively competitive
methods. The visualisation of the best program further revealed
the high interpretability of the solutions found by COGP.

I. INTRODUCTION

Deep learning is a hot research topic in recent decades.

Many deep models/methods have been developed and showed

promising results in very difficult tasks such as image classi-

fication, object detection and natural language processing [1].

Deep learning methods are representation learning methods,

where the representation of data with multiple levels of

abstraction is learned using multiple processing layers [1, 2].

In other words, the success of deep learning methods owns to

three main characteristics: sufficient model complexity, layer-

by-layer preprocessing and feature transformation [3, 4]. In

general, the three characteristics encourage the development

of different types of deep learning methods. However, most

existing deep learning methods are neural network (NN)-based

methods. The NN-based methods have their own limitations,

such as providing black-box solutions, requiring a large num-

ber of training instances and computing resources.

Computer vision is one of the main areas that deep learning

methods have achieved big success. Image classification is a

fundamental task in computer vision with many real-world

applications. Image classification is the task of classifying

different images into predefined groups based on the content

in the images. Due to image variations, such as occlusion,

rotation, scale, and deformation variations, image classification

remains a challenging task.

In recent years, convolutional neural networks (CNNs)

have achieved significant success in image classification. For

example, deep CNNs have achieved the best results on the

famous ImageNet large scale visual recognition challenge

(ILSVRC) from 2012 to 2017. Despite the promise, deep

CNNs have several limitations. Firstly, deep CNNs provide

black-box-like solutions, which are often very hard to explain

and interpret. Therefore, many efforts have been devoted to

visualising the features learned by CNNs, such as in [5].

However, due to a large number of learned features, these

methods are still uninterpretable [6]. Secondly, developing a

new deep CNN needs rich domain knowledge to construct the

architecture and set the important parameters [7]. Generally,

the model complexity of deep CNNs is determined by experts

who develop them. Although many existing well-developed

models can be easily used, they might not be effective for

other domains/problems or for problems with limited data.

Evolutionary deep learning (EDL) is a research field aiming

at using evolutionary computation (EC) techniques to address

existing issues in deep learning. Evolutionary computation is

a subfield under artificial intelligence and has gained much

attention in recent decades. Existing EDL methods can be

broadly classified into two groups: NN-based EDL methods

and genetic programming (GP)-based EDL methods [4]. The

methods in the first category use evolutionary algorithms, in-

cluding particle swarm optimisation (PSO), genetic algorithms

(GAs) and differential evolution (DE), to evolve deep NNs,

including the architecture, hyper-parameters and weights of

NNs [7–10]. Because NNs have different types of models, such

as CNNs, autoencoder and recurrent NN (RNNs), this category

has a large range with many existing works. The second

category aims at using GP to achieve deep learning as GP is

able to automatically evolve models/solutions with sufficient

complexity for specific problems. The other characteristics

of deep learning can be easily found in GP-based solutions,

especially on image-related tasks. Currently, in this category,

we only find GP-based methods. Perhaps other EC methods

can achieve this in the near future.

GP as an EC technique aims at automatically evolving

computer programs from predefined primitive sets to solve



particular problems using the principle of biological evolution

and natural selection [11]. Well-known for the good global

search ability, flexible representation and high interpretability,

GP has achieved promising results in many problems, includ-

ing symbolic regression, classification and image analysis [12].

GP-based EDL methods have been developed in recent

years, where most of them tackled with image classification

tasks [13–19]. Traditionally, the process of dealing with image

classification contains several steps: preprocessing, feature

extraction, feature selection, and classification. One type of

GP-based EDL methods deals with these several steps in one

single program, which means that the raw image is fed to a GP

program and the class label is returned [13–16, 20]. Another

type of GP-based EDL methods learns multiple features from

raw pixels and uses a traditional classification algorithm for

classification [17, 21–24]. Both these two types are able to

automatically evolve computer programs that transform non-

meaningful raw pixels into discriminative features for classi-

fication through many different processes, including feature

extraction, feature construction, filtering, and pooling.

Commonly used GP method has a tree-based representation,

which is very flexible and is able to find solutions with suitable

structure and complexity for particular problems. The tree-

based solutions are often evolved by selecting functions from

the function set to build the internal or root nodes and selecting

terminals from the terminal set to build the leaf nodes and

often provide good interpretability. However, the potential of

GP for deep learning has not been extensively explored.

There are many functions or operations, such as convolu-

tion, pooling and activation, that have been used in CNNs

and showed promise in image classification. These functions

can be applied and developed as GP functions to allow GP

to automatically evolve the combinations of them for effective

feature learning and image classification. To well cooperate

with these functions, a new program structure is needed.

A. Goals

The aim of this paper is to develop a new GP-based EDL

method for feature learning and image classification. Inspired

by the convolution and pooling operations employed in CNNs,

the COGP method will use these operations as functions. A

new program structure, a new function set and a new terminal

set will be developed to allow COGP to learn discriminative

features for classification. The performance of COGP will be

examined on a number of image classification data sets of

varying difficulty and compared with that of state-of-the-art

algorithms. Specifically, this paper will answer the following

research questions.

1) How are the convolution and pooling operations

achieved in COGP?

2) How are the new functions and new terminals integrated

into a single COGP program?

3) Can COGP achieve better performance than state-of-the-

art methods?

4) Can the solutions of COGP be easy to understand and

interpret?

II. RELATED WORK

This section reviews and discusses recent work on existing

EDL methods for feature learning and image classification.

The existing methods can be broadly classified into NN-based

EDL methods and GP-based EDL methods.

A. NN-based EDL Methods

Using EC techniques for evolving NN is not a new topic,

which has been investigated in the 1980s and some early works

have been reviewed in [25]. In 2002, the well-known method,

NeuroEvolution of Augmenting Topologies (NEAT) [26], was

developed to use GAs for evolving the NN architectures and

weights. NEAT has been extended to hyperNEAT in [26],

where a composition pattern producing network was used

as the coding strategy. But the early work is not evolving

deep methods. Recently, EC methods have applied to evolve

deep models. Iba [9] reviewed several different methods to

evolve deep NNs, including NEAT, Genetic CNNs, hierarchi-

cal feature constructing using GP, and differentiable pattern-

producing network (DPPSN).

As the architecture and weights connection of CNNs are

different from traditional NNs, several EC methods have re-

cently been developed to evolving deep CNNs for image clas-

sification. Suganuma et al. [27] applied Cartesian GP to evolve

CNNs (CGP-CNN) with convolutional block (ConvBlock) and

with residual block (ResBlock) for image classification. CGP-

CNN automatically selects hyper-parameters for each block

and finds the combinations/connections of different modules

of CNNs. However, this method requires large computational

resources and takes a few weeks to run the experiments.

Sun et al. [7] developed an EvoCNN method for image

classification, where a new GA method with a flexible gene

encoding strategy was proposed to evolve the architectures and

connection weights of CNNs. Based on the new representation,

new selection, crossover and mutation operators have also been

developed in EvoCNN. Wang et al. [28] proposed an IPPSO

method for evolving the architecture and the hyper-parameters

for CNNs on image classification.

Besides supervised learning methods, EC algorithms have

been applied for evolving unsupervised learning methods

based on NNs. Sun et al. [8] applied GA to evolve unsuper-

vised deep NNs, i.e., autoencoder and Restricted Boltzmann

machine (RBM), to learn meaningful representation for image

classification. The comparisons between PSO and grid search

on the hyper-parameter optimisation for autoencoder have

been conducted in [10]. The experimental results have showed

the effectiveness and efficiency of PSO on this optimisation

task. Sun et al. [29] developed a PSO method for evolving deep

convolutional autoencoder for image classification. However,

these aforementioned methods often require extensive compu-

tational resources to run the experiments and generate models

with millions of parameters.

B. GP-based EDL Methods

Many GP-based EDL methods have been developed for

image-related tasks. To the best of our knowledge, the first



GP-based EDL method is the multi-tier GP (known as 3TGP)

method [13], which has an image filtering tier, an aggrega-

tion tier and a classification tier to learn high-level features

and construct classifiers for image classification. The image

filtering tier has several filtering functions such as mean,

max and min to process the input image to obtain feature

maps. The aggregation tier performs region detection from the

feature map and extracts a feature from each detected region.

The classification tier constructs the extracted features by the

aggregation tier to a high-level feature for classification. The

classification decision is based on the final output of each

GP program using a zero-threshold. Naturally, each 3TGP

program is a classifier for assigning a class label to each input

image when dealing with binary image classification.

Al-Sahaf et al. [14] developed a two-tier GP (2TGP) method

by removing the filtering tier of 3TGP. The aggregation tier

of 2TGP can detect regions with different shapes and sizes,

such as line, column, circle, and rectangle. Obviously, 2TGP

is much faster than 3TGP. Many variants of 2TGP have been

developed to extract high-level features rather than the pixel

statistics in the aggregation tier. Lensen et al. [20] proposed

a HoG+GP method based on the framework of 2TGP, where

the histogram of gradient (HOG) descriptor was developed as

functions in the aggregation tier to extract high-level features.

Similarly, Bi et al. [15, 16] presented new GP methods using

different filtering functions, feature extraction functions and

classification functions. Each program of the two methods

could perform region detection, feature extraction, feature

construction, and image classification, simultaneously. Evans

et al. [6] developed a ConvGP method for image classification.

The program structure of ConvGP is similar to 3TGP, where

the image filtering tier is replaced with a convolution layer.

The convolution layer uses convolution functions and pooling

functions to obtain meaningful features. However, these afore-

mentioned methods only produce one high-level feature and

are only effective for binary image classification.

GP-base EDL methods have also been developed to au-

tomatically learn multiple features for image classification,

including multi-class classification. Shao et al. [17] proposed

a multi-objective GP (MOGP) method for feature learning and

image classification. The program structure of MOGP has an

input layer, a filtering layer, a pooling layer, a concatenation

layer, and an output layer. The program of MOGP performs the

corresponding process to each input image using the evolved

functions and generates a number of features as output. The

features were fed to principal component analysis (PCA) for

dimensionality reduction and then fed to a linear support

vector machine (SVM) for classification.

Agapitos et al. [18] developed a greedy layer-wise GP-based

EDL method for handwritten digits recognition. This method

has a filter bank layer, a transformation layer, an average

pooling layer, and a classification layer. Specifically, the filter

bank layer has a collection of filters to convolve the input

image. Similar to this method, Suganuma et al. [19] developed

a new method by using more layers with filters for feature

construction. The method in [19] has two stages of feature

construction, where the first stage uses a combination of image

processing filters and the second stage uses a combination of

evolved filters. The structures of these two methods are very

similar to the architecture of CNNs, but their performance has

not been compared with CNNs.

Rodriguez-Coayahuitl [30] defined GP for representation

learning and proposed GP autoencoder for unsupervised repre-

sentation learning for image classification. Similar to autoen-

coder, a GP encoding forest was used for encoding and a GP

decoding forest was used for decoding, which means each GP

individual contains two forests with a number of trees. This

method has been examined on three image classification data

sets and showed promising results.

In summary, the above work on EDL has showed promising

results in image classification. However, most EDL methods

have their own limitations. It is necessary to develop new

effective and interpretable EDL methods. The GP-based EDL

methods have showed promising results and high interpretabil-

ity in image classification. However, most GP-based EDL

methods only deal with binary image classification [13, 15, 16,

20, 31]. Therefore, this paper develops a new GP-based EDL

method for binary and multi-class image classification. To

achieve this, a new flexible program structure, a new function

set and a new terminal set are developed in the new method.

III. THE PROPOSED APPROACH

This section describes the proposed COGP approach in

detail, including the overall algorithm, the new program struc-

ture, the new function set, and the new terminal set.

A. Overall Algorithm

The COGP method starts with randomly generating a num-

ber of initial GP trees based on the new program structure,

the new function set and the new terminal set. Then each

tree is evaluated using a training set and a linear support

vector machine (SVM). The evaluation process starts with

using the GP tree to transform each image in the training set

into features. The transformed training set is then normalised

using the min-max normalisation method [24] and is fed into a

linear SVM to perform classification. To evaluate each tree and

to improve the generalisation ability, 5-fold cross-validation is

used for SVM on the training set [24]. The mean accuracy

of the 5 folds is obtained and employed as the fitness value

of the GP tree. After the fitness evaluation, the whole GP

population is updated using the selection method and the

genetic operators, i.e., elitism, crossover and mutation. Then

the population is evaluated again. The overall process proceed

until reaching the maximum number of generations. Finally,

the COGP system returns the best individual.

B. Program Structure

To deal with multiple tasks in a single GP program, it is

necessary to design the program structure. COGP uses a novel

program structure, which is developed based on strongly typed

GP (STGP) [32]. Compared with traditional GP, STGP gives

an input type and an output type for each function and an



output type for each terminal. STGP also uses a tree-based

representation. But the output types of the children nodes of

each function in STGP must be the same as the input types

of the functions.

Input
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Fig. 1. The program structure of COGP and two example programs that can
be evolved by COGP.

The new program structure of COGP is shown in Fig. 1,

where the right part of the figure shows an example program

that may be evolved by COGP. The program structure of

COGP has several layers, including an input layer, a convo-

lution layer, a pooling layer, a convolution/pooling layer, a

concatenation layer, and an output layer. These layers are con-

nected using a bottom-up manner as shown in Fig. 1. Different

layers have various functions for different purposes, which

will be introduced in the following subsection. The input layer

takes the image, which will be classified, as input. The con-

volution layer mainly performs convolution operation to the

image and also has several important functions for rescaling,

activation or enhancement. The pooling layer conducts max-

pooling to the input image, where one important purpose is

for dimensionality reduction. The convolution/pooling layer

has the same functionality as the convolution and pooling

layers. The concatenation layer is to concatenate images or

vectors into one vector and the output layer returns the output.

Obviously, the input for each COGP program is an image and

the final output is a feature vector with particular dimensions.

Owing to the flexible representation of GP and the functions

used in the concatenation layer, the dimension of the output

features is flexible and not known in advance.

One characteristic of the new program structure is that it

has flexible layers and fixed layers. As shown in Fig. 1, the

output, convolution, pooling, concatenation, and input layers

are fixed, while the convolution/pooling layer is flexible. The

fixed layers make sure there exist feature transformation and

dimensionality reduction from raw pixels to features. The

flexible layer allows the COGP programs to have multiple

convolution and/or pooling layers and it may be evolved or

not be evolved. As shown in Fig. 1, the left branch of the

example program does not have the convolution/pooling layer,

while the right branch has the convolution/pooling layer. This

is the main difference from existing GP-based EDL methods

in terms of the program structure, such as in [6, 17].

Note that for each layer except for the input and output

layers, the tree depth is flexible, which means that each layer

may have several functions in the evolved COGP programs.

Owing to the flexibility, the new program structure allows

COGP to evolve simple programs for easy tasks and complex

programs with multiple convolutional operators and pooling

operators for difficult problems.

TABLE I
THE FUNCTION SET

Methods Input Output Description

Root1 2 vectors 1 vector Concatenate two vectors into a vector
Root2 2 images 1 vector Concatenate two images into a vector
Root3 3 images 1 vector Concatenate three images into a vector
Root4 4 images 1 vector Concatenate four images into a vector
Conv 1 image,

filter
1 image Perform convolution to the image us-

ing the filter
MaxP 1 image,

k1, k2

1 image Perform max-pooling to the image

ZMaxP 1 image,
k1, k2

1 image Perform max-pooling to the image and
then perform zero-padding to the im-
age

Sub 2 image,
n1, n2

1 image Subtract each two weighted image with
the same or different sizes

Add 2 image,
n1, n2

1 image Add each two weighted image with the
same or different sizes

ReLU 1 image 1 image Return max(0, x) for each x in the
image

Sqrt 1 image 1 image Return
√
x or 1 for each x in the image

Abs 1 image 1 image Return |x| for each x in the image

C. Function Set

All the functions of COGP and their input, output, and

description are listed in Table I. The Root1, Root2, Root3,

and Root4 functions are used in the concatenation layer.

These functions transform images or vectors to one vector

by concatenating all the arrays in images or vectors. The

MaxP function is employed in the pooling layer, which down-

samples an image by returning the maximum value of each

sliding window. This function can reduce the image size and

keep important information of an image. The MaxP function

takes an image and the kernel size, k1 and k2 as input

and returns a smaller image. The convolution layer has the

Conv, Sub, Add, ReLU, Sqrt, and Abs functions. The Conv

function performs convolution operation to the input image by

using the evolved filter. The convolution operation is to re-

place the pixel value with the weighted sum of its neighbours’

values, where the filter is actually used as the weights. The

Sub and Add functions perform weighted subtract and add

operation to two images using the n1 and n2 as weights. In

case that the two input images may have different sizes, the

Sub and Add functions also perform image cutting to make

the two images have the same size. The ReLU, Sqrt and Abs

functions are used for rescaling the pixel values of an image by

returning non-negative values. The ReLU function is known

as rectified linear unit (ReLU), which is commonly used as the

activation function in CNNs. The Sqrt function is protected

by returning 1 if the pixel value is negative.

The flexible layer, convolution/pooling, has the functions

that are used in the convolution and pooling layers and an

additional function ZMaxP. The ZMaxP function performs

max-pooling to an image and adds zero-padding around the

image to keep the size of the image. If many MaxP functions



are evolved in a branch of a GP tree, the dimension of the

image will be reduced quickly. The ZMaxP function is used

for reserving the size of the image.

D. Terminal Set

All the terminals and their value range and description are

shown in Table II. The terminals are imagem×n, filter3×3,

filter5×5, filter7×7, k1, k2, n1, and n2. The imagem×n

terminal represents the input image with size of m × n. The

filter3×3, filter5×5 and filter7×7 terminals are the filters

with different sizes, which are used as one of the inputs of

the Conv function. The values in the filters are randomly

initialised based on the range that is listed in Table II and

automatically evolved during the evolutionary process. The

n1 and n2 terminals are the inputs of the Add and Sub

functions, which are randomly sampled from [0.000, 1.000).
The k1 and k2 terminals mean the kernel size of the MaxP and

ZMaxP functions, where their values are randomly generated

from the range initially and automatically evolved during the

evolutionary learning process.

TABLE II
TERMINALS

Terminal Value Range Description

imagem×n {0, 1, 2, ..., 255} Input image with size of m× n
filter3×3 {−5,−4, ..., 5} 3×3 filter. It is the children node of Conv

filter5×5 {−5,−4, ..., 5} 5×5 filter. It is the children node of Conv

filter7×7 {−5,−4, ..., 5} 7×7 filter. It is the children node of Conv

n1, n2 [0.000, 1.000) Random numbers and they are children
nodes for Add and Sub

k1, k2 {2, 4} The kernel size of MaxP and ZMaxP

IV. EXPERIMENT DESIGN

To examine the performance of the proposed COGP method,

a series of experiments have been conducted. This section

designs the experiments, including data sets, comparative

methods and parameter settings.

A. Data Sets

Six different data sets of varying difficulty are employed

in the experiments. They are FEI 1 [33], FEI 2 [33], ORL

[34], JAFFE [35], VGDB [36], and KTH [37]. The FEI 1 and

FEI 2 data sets are binary classification of facial expression.

The ORL data set with 40 classes is the face recognition task.

The JAFFE data set has images with seven different facial

expressions such as happy, sad and fear. The VGDB data set

is recognising the paintings drawn by Vincent Van Gogh and it

is challenging. The KTH data set is a commonly used texture

classification data set. The data set properties, including the

size of the image, the number of classes, the number of images

in the training and test sets, are listed in Table III. Several

example images of each data set are shown in Fig. 2.

         FEI_1                            FEI_2                                                                          ORL                                                        

                              JAFFE                                                  VGDB                                               KTH

Fig. 2. Example images of the six different image data sets.

TABLE III
DATA SET PROPERTIES

Name Image Size #Class Training set Test set

FEI 1 60×40 2 150 50
FEI 2 60×40 2 150 50
ORL 50×55 40 240 160
JAFFE 32× 32 7 140 73
VGDB 50×50 2 247 83
KTH 50×50 10 480 330

B. Comparative Methods

Ideally, the performance of COGP is compared with existing

GP-based COGP methods that have been mentioned in Section

II-B. However, most of these methods learn one high-level

feature from each image and are only suitable for binary

classification. Some methods have showed their deficiency in

dealing with difficult tasks, especially when comparing them

with CNNs, such as in [6]. Therefore, to show the effectiveness

of COGP, we compare it with existing effective non-GP

methods, i.e., traditional classification algorithms using raw

pixels or pre-extracted features and CNNs.

1) Traditional classification algorithms using raw pixels:

Five well-known classification algorithms, i.e., SVM, k-nearest

neighbour (KNN), logistic regression (LR), random forest

(RF), and AdaBoost have been employed in this category for

comparisons. SVM uses a linear kernel according to [17] and

its parameters are the default ones in scikit-learn [38]. The

number of neighbours in KNN is 1. In RF and AdaBoost, the

number of trees is 500 and the maximum tree depth is 100

according to [3]. The parameter settings for LR are the default

ones in scikit-learn [38], where the parameter C is 1.

2) Traditional classification algorithms using pre-extracted

features: In this category, four commonly used feature ex-

traction methods are employed to extract different features

from the image and SVM is used for classification. The four

methods are local binary pattern (LBP), uniform local binary

pattern (uLBP), histogram of gradients (HOG), and scale-

invariant feature transform (SIFT) [23]. The LBP method

extracts 256 histogram features from each LBP image. The

uLBP method extracts 59 histogram features from each uLBP

image, which are invariant to rotation. The HOG method refers

to [39], which generates a high-dimensional feature vector

from each image. For example, it produces 2400 features for

each image in the FEI 2 data set. The SIFT method is dense

SIFT [40], where each input image is considered as a keypoint

and a feature vector is generated from each image. In these

methods, SVM is employed for classification in order to keep

consistent with the proposed COGP method.

3) CNNs: Since the data sets in our experiments are small

and the well-known deep CNN models such as ResNet and

DenseNet may not be efficient and effective. Two CNNs with

different architectures are manfully crafted for comparisons.

The first has five layers (simplified as CNN-5), i.e., two

convolutional layers, one max-pooling layer and two fully-

connected layers. The second has eight layers (simplified

as CNN-8), i.e., four convolutional layers, two max-pooling

layers and two fully-connected layers. Dropout is used after



the pooling layer and the first fully-connected layer with 0.25

and 0.5 probabilities, respectively, to avoid overfitting [41].

The activation function in CNN-5 and CNN-8 is the popular

ReLU function and the loss function is the cross-entropy. The

batch size is 128 and the number of epochs is 500 because

the benchmark data sets are not large.

C. Parameter Settings and Test Process

Parameter settings for COGP are listed in Table IV. Because

of the usage of the filter and the Conv function, a larger

mutation rate allows the values of the filter to change more.

Other parameter settings are commonly used settings for

GP. The implementation of COGP is based on the DEAP

(Distributed Evolutionary Algorithm Package) package [42].

TABLE IV
GP RUN TIME PARAMETERS

Parameter Value Parameter Value

Generations 50 Crossover rate 0.5
Population size 500 Mutation rate 0.49
Population generation Ramped half-and-half Elitism rate 0.01
Selection type Tournament (size=7) Tree depth 2–8

The test process of COGP starts with using the best individ-

ual learned from the training process to transform each image

in the training set and the test set to features. The transformed

training and test sets are then normalised using the min-max

normalisation. The normalised training set is used to train a

linear SVM and the trained SVM classifier is tested on the

normalised test set. Finally, the classification accuracy of the

test set is reported.

The experiments of all the methods run 30 times indepen-

dently. The final results of the test set are reported.

V. RESULTS AND DISCUSSIONS

This section discusses the experimental results obtained by

COGP and all the comparable methods on the six data sets.

Table V lists the maximum accuracy (Max), mean accuracy

and standard deviation (Mean±St.dev) of COGP and the

comparable methods on the six data sets. Each block in Table

V shows the results of one data set and the best maximum

and mean accuracy is highlighted in bold. The Wilcoxon rank-

sum test with a 5% level is used to compare COGP with a

comparable method to show the significance of performance

improvement. The symbols “–”, “+” or “=” in Table V denote

whether COGP is significantly worse, better than or similar to

a comparable method. The final row of each block summarises

the overall results of the significance test on each data set.

Compared with the five traditional methods using raw

pixels, i.e., SVM, KNN, LR, RF, and AdaBoost, the COGP

method achieves significantly better performance in 25 com-

parisons out of 30 (5×6) comparisons. COGP outperforms

SVM, KNN and AdaBoost significantly on the six data sets.

Especially, the comparisons between COGP and SVM show

that the features learned by COGP based the new program

structure, the new function set and the new terminals are

more effective and discriminative than raw pixels for image

classification. It is not entirely fair to compare COGP with RF

TABLE V
CLASSIFICATION ACCURACY(%) OF COGP AND ALL THE COMPETITIVE

METHODS ON THE SIX DATA SETS

Methods Max Mean±St.dev Max Mean±St.dev

Data Set FEI 1 FEI 2

SVM 90.00 90.00±0.00+ 88.00 88.00±0.00+
KNN 32.00 32.00±0.00+ 8.00 8.00±0.00+
LR 92.00 92.00±0.00+ 88.00 88.00±0.00+
RF 98.00 97.07±1.01– 90.00 89.20±1.13=
AdaBoost 80.00 78.67±1.32+ 80.00 76.00±3.44+
uLBP+SVM 66.00 56.73±3.66+ 68.00 62.53±3.52+
LBP+SVM 68.00 64.60±1.83+ 74.00 69.80±0.00+
HOG+SVM 96.00 96.00±0.00= 82.00 82.00±0.00+
SIFT+SVM 56.00 56.00±0.00+ 62.00 62.00±0.00+
CNN-5 98.00 95.40±1.30= 98.00 95.27±1.62–
CNN-8 98.00 95.33±1.32= 96.00 90.93±1.87=
COGP 98.00 94.60±2.74 96.00 90.33±3.86

Overall 7+, 3=, 1– Overall 8+, 2=, 1–

Data Set ORL JAFFE

SVM 94.38 94.38±0.00+ 93.94 91.06±0.73–
KNN 94.38 94.38±0.00+ 71.21 71.21±0.00+
LR 93.75 93.75±0.00+ 89.39 89.39±0.00–
RF 93.12 92.33±0.63+ 75.76 72.48±1.99+
AdaBoost 59.38 52.27±4.00+ 53.03 47.93±2.68+
uLBP+SVM 87.50 87.42±0.21+ 31.82 26.87±3.30+
LBP+SVM 88.12 87.52±0.20+ 33.33 28.84±2.05+
HOG+SVM 91.25 91.25±0.00+ 81.82 80.30±0.40+
SIFT+SVM 93.75 93.75±0.00+ 33.33 33.33±0.00+
CNN-5 96.88 95.29±1.06+ 95.45 90.96±2.68–
CNN-8 95.00 93.04±1.09+ 90.91 84.54±4.33=
COGP 98.12 96.46±1.11 92.42 86.41±3.14

Overall 11+ Overall 7+, 1=, 3–

Data Set VGDB KTH

SVM 55.42 52.33±1.37+ 46.97 44.59±2.83+
KNN 59.04 59.04±0.00+ 34.24 34.24±0.00+
LR 56.63 56.63±0.00+ 48.79 48.79±0.00+
RF 72.29 68.15±2.44– 60.00 57.81±0.83+
AdaBoost 66.27 60.28±3.33+ 37.88 33.44±1.37+
uLBP+SVM 72.29 67.19±3.59– 78.79 73.29±4.18+
LBP+SVM 74.70 73.25±1.07– 83.64 82.71±0.51–
HOG+SVM 54.22 51.81±1.10+ 57.27 55.96±0.64+
SIFT+SVM 65.06 65.06±0.00– 65.76 65.76±0.00+
CNN-5 65.06 60.24±2.33= 85.76 82.56±1.87–
CNN-8 65.06 56.67±5.43+ 76.36 71.63±3.18+
COGP 75.90 62.05±6.58 83.94 78.49±2.15

Overall 6+, 1=, 4– Overall 9+, 2–

as RF is an ensemble method. But the comparisons further

show the effectiveness of COGP on feature learning and

image classification as RF only achieves better performance

than COGP on FEI 1 and VGDB. The overall comparisons

demonstrate that COGP learns effective features from raw

pixels to improve the classification accuracy.

Compare with uLBP+SVM, LBP+SVM, HOG+SVM, and

SIFT+SVM, the COGP method achieves significantly better or

similar performance in 20 comparisons of the total 24 (4×6)

comparisons. On the FEI 1, FEI 2, ORL, and JAFFE data

sets, COGP is better than the four methods. This shows that

the features learned by COGP are more powerful and dis-

criminative than the commonly used hand-crafted features for

classifying face and facial expression images. On the VGDB

and KTH data sets, COGP is more effective for achieving the

maximum accuracy than the four methods but less effective

in terms of the mean accuracy. On the two data sets, the LBP

features are more effective than the features learned by COGP.

This illustrates that texture features are difficult to be learned
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Fig. 3. An example program evolved by COGP on the ORL data set. This program has achieved 99.75% accuracy on the training set and 98.12% accuracy
on the test set. The right part of this figure shows the process of transforming an example image into features using the evolved functions.

by using convolutional and pooling operations. In summary,

COGP learns effective features, which are more powerful and

discriminative than the popular hand-crafted features for image

classification, especially on face images.

Compared with CNN-5 and CNN-8, the COGP method

achieves significantly better or similar performance in 8

comparisons out of the total 12 (2×6) comparisons. COGP

achieves better performance than CNN-8 on the six data sets

and achieves better performance than or similar performance

to CNN-5 on three data sets. Surprisingly, CNN-8 has more

layers and filters but is less accurate than CNN-5. This may

because an increase of layers and filters makes the model

more difficult to train. Compared with CNN-5 and CNN-8, the

selection of convolution and pooling in COGP is automatically

determined during the evolutionary learning process. This may

be more effective for learning a suitable model that match

the problem and easier to train and interpret. However, GP

does not have an effective operator for optimising the weights

(constant parameters) of the filters, which might limit its

performance. Overall, the comparisons show the potential of

GP on feature learning and image classification.

In summary, COGP achieves significantly better or similar

performance in 55 comparisons out of the total 66 (11×6)

comparisons. Importantly, COGP outperforms significantly

than all the 11 methods on ORL. COGP obtains the maximum

accuracy of the 11 competitive methods on FEI 1, ORL and

VGDB. Accordingly, COGP is an effective and promising

approach for feature learning and image classification.

VI. FURTHER ANALYSIS

The COGP method has achieved the best results on the ORL

data set compared with all the benchmark methods. Therefore,

an example program on this data set is employed for further

analysis to show how it extract features. An example program

is visualised in Fig. 3, where the right part of this figure

shows an example image and the features obtained by the

corresponding functions in the example program. This exam-

ple program has achieved 99.75% accuracy on the training

set and 98.12% accuracy on the test set. Splitting from the

root node, this program has four branches, where each branch

generates different features using different functions as shown

in the right part of Fig. 3. The first branch (from left to

right) enhances the image by using the Add functions and

down-samples the image using the MaxP function. The second

branch describes image features in a way that is very similar

to CNNs by using ReLU, Conv and MaxP functions. Two

Conv functions with filter7×7 are evolved in this branch to

describe features. As we can see from Fig. 3, the face image

is changed after the first Conv function. Similarly, the third

branch and the fourth branch also generate salient features,

which are discriminative for classification.

However, further analysing this program reveals that it has

redundant functions in the branches, such as the two Abs

functions in the first branch. They do not contribute to change

the input image when all the pixel values are non-negative.

The problem may lead to future work on the investigation of

how to simplify the evolved GP trees under the type constraint.

VII. CONCLUSIONS

The goal of this paper was to develop a new GP-based

EDL method for feature learning and image classification,

which has been successfully achieved by proposing the COGP

method with a new program structure, a new function set

and a new terminal set. COGP has been examined on six

binary or multi-class image classification data sets of varying

difficulty and compared with 11 commonly used methods. The

experimental results showed that COGP achieved significantly

better performance in most comparisons. Further analysis

revealed the good interpretability of the evolved programs.

The COGP method is an example to show the potential of

the GP-based EDL methods in feature learning and image clas-

sification. COGP provides tree-based solutions with suitable

model complexity and comparable performance. However, due

to the flexible representation and the search mechanism of

GP, the potential of GP on feature learning has not been

extensively investigated. Future work might focus on three

aspects. Firstly, it is interesting to develop new GP-based EDL

methods with deep structures for complex image classification,

such as the well-known large scale image data sets CIFAR10

and CIFAR100. Secondly, powerful search operators such as

local search operators might be needed for the GP-based

EDL methods to improve computation complexity and search

efficiency, where concise and effective solutions are able to

be found. Finally, the GP-based EDL methods have been



investigated on supervised feature learning while seldom on

unsupervised feature learning. It is desirable to develop new

GP-based EDL methods for unsupervised feature learning.
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