
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

An Evolutionary DenseRes Deep
Convolutional Neural Network for
Medical Image Segmentation

TAHEREH HASSANZADEH (IEEE STUDENT MEMBER)1, DARYL ESSAM1, and RUHUL

SARKER1.
1School of Engineering and Information Technology (SEIT), University of New South Wales, Canberra, Australia (e-mail:
t.hassanzadehkoohi@student.unsw.edu.au, d.essam@adfa.edu.au, r.sarker@adfa.edu.au)

Corresponding author: Tahereh Hassanzadeh (e-mail: t.hassanzadehkoohi@student.unsw.edu.au).

ABSTRACT The performance of a Convolutional Neural Network (CNN) highly depends on its archi-
tecture and corresponding parameters. Manually designing a CNN is a time–consuming process in regards
to the various layers that it can have, and the variety of parameters that must be set up. Increasing the
complexity of the network structure by employing various types of connections makes designing a network
even more challenging. Evolutionary computation as an optimisation technique can be applied to arrange
the CNN layers and/or initiate its parameters automatically or semi–automatically. Dense network and
Residual network are two popular network structures that were introduced to facilitate the training of deep
networks. In this paper, leveraging the potentials of Dense and Residual blocks, and using the capability of
evolutionary computation, we propose an automatic evolutionary model to detect an optimum and accurate
network structure and its parameters for medical image segmentation. The proposed evolutionary DenseRes
model is employed for segmentation of six publicly available MRI and CT medical datasets. The proposed
model obtained high accuracy while employing networks with minimal parameters for the segmentation
of medical images and outperformed manual and automatic designed networks, including U–Net, Residual
U–Net, Dense U–Net, Non–Bypass Dense, NAS U–Net, AdaresU–Net, and EvoU–Net.

INDEX TERMS Convolutional Neural Network, Dense Network, Evolutionary Computation , Residual
Network, Medical Image Segmentation

I. INTRODUCTION

A Deep Convolutional Neural Network (DCNN) is a deep
network constructed from several layers, such as convolu-
tion layers and pooling layers. Also, in some cases, it can
include short and long connections with various connection
patterns. Hand–designing a Deep Neural Network (DNN) is
a complicated task that involves tremendous efforts and in–
depth knowledge in the area of artificial neural networks.
Using more parameters and operations to design a network
makes this task more complicated. However, using an auto-
matic or semi–automatic method can simplify the process
of developing a DCNN. Evolutionary Algorithms [1] and
Reinforcement Learning (RL) [2] are two popular methods
to establish a neural network and/or initiate its parameters
automatically or semi–automatically.

Neuroevolution is using an evolutionary algorithm to gen-
erate a network and/or set up its parameters [3]. Several
papers investigated the application of Neuroevolution to es-

tablish different types of neural networks [4]–[9]. A very
early paper in this area was published by Montana et al. [10],
where a Genetic Algorithm (GA) [11] is utilised for network
weights initialisation. Gradually, other parameters have also
been included in the search space to uncover the optimum
values for parameters [12]–[14]. Also, the first application of
evolutionary computation in a deep network’s evolution was
introduced by Koutnik et al. [15] in 2014. During the last five
years, several papers have been published in the area of using
Neuroevolution to design a deep feed–forward network and
deep CNN [7].

EvoDeep [16] is a graph–based evolutionary model that
was developed to create a deep network structure along with
its parameters for image classification. In addition, EvoCNN
[17] is another GA–based evolutionary model equipped with
a new encoding strategy and an original crossover method for
image classification. Since the encoding of networks is a very
critical issue that can affect a network’s evolution, several

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

techniques have been introduced for network representations.
For instance, two different encoding models, including a
binary representation and a grammatical representation, have
been applied for the evolution of a network for handwriting
recognition [18]. Also, a fixed IP–based encoding model and
its corresponding variable–length version encoding model
were introduced for image classification [19], [20].

The next issue in a network’s evolution is a network
construction’s method, that can be layer by layer or block by
block. The evolutionary encoding models that are mentioned
above develop a network layer by layer. Neural Architecture
Search (NAS) [21] is a cell (block) based model that evolves
blocks using a Recurrent Neural Network (RNN) [22]. After
finding the block’s structures, the corresponding network will
be established by stacking the achieved blocks on top of each
other. Further, AmoebaNet [23] as an evolutionary version
of NAS, has been developed to construct a network based
on the obtained blocks. Another block–based evolutionary
model was introduced by Fielding et al. [24] to develop a
VGG [25] based architecture for image classification. In this
model, most of the parameters are kept fixed, such as the
number of output feature maps and filter size, although the
number of layers in each block is specified using an enhanced
version of the Particle Swarm Optimisation (PSO) algorithm
[26].

Furthermore, Sun et al. [27] introduced another block–
based evolutionary model for image classification using the
combination of Dense blocks [28] and Residual blocks [29].
In their proposed model, three different units are established,
including Dense Block Unit (DBU), Residual Block Unit
(RBU), and Pooling Unit (PU) such that DB and RB units can
contain several blocks. Also, some parameters, like filter size,
and the number of convolution layers are kept fixed. Since the
variable–length encoding strategy is employed for network
representation, new crossover and mutation operations are
also proposed. AdaResU–Net [30] is another evolutionary
model, where a fixed network structure is utilised. However,
a number of parameters, including learning rate, dropout
probability, the number of filters, activation function, and
the filter size of each convolution layer, are specified using
a multi–objective evolutionary algorithm. In AdaResU–Net,
all the blocks are equipped with residual connections and
three convolution layers. Finally, EvoU–Net [31] is another
block–based evolutionary method proposed for medical im-
age segmentation. EvoU–Net utilised a GA to determine a
network structure and its parameters automatically, where
the block’s internal structure, shortcut and long connections
patterns were also specified during the evolution [31].

As discussed above, in most of the previous works, a part
of the parameters or network structure is kept fixed, then an
evolutionary or reinforcement technique is applied to set up
some aspects of the networks. However, in this paper, we
propose a new block–based evolutionary technique to build a
network and set up its parameters automatically for medical
image segmentation. In regard to the capability of Dense
blocks [28] and Residual blocks [29] for feature extraction,

our evolutionary DenseRes model is the first automatic U–
Net [32] based model that can develop a deep convolutional
neural network using a combination of Dense and Residual
blocks. It is here introduced for image segmentation. In this
paper, a Genetic Algorithm (GA) [11] is used to discover the
appropriate network structure, and also the other parameters
to create and train a network automatically. In the proposed
model, 14 parameters are required to be specified by the
GA, including, number of blocks (block’s status), number
of convolution layers in each block (layer’s status), the size
of filter for each convolution layer, number of output feature
maps, dropout [33] probability, pooling layer, type of acti-
vation function, type of the block, long connection, Batch
Normalisation (BN) [34], optimiser, learning rate, batch size,
and the augmentation size.

In the proposed model, GA is employed to identify all
necessary parameter’s values to develop a U–Net–based net-
work using a combination of Dense and Residual blocks.
Therefore, without having in–depth knowledge related to
deep learning, an optimum network structure along with its
parameters can be developed for medical image segmenta-
tion. The proposed model using limited computation in a
relatively short time, can find a small, accurate network for
medical image segmentation. The obtained results for MRI
prostate segmentation (two datasets), CT liver (two datasets),
CT spleen, and MRI brain segmentation, show the capability
of our proposed model for developing appropriate networks
for various medical image segmentation, and outperformed
U–Net [32], Residual U–Net [35], Dense U–Net [36], Non–
Bypass Dense [37], NAS U–Net [38], AdaresU–Net [30], and
EvoU–Net [31].

The rest of this paper is organised as follows. Section 2
provides a background concerning the network structures and
genetic algorithm that we utilised in our proposed model.
Section 3 demonstrates the proposed model. The dataset and
experimental results are discussed in section 4. Section 5
provides the discussion and conclusion.

II. BACKGROUND

In our proposed model, a combination of three different
network structures, including U–Net, Dense Network, and
Residual Network, along with a Genetic Algorithm, are em-
ployed to create an evolutionary DenseRes network. In this
section, a review of the listed algorithms is provided. Also,
the proposed model is applied for medical image segmenta-
tion; therefore, a review of the various type of image analysis
techniques is also provided in this section.

A. U–NET

A Fully Convolutional Neural Network (FCNN) is a version
of CNN that is designed for image segmentation [39]. FCNN
is constructed from two parts, of down–sampling (encoding,
convolution) for feature extraction and up–sampling (de-
coding, deconvolution) for segmentation reconstruction. In
some networks, there is a specific block named Bottleneck
(Bridge) to connect these two parts. In the down–sampling

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

(a) Dense Block (b) Residual Block

FIGURE 1. An example of Dense block and Residual block.

section, the network undertakes to extract features as it goes
from the higher resolution to lower resolution with applying
pooling layers [40] while the up–sampling part attempts to
reconstruct the coarse–to–fine segmentation with transposed
convolution [41]. FCNN utilises an end–to–end method for
learning. For 2D images, it uses image–to–image, and for 3D
volumes, it applies volume–to–volume supervised learning.

One of the first models that utilised FCNN with 2D convo-
lution for 2D medical semantic image segmentation is U–Net
[32]. The original version of U–Net is constructed from three
parts. The down–sampling part contains four blocks such that
between each pair of blocks, there is a max–pooling layer
to select the maximum value of the cluster and to halve the
size of the feature maps [40]. In the up–sampling section,
between each pair of blocks, there is a convolution layer with
2 × 2 kernel size to double the size of the output feature
maps. Additionally, the Bottleneck block connects the two
parts. All the blocks are constructed from two convolution
layers followed by a non–linearity and finally, a 1× 1 convo-
lution layer is employed in the last layer. Also, to improve
the results in this structure, long connections are used for
cropping and copying a part of the extracted feature maps
from the down–sampling part and concatenating them with
the obtained feature maps from the up–sampling section.

B. DENSE NETWORK

A Dense Convolutional Neural Network [28] is a deep net-
work composed of several Dense blocks and each Dense
block consists of several layers. In this network, to reuse
extracted feature maps, the output feature maps of each layer
are concatenated (stacked) to the output of all previous layers
in that block, then the concatenated feature maps are sent to
the next layer (see Figure 1a). Stacking several feature maps
with various quality that are obtained utilising shortcut con-
nections can benefit the network to reuse features, improve
the quality of propagation, and also alleviate the vanishing
gradients [42] problem [28]. Although this network is intro-
duced for natural image classification, the fully convolutional
network structure of this network is also introduced in [43]

for colour image segmentation.

C. RESIDUAL NETWORK

Since training deep networks is more difficult [29], [44],
using the shortcut and long connections can help to ease
the training process of the networks. A Residual Neural
Network [29] is a kind of neural network that applies skip
connections or shortcut connections to jump over layers. A
Skip connection transfers the input feature maps of one block
to its outputs. Assigned feature maps will be element–wise
summed with the output feature maps such that the number
and size of feature maps should the same size (see Figure
1b). Using skip connections can reduce the probability of
vanishing gradients [42] during backpropagation [45].

D. GENETIC ALGORITHM

Genetic Algorithm (GA) [11] is a meta–heuristic algorithm
that was inspired from natural selection and belongs to the
category of evolutionary algorithms. GA, as an optimisa-
tion technique, relies on three critical operations, namely
selection, crossover, and mutation. Generally, the evolution
process in GA commences with an initialisation stage, where
a number of chromosomes are created randomly as possible
solutions; moreover, each chromosome must be evaluated to
specify the quality of the generated solution. To create a new
generation, in the selection stage, some chromosomes will
be selected and then utilising crossover; the new solutions
will be designed using combinations of the parents. In the
end, a random alternation by mutation must be applied to a
number of chromosomes to increase the exploration ability of
the algorithm. Finally, a part of or all of the population in the
last generation will be replaced with the new chromosomes to
generate a new generation, and this process can be repeated
to some specified end point.

E. IMAGE SEGMENTATION

Medical image segmentation is one of the critical medical
image analysis techniques, which can be used to find or-
gans, cancers, tumours or any other abnormalities in medical
images. Established semi–automated and automated medi-
cal image segmentation models can mainly be categorised
into four various groups: Atlas–based, Shape–based, Image–
based, and Superpixel–based segmentation. Recently, Deep
learning–based approaches have achieved state–of–the–art
results in image processing and specifically in image segmen-
tation [46]–[49].

The capability of Neural Network (NN), specifically Con-
volutional Neural Network (CNN), for image analysis con-
vinced researchers to develop new CNN–based structures
for medical image analysis [50], [51]. Most of the CNN–
based networks use a combination of an image processing
technique and CNN for image analysis, such as the combi-
nation of Atlas–based model and CNN [52]–[54]. Also, a
combination of the Proposal–based technique and CNN was
successful for image segmentation [55]. However, recently
several CNN–based architectures have been developed [56],

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

such that in some cases using only CNN is good enough
for feature extraction and image analysis, such as image
segmentation [37], [57] and classification [58].

For example, U–Net [32], is a FCNN–based network that
was developed for medical image segmentation without using
any pre–processing and post–processing. In some studies, the
trial and error approach is applied to find a good network
structure for medical image segmentation. For instance, Has-
sanzadeh et al. [37] tried several types of shortcut connec-
tions to find the best one for Prostate MRI segmentation.
However, to deal with various and changing datasets, this
would be very time consuming and computationally expen-
sive.

F. RESEARCH CONTRIBUTION

• In this paper, we propose the first evolutionary U–Net–
based model to construct a network using a combination
of Dense blocks and Residual blocks for medical image
segmentation.

• To develop a precise network structure, the Genetic
algorithm is utilised to uncover the best combination of
the Dense blocks and Residual blocks, as well as the
internal arrangement of the blocks.

• All the parameters that are needed to create a U–Net–
based network, along with network training parameters,
are specified using the GA.

• A new block–based encoding model is developed to
create blocks and consequently the network. We pro-
pose a fixed–length encoding model, to create variable–
depth networks that are compatible with standard GA
operations.

• Users without in–depth knowledge in the area of arti-
ficial neural networks will be capable of establishing
an optimum network for medical image segmentation
utilising our proposed model.

• The proposed framework is general enough to be ap-
plied to the different types of medical images.

III. EVOLUTIONARY DENSERES NETWORK

In this paper, we propose an evolutionary DenseRes model
to create a U–Net–based deep convolutional neural network
for medical image segmentation. In regards to the difficulty
of training a deep network, the combination of Dense blocks
and Residual blocks that were developed to ease the training
process of the deep networks, can be utilised to alleviate the
complexity of the network’s training. However, the problem
in regard to the numerous of possible combinations of Dense
and Residual blocks in a network, while also considering
possible arrangements inside of each block, to find a network
structure that is more compatible for our specified application
is very challenging. The manual design of such a compli-
cated structure is very time consuming and in some cases,
even impossible and has large elements of trial and error
[37]. To address this problem, we propose a new block–
based encoding model to represent the possible solutions
to develop a network automatically. In the proposed model,

TABLE 1. The Hyper–parameters and their corresponding range to create a

network.

Hyper–parameters Range

Number of blocks 7
Number of convolution layers [1 − 3]
Filter size [3 × 3, 5 × 5, 7 × 7]
Number of filters [8, 16, 32, 64]
Dropout [0 − 0.6]
Pooling [Averagepooling (0),

Maxpooling (1)]
Activation function [Sigmoid (0), Relu (1)]
Type of block [Residual (0), Dense(1)]
Long connection [0, 1]
Batch normalisation [0, 1]
Optimiser [adam, rmsprop,

adagrad, adadelta]
Learning rate [0.1, 0.01, 0.001]
Batch size [8, 16, 32]
Augmentation size [16000, 32000, 64000]

the aim is uncovering the best combination of Dense and
Residual blocks; moreover, the arrangement of layers inside
the blocks, and also the training parameters of the network
using GA.

First of all, to create a block–based network structure,
the number of blocks in the down–sampling section, up–
sampling section, and whether there is a bridging block are
necessary to determine. As mentioned above, the number
of blocks and the block’s structures in the encoding and
decoding sections are the same in the U–Net–based network.
Therefore, having the structures of encoding blocks and
bridging block is sufficient to create the whole network.
Second, as is discussed above, in the U–Net–based structure
after each block there is a pooling layer in the encoding sec-
tion to halve the size of feature maps, and its corresponding
deconvolution layer to double the size of feature maps in
the decoding section. Consequently, the maximum number
of blocks that can be utilised in each part of the network is
related to the size of the input image. For example, six blocks
are the maximum number of blocks that can be utilised in the
down–sampling and up–sampling sections of a U–Net–based
network, plus a bridging block, trained by 128 × 128 input
images.

Table 1 provides the list of 14 parameters and their corre-
sponding ranges to create and train a network in our proposed
model. As shown in Table 1, the maximum number of blocks
in the encoding section plus the bridging block is seven. Also,
each block can contain one to three convolution layers. Be-
sides, each convolution layer has its filter size. Consequently,
the convolution layers in the block can employ similar or
completely different filter sizes. In a DCNN, the size of
the receptive field can significantly indicate the percentage
of utilisation of context information [59]. Therefore, using
filters with different sizes can detect various sized feature
maps. The number of filters, dropout probability, pooling,
activation function, type of block, long connection, and batch
normalisation are set up in a block–based manner. In other
words, each of these parameters is applied to the whole block.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

BA TOB LC FLA FS SLA FS TLA FS NOF BN AF DO P
1 1 1 1 5 0 5 1 7 32 1 1 0.5 1

(a) Block Genotype

5				5

7				7

0.5

Max	pooling

32,	R
elu,	B

N

Convolution

Dropout

Concatenation

(b) Block Phenotype

FIGURE 2. An example of a block Genotype and its corresponding

Phenotype. The abbreviations in the block’s genotype are: BA (Block

Activation), TOB (Type Of Block), LC (Long Connection), FLA (First Layer

Activation), FS (Filter Size), SLA (Second Layer Activation), TLA (Third Layer

Activation), NOF (Number Of Filters), BN (Batch Normalisation), AF (Activation

Function), DO (DropOut), and P (Pooling).

For instance, if Batch Normalisation (BN) is active for a
block, it means BN will be applied after each convolution
layer. Also, when we convert genotype to phenotype, the long
connection parameter will be ignored for bridging block and
decoding blocks because it is meaningless for them.

In our proposed encoding model, in the initialisation stage,
each chromosome corresponds to seven blocks, that is the
maximum number of blocks that can be utilised in the
encoding and bridging sections. In the proposed encoding
model to create networks with various depths, an additional
parameter is employed to determine the activation status of
each block. Besides, similar activation parameters are used
to specify the convolution layer activation status. Since in
our encoding model, each convolution layer has its activation
parameter, the block is supposed to be inactivated, while all
three convolution layers inside the block or the block are
inactivated. Therefore, one status parameter plus 13 other
parameters are required to construct a block. Since 14 param-
eters are involved in constructing each block, 98 genes are
necessary to represent seven blocks. Then at the end of each
chromosome, four more parameters are added to represent
the optimiser, learning rate, batch size, and augmentation
size for training the network. Overall, each chromosome
has a fixed size (102 genes). Still, the output network can
have various depths, because a part of the blocks and the
convolution layers inside of the blocks might be inactivated
in the initialisation stage or during the evolution process.
Utilising variable depth networks can increase the chance of
finding more precise networks, because the depth of network
is a significant parameter on the achievement of a network
[17], [25], [60], [61].

An example genotype of a block (see Figure 2a) and

its corresponding phenotype (see Figure 2b) are provided
in Figure 2. As is shown in Figure 2a, the first parameter
shows that the block is active (1) or not (0). A block will be
excluded from its network if either its activation parameter
is inactivated, or all three layers inside of the block are
inactivated. The active blocks among the first six blocks will
be considered as the encoding and decoding blocks and the
last block (while it is active) as the bridging block. There-
fore, the proposed encoding model is capable of establishing
networks with or without a bridging block. Furthermore, if
only one block is activated, then the output network contains
two blocks (one encoding and one decoding block). In the
provided example (see Figure 2a), considering the block is
active, and there are two active layers inside the block, this
block will be included in its network structure. Moreover, it
is a Dense block; therefore, the output of each layer must
be concatenated with output feature maps of the previous
layers. There is also a long connection between this block
and its corresponding block in the decoding section. The
size of filters for each convolution layer is stated, and other
parameters are set up for the block. The phenotype of this
block is also presented in Figure 2b. All active blocks will
be created and stacked on top of each other, according to
the provided example. The encoding blocks will be utilised
to develop decoding blocks; however, the differences are the
pooling layer will be replaced with deconvolution layers, and
the long connections will be ignored in the decoding section.

It needs to be noted that the element–wise sum in the
Residual blocks can just be applied on the same number
of feature maps. Therefore, to convert the Residual block’s
genotype to its corresponding phenotype, an additional 1× 1
convolution layer needs to be applied to size up the feature
maps, while the unequal number of features comes up. For
instance, a block has 32 input feature maps; however, the
output is 16 feature maps; then, a 1 × 1 convolution will be
used to increase the number of output feature maps to 32.

After converting the genotypes to their corresponding
phenotypes, each network will be trained up to predefined
epochs. The best network, which achieved the maximum seg-
mentation accuracy, will be transferred to the next generation
directly. It needs to be noted that, our proposed model is a
single objective model; therefore, each individual is evalu-
ated based on its accuracy. The aim is using an evolutionary
process to find networks with the highest segmentation accu-
racy. Then, to create the rest of the population, the Roulette
Wheel selection [62] method is applied to select two best
parents. However, to decrease the variance of the selection
process, a normalised fitness rather than absolute fitness is
utilised. The fitness normalisation process is demonstrated in
the Algorithm 2.

The combination of those two selected networks by a
single–point crossover will generate two new networks.
Lastly, a random number ranging from zero to three, deter-
mines the number of mutation of each genotype, which is
a random change based on the gene’s valid range. After G

generations, the best–generated networks will be selected to

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

Data: Training datasets (D), Label datasets (L)
Result: The ten best evolutionary networks.
Initialise Number of Generations (G), Length of Block (LB), Number of

Epochs (E), Initial Population (I), Population (pop), Next generation (N);
members = Generate_Random_Population(I);
pop = evaluate_population(members);
for every Generation do

members = reproduce(pop);
pop = evaluate_population(members);

end

Ten_Best← Ten_Best(pop);
Return Ten_Best;
Function Generate_Random_Population(I):

members← [null];
for i ≤ I do

genome← [null];
for every Block do

for key ≤ LB do

param = block_params[key];
genome+ = random_choice(param);

end

end

genome+ = random_choice(optimiser);
genome+ = random_choice(learning_rate);
genome+ = random_choice(batch_size);
genome+ = random_choice(augmentation_size);

end

members[i] = genome;
return members;

Function Evaluate_Population(members):

fit← [null];
for i ≤ I do

Network ← Decode(members[i]) ;
// Convert genotype to phenotype

loss, accuracy ← Train(Network(E,D,L));
fit[i] = accuracy;

end

pop← (members, fit);
return pop;

Function Reproduce(pop):

members← [null];
if G ≤ 1 then

N ← I;
else

N ← pop;
end

for i ≤ len(N) ∗ 0.95 do

members[i] = Crossover(pop.select(), pop.select());
end

members[len(N)] = get_best();
for i ≤ len(N) do

num_mutation = random(0, 3);
members[i] =
Mutation(members[i], num_mutation);

end

return members;

Algorithm 1: The pseudo code of the proposed evolu-
tionary model.

Data: Absolute Fitness
Result: Normalised Fitness
scores← fitness− fitness.min ();
if scores.max () ≥ 0 then

scores← scores
scores.max ()

;

else

scores← scores;
end

Sum←
∑

(scores);

Algorithm 2: Fitness normalisation before roulette wheel
selection.

train for more epochs to uncover the best network for image
segmentation.

The pseudocode of the proposed model is presented in
Algorithm 1. The evolutionary process starts with the initial-
isation stage in which a random population is created using

TABLE 2. The list of datasets and the number of image slices and volumes in

train, test, and validation sets.

Dataset
Train Test Validation

Volumes/Slices Volumes/Slices Volumes/Slices
Promise12 40/1115 5/165 5/97
CHAOS 16/2025 4/419 4/360

SLIVER07 12/2712 4/538 4/909
Prostate 22/408 5/94 5/100
Spleen 29/2203 6/619 6/491
BraTs 233/36115 51/7905 51/7905

Generate_Random_Population function. To create a chromo-
some, first the block’s parameters initialised randomly, and
then the network’s training parameters (including optimiser,
learning_rate, batch_size, and augmentation_size) are also
added at the end of it. This process needs to be repeated to
create the whole population (I). In the evaluation stage, using
evaluate_population function, each genotype is converted to
its corresponding phenotype and network is trained up to the
specified epochs. Finally, to reproduce a new population (us-
ing Reproduce function), the best network (network with the
highest segmentation accuracy) is sent to the next generation
directly, and to create the rest of the population, selection,
crossover and mutation are also employed.

IV. EXPERIMENTS

A. DATASET

The Promise12 dataset [48] for prostate MRI segmenta-
tion, Combined Healthy Abdominal Organ Segmentation
(CHAOS) dataset [63], and segmentation of the liver compe-
tition 2007 (SLIVER07) dataset [64] for liver CT segmenta-
tion, two MRI prostate and CT spleen segmentation datasets
from Decathlon challenge [65] and also, BraTs2019 dataset
[66]–[68], for brain tumour (whole tumour) segmentation
were selected for evaluating the proposed model. Detailed in-
formation about the six datasets is provided in Table 2. Since
Promise12 was collected from various centres with different
qualities, a Z–score [69] normalisation model was applied
on its images. However, the rest of the datasets were utilised
without any pre–processing. All the images were resized to
128×128 for training the networks and evaluation. Since the
number of images is limited, for all six datasets the number
of training images was augmented to a specified number
using various types of augmentation techniques, including,
rotation, zooming, vertical and horizontal flips, and elastic
transformation [70]. In the proposed model, all image slices,
regardless of whether they included Region Of Interest (ROI)
or not, were used for training, validation and testing of the
obtained networks.

B. IMPLEMENTATION

The proposed model was implemented using the Keras
python package [71]. All experiments were carried out on
one Nvidia GPU. In regards to the six datasets that we utilised

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

TABLE 3. The parameters and their corresponding values for training the

models.

Training parameters Range

Number of generations 9

Number of epochs 5

Number of runs 10

Early stopping 3

Initial population size 60

Population size 30

for evaluation, the proposed model trained using each dataset
separately according to the provided information in Table
3. The number of generations and population size were set
up based on preliminary experiments. In the initialisation
stage, 60 networks were established randomly as the possible
solutions. This is a relatively large population size in this
application. The larger population size can increase the diver-
sity of solutions, and consequently the chance of discovering
a precise network. Then the size of the population is halved
in the second generation and training is continued to nine
generations. Networks were trained for up to five epochs in
the training stage to save time. Also, to show the consistency
of the proposed model, each model was run ten times. For
evaluating the evolved networks, Dice Coefficient (DSC) [72]
is employed (see equation 1). Also, DSC is used as a fitness
function to evaluate the networks during evolution. Where,
Y

′

shows the label image, Y represents predicted segmented
image, and | Y

′

| and | Y | indicates the cardinality of Y
′

and Y . Moreover, in the proposed model, DSC was exploited
as the loss function for training the networks.

DSC =
2 | Y

′

∩ Y |

| Y ′ | + | Y |
(1)

Finally to compare the proposed model to previous works,
we also employ: Hausdorff distance [64], Average Boundary
Distance (ABD) [64], absolute Relative Volume Difference
(aRVD) [73], and Area Under ROC (Receiver Operating
Characteristic) Curve (AUC) [74] (see equation 2), where
FP shows False Positive, TN represents True Negative, FN
demonstrates False Negative, and TP states for True Positive.

AUC = 1−
1

2
(

FP

FP + TN
+

FN

FN + TP
)

(2)

C. EXPERIMENTAL RESULTS

As mentioned above for each dataset, we repeated the pro-
posed evolutionary process ten times. In the end, based
on the obtained results after nine generations, the best run
was selected. Consequently, the ten best networks from the
specified sequence were selected as the best networks for
final segmentation. However, the best networks were trained
for just five epochs; therefore, they need to be trained to more
epochs. Since the network’s weight initialisation is random,
and it is effective on the final results, to find the best network
structure, each network was trained five times to 25 epochs.

TABLE 4. The best DSCs of the ten best networks after training to five

epochs during the evolution, and then to 25 epochs to find final segmentation.

Net
Promise12 CHAOS SLIVER07 Spleen Prostate BraTs
5 25 5 25 5 25 5 25 5 25 5 25

N 1 0.765 0.880 0.858 0.910 0.832 0.874 0.888 0.932 0.887 0.91 0.579 0.767

N 2 0.741 0.873 0.778 0.782 0.814 0.920 0.875 0.841 0.885 0.886 0.567 0.713
N 3 0.738 0.902 0.771 0.882 0.802 0.835 0.849 0.910 0.881 0.882 0.520 0.681
N 4 0.699 0.884 0.749 0.875 0.793 0.910 0.837 0.925 0.881 0.875 0.512 0.556
N 5 0.670 0.852 0.720 0.889 0.792 0.931 0.833 0.853 0.875 0.875 0.510 0.522
N 6 0.629 0.837 0.685 0.921 0.786 0.870 0.818 0.914 0.873 0.920 0.505 0.700
N 7 0.622 0.856 0.571 0.850 0.785 0.893 0.815 0.950 0.870 0.850 0.477 0.514
N 8 0.619 0.837 0.517 0.92 0.771 0.943 0.815 0.886 0.860 0.910 0.471 0.521
N 9 0.602 0.882 0.490 0.770 0.769 0.897 0.812 0.935 0.858 0.870 0.465 0.501

N 10 0.602 0.870 0.468 0.780 0.768 0.890 0.777 0.738 0.856 0.860 0.462 0.514
Std 0.062 0.084 0.143 0.059 0.020 0.031 0.032 0.063 0.011 0.022 0.033 0.089

In the end, the best results were selected for each network.
The obtained results after five and then 25 epochs for each
dataset are in Table 4. As can be seen from Table 4, our
proposed model found ten networks corresponding to each
dataset with high accuracy, such that for the MRI prostate
segmentation, the best network obtain 0.902 DSC, and for
the CT liver segmentation 0.921 and 0.943 respectively for
CHAOS and SLIVER07 datasets. Besides, for Decathlon
spleen and prostate datasets, the obtained DSC’s are 0.95
and 0.92 respectively. Finally, our proposed model obtained
0.767 DSC for the whole brain tumour segmentation. These
results show the capability of the proposed framework to
find networks with high accuracy for datasets with various
features.

D. BEST NETWORK’S STRUCTURES

In this section, the genotype of the best six network structures
corresponding to each dataset is presented in Table 5. As can
be seen from Table 5, the evolution process finds a unique
network structure along with its training parameters for each
dataset. As can be seen from Table 5, each genotype shows
the block structures in the down–sampling and bridging sec-
tions. For example, the genotype of the first network structure
indicates that there are six active blocks such that five of the
active blocks are in the down–sampling, five blocks in the up–
sampling and a bridging block. However, the third network
(SLIVER07) has no bridging block and contains three blocks
on each side of the network. Besides, there is, an exception in
the Spleen best network, the third block of the Spleen dataset
is active, but all three convolution layers inside of the block
are deactivated; therefore, this block should be excluded from
the network’s phenotype. Also, each network has its training
parameters. The type of the optimiser, learning rate, augmen-
tation and batch size are specified during the evolution of
each network.

E. CROSS–VALIDATION

In this section, to show the capability of our proposed model,
we have applied four–fold cross–validation for evaluation of
the SLIVER07 dataset. Its data was partitioned to four–fold
according to Table 6. As can be seen from Table 6, for each
fold the image slices corresponding to four volumes were
considered for the test, four volumes for validation and the
rest for the training of each fold. Then we trained each fold
using the proposed evolutionary model and obtained the ten

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

TABLE 5. The genotypes of the best network structures corresponding to

each dataset.

Dataset Block BA TOB LC FLA FS SLA FS TLA FS NOF BN AF DO P Training Parameters

Promise12

Block 1 1 1 1 0 5 1 7 1 3 16 1 0 0.1 0

Optimiser = Adadelta
Learning Rate = 0.1
Batch Size = 8
Augmentation= 64000

Block 2 0 0 1 0 7 0 3 0 5 8 1 0 0.4 0
Block 3 1 1 0 1 7 0 5 1 3 16 0 1 0.0 0
Block 4 1 1 1 0 7 1 7 1 7 64 1 0 0.0 1
Block 5 1 1 1 0 5 1 7 0 5 64 1 0 0.5 0
Block 6 1 1 0 1 7 1 7 1 5 32 0 1 0.0 1
Bridge 1 0 1 0 3 1 3 1 7 16 1 1 0.1 0

CHOAS

Block 1 1 0 1 1 5 1 7 0 3 16 1 0 0.6 0

Optimiser = Adadelta
Learning Rate = 0.01
Batch Size = 16
Augmentation= 16000

Block 2 1 1 1 1 3 0 3 0 5 16 0 1 0.1 0
Block 3 1 1 0 0 5 1 7 0 3 16 1 1 0.0 1
Block 4 1 0 1 1 7 0 5 0 7 16 1 0 0.3 1
Block 5 0 1 1 1 3 0 7 0 5 16 1 0 0.3 1
Block 6 1 0 0 0 3 0 3 1 7 32 1 0 0.0 0
Bridge 1 0 1 1 7 1 3 0 7 8 1 0 0.0 1

SLIVER07

Block 1 1 0 1 0 7 1 7 1 3 8 1 1 0.2 0

Optimiser = Adam
Learning Rate = 0.001
Batch Size = 16
Augmentation= 32000

Block 2 1 1 1 1 5 1 7 1 3 64 0 1 0.5 0
Block 3 0 0 0 1 3 0 3 0 5 16 1 0 0.6 0
Block 4 0 0 0 0 3 1 3 1 7 8 1 0 0.4 1
Block 5 1 0 0 0 5 1 5 1 5 32 1 1 0.1 0
Block 6 0 1 0 0 5 1 3 0 7 32 1 0 0.1 1
Bridge 0 0 0 1 5 1 7 1 3 32 1 0 0.2 1

Spleen

Block 1 1 0 1 1 3 1 3 1 5 16 1 1 0.6 0

Optimiser = Rmsprop
Learning Rate = 0.001
Batch Size = 16
Augmentation= 32000

Block 2 1 0 0 1 3 1 3 1 3 32 1 1 0.6 0
Block 3 1 1 0 0 5 0 5 0 5 8 1 0 0.1 0
Block 4 1 0 0 1 3 0 7 1 7 8 1 1 0.1 0
Block 5 1 1 1 1 3 1 3 1 7 32 1 1 0.2 0
Block 6 0 0 1 1 5 1 5 1 5 64 1 0 0 0
Bridge 0 1 0 0 3 0 3 1 5 64 0 0 0.1 1

Prostate

Block 1 1 1 0 0 7 1 3 0 3 64 1 0 0.1 1

Optimiser = Rmsprop
Learning Rate = 0.001
Batch Size = 32
Augmentation= 64000

Block 2 1 0 0 0 7 0 3 1 3 32 1 1 0.1 1
Block 3 0 0 1 1 3 1 3 0 3 32 0 1 0.1 1
Block 4 1 1 1 1 5 1 7 1 7 32 1 1 0.2 1
Block 5 0 0 1 1 3 1 5 0 5 32 0 0 0.6 0
Block 6 0 0 1 0 7 1 7 1 5 8 1 0 0.6 0
Bridge 1 1 1 1 7 0 5 0 3 8 1 0 0.6 0

BraTs

Block 1 1 1 0 1 7 1 3 0 5 32 0 1 0.4 0

Optimiser = Adadelta
Learning Rate = 0.1
Batch Size = 32
Augmentation= 64000

Block 2 1 1 1 0 3 0 7 1 7 8 0 1 0.1 0
Block 3 0 0 0 1 7 1 7 0 7 64 0 0 0.4 1
Block 4 1 0 0 0 7 1 7 1 7 32 1 1 0.2 0
Block 5 0 0 1 0 5 0 5 0 3 32 1 0 0.1 0
Block 6 1 0 1 1 5 1 7 0 3 64 1 0 0.1 0
Bridge 1 0 1 0 3 1 5 0 3 32 0 0 0.6 1

TABLE 6. Data partitioning for four–fold cross–validation using SLIVER07

dataset.

Folds
Train Test Validation

Slices Volumes Slices Volumes Slices Volumes

Fold1 2712 12 538 4 909 4
Fold2 2241 12 909 4 1009 4
Fold3 2331 12 1009 4 819 4
Fold4 2456 12 819 4 884 4

best networks regarding each fold. Train and validation sets
were used for training and evolving the networks. Such that
networks with the highest validation accuracy have higher
chance to be selected for the next generation. In the end, the
test set is used for the evaluation of the best networks.

The obtained DSCs of the test set for the ten best networks
regarding each fold is provided in Table 7. As can be seen
from Table 7, our proposed model found ten networks for
each fold with high accuracy. This shows, despite the limited
amount of data for training of each fold, our proposed model
can still find networks with high segmentation accuracy.

F. COMPARISON WITH PRIOR WORK

The comparison of the obtained results with previous works
is also reported in Table 8. In this section, we compare
the obtained results versus U–Net [32], Dense U–Net [36],
Res U–Net [35], and Non–Bypass Dense [37] which are all
manually designed networks; also, AdaResU–Net [30] and
EvoU–Net [31] that are evolutionary networks and finally
with NAS U–Net [38] which was developed using reinforce-
ment learning. As shown in Table 8, in all six datasets,
our proposed DenseRes evolutionary models obtained the
best accuracy for image segmentation. Since each network
was developed for a specific dataset, the segmentation per-
formance considerably improved when compared to prior
networks. We also compared the networks in terms of their
size (the number of trainable parameters). The results show
that for each model, the obtained networks are usually far

TABLE 7. The obtained DSCs for Four–fold cross–validation using SLIVER07

dataset after five and then 25 epochs.

Networks
Forld-1 Fold-2 Fold-3 Fold-4

5 25 5 25 5 25 5 25

Net 1 0.832 0.874 0.843 0.927 0.844 0.897 0.890 0.932
Net 2 0.814 0.920 0.839 0.901 0.829 0.921 0.883 0.915
Net 3 0.802 0.835 0.800 0.888 0.820 0.887 0.867 0.944

Net 4 0.793 0.910 0.787 0.903 0.801 0.901 0.866 0.897
Net 5 0.792 0.931 0.776 0.857 0.798 0.874 0.853 0.899
Net 6 0.786 0.870 0.774 0.890 0.780 0.895 0.843 0.912
Net 7 0.785 0.893 0.764 0.850 0.778 0.837 0.837 0.873
Net 8 0.771 0.943 0.763 0.876 0.763 0.865 0.836 0.924
Net 9 0.769 0.897 0.754 0.849 0.740 0.874 0.830 0.899

Net 10 0.768 0.890 0.751 0.879 0.736 0.863 0.819 0.901
Std 0.020 0.031 0.032 0.025 0.036 0.036 0.023 0.020

smaller than the others while achieving high accuracy. Al-
though the DenseRes model for segmentation of the prostate
MRI dataset used more trainable parameters in comparison
to AdaresU–Net and EvoU–Net; however it obtains better
accuracy for the segmentation.

Also, we compared the obtained results versus previous
work using AUC [74] (see Table 9). AUC calculated for
image slices that contained ROI based on the following rules.

• FP : The number of background pixels predicted as ROI
pixel.

• FN : The number of ROI pixels predicted as a back-
ground pixel.

• TN : The number of background pixels recognised as
background.

• TP : The number of ROI pixels recognised as ROI
pixels.

As can be seen from Table 9, minimum, maximum, aver-
age, and standard deviation of the obtained AUC regarding
the test images for each dataset are reported. As shown,
again, the proposed model outperformed previous works.
This shows the capability of the proposed framework for
medical image segmentation.

Besides, as a subjective comparison, we provide one
sample image from each dataset and their corresponding
predicted segmentation using various models separately in
Figure 3. As can be seen from Figure 3, the accuracy of
segmentation is different, and some of them suffer from
over–segmentation or under segmentation. However, in some
cases, the predicted segmentation is similar because some of
the methods obtained competitive results. Also, we provide
five more sample images with various shapes and sizes from
each dataset in Figure 4. Each column shows five segmented
sample images from each dataset. In all six datasets, the
proposed DenseRes evolutionary model segments the Re-
gion Of Interest (ROI) precisely. Especially for liver and
spleen segmentation, where the colour and texture of the
liver and spleen are similar to surrounding organs, previous
work suffered from over or under segmentation; however our
proposed models find the ROI with high accuracy and are
much more precise than the others.

G. TIME ANALYSIS

In this section, we have compared the training times of
our proposed model against existing evolutionary and non–
evolutionary CNN based models. Table 10 shows a number of

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

TABLE 8. Comparison of the proposed DenseRes network with previous work.

Models
Promise CHAOS SLIVER07 Spleen Prostate BraTs

Trainable Parameters
DSC±std HD±std ABD±std RVD±std DSC±std DSC±std DSC±std DSC±std DSC±std

U–Net [32] 0.785 ± 0.012 20.567 ± 0.021 2.982 ± 0.022 20.98 ± 0.08 0.630 ± 0.055 0.700 ± 0.095 0.740 ± 0.088 0.730 ± 0.019 0.532 ± 0.099 31.0 × 106

Dense U–Net [36] 0.860 ± 0.088 17.85 ± 0.077 2.60 ± 0.032 13.20 ± 0.054 0.872 ± 0.032 0.850 ± 0.091 0.820 ± 0.052 0.837 ± 0.082 0.514 ± 0.031 15.48 × 106

Res U–Net [35] 0.840 ± 0.041 19.27 ± 0.099 4.25 ± 0.011 9.97 ± 0.076 0.775 ± 0.009 0.840 ± 0.043 0.780 ± 0.009 0.820 ± 0.052 0.532 ± 0.077 4.04 × 106

Non–Bypass Dense [37] 0.873 ± 0.042 16.13 ± 0.004 2.72 ± 0.007 14.13 ± 0.007 0.861 ± 0.074 0.924 ± 0.041 0.897 ± 0.013 0.877 ± 0.081 0.616 ± 0.012 200.0×106

NAS U–Net [38] 0.863 ± 0.064 20.12 ± 0.087 3.20 ± 0.008 15.12 ± 0.004 0.832 ± 0.097 0.930 ± 0.021 0.890 ± 0.006 0.821 ± 0.043 0.653 ± 0.005 30.0 × 106

AdaResU–Net [30] 0.842 ± 0.099 22.227 ± 0.005 2.500 ± 0.043 18.33 ± 0.006 0.843 ± 0.075 0.893 ± 0.043 0.900 ± 0.032 0.846 ± 0.009 0.687 ± 0.043 4.6 × 106 , 5.1 × 106 , 4.9 × 106

3.0 × 106 , 1.59 × 106 , 3.2 × 106 ,

EvoU–Net [31] 0.893 ± 0.065 17.918 ± 0.043 1.667 ± 0.004 8.98 ± 0.008 0.881 ± 0.076 0.90 ± 0.021 0.90 ± 0.008 0.854 ± 0.081 0.712 ± 0.098 1.76 × 106 , 2.86 × 106 , 1.9 × 106

3.5 × 105 , 2.19 × 106 , 2.5 × 106

DenseRes U–Net 0.902 ± 0.006 16.06 ± 0.043 2.13 ± 0.004 7.35 ± 0.005 0.921 ± 0.011 0.943 ± 0.003 0.950 ± 0.032 0.920 ± 0.012 0.767 ± 0.008 6 × 106 , 3.6 × 104 , 2.35 × 106

7.5 × 105 , 1.59 × 106 , 1.3 × 106

TABLE 9. Comparison of the proposed DenseRes network with previous work based on AUC.

Models
Promise CHAOS SLIVER07 Prostate Spleen BraTs

Min Max Mean STD Min Max Mean STD Min Max Mean STD Min Max Mean STD Min Max Mean STD Min Max Mean STD
U-Net [32] 0.5 0.915 0.812 0.15 0.5 0.95 0.725 0.19 0.471 0.955 0.727 0.163 0.487 0.997 0.848 0.171 0.495 0.991 0.798 0.187 0.458 0.995 0.71 0.177
Dense U-Net [36] 0.497 0.995 0.859 0.13 0.482 0.987 0.843 0.18 0.487 0.994 0.799 0.191 0.497 0.997 0.911 0.134 0.494 0.997 0.784 0.195 0.49 0.995 0.668 0.181
Res U-Net [35] 0.5 0.996 0.891 0.135 0.5 0.977 0.706 0.185 0.484 0.997 0.759 0.203 0.495 0.998 0.855 0.162 0.498 0.997 0.829 0.185 0.486 0.989 0.642 0.178
Non–Bypass Dense [37] 0.5 0.998 0.884 0.14 0.5 0.964 0.871 0.18 0.487 0.998 0.954 0.147 0.487 0.997 0.887 0.171 0.497 0.934 0.944 0.134 0.491 0.993 0.762 0.19
NAS U-Net [38] 0.5 0.998 0.86 0.147 0.5 0.951 0.735 0.16 0.5 0.999 0.923 0.133 0.499 0.995 0.803 0.173 0.499 0.999 0.914 0.142 0.45 0.994 0.721 0.176

AdaRes U-Net [30] 0.5 0.995 0.836 0.132 0.5 0.975 0.715 0.171 0.495 0.995 0.80 0.19 0.497 0.997 0.914 0.118 0.5 0.999 0.909 0.147 0.453 0.994 0.657 0.19
EvoU-Net [31] 0.5 0.990 0.886 0.131 0.492 0.992 0.877 0.153 0.499 0.998 0.917 0.14 0.493 0.996 0.880 0.15 0.5 0.999 0.927 0.128 0.461 0.996 0.766 0.199
DenseRes U-Net 0.499 0.989 0.897 0.118 0.5 0.982 0.887 0.138 0.5 0.995 0.962 0.166 0.499 0.997 0.924 0.165 0.499 0.999 0.993 0.129 0.453 0.994 0.777 0.19

existing automatic models that use Reinforcement Learning
(RL) and the evolutionary concept for image classification or
segmentation. As can be seen from Table 10, we compared
our proposed model with eight different automatic search
algorithms for training time. NAS [21], NASNet [75], Amoe-
baNet [23], and Automatically Designing CNN [76] need
tens of GPU days to find a network for image classification.
NAS [21] utilised 800 GPUs which took 28 days for training.
While NASNet [75] using 500 GPUs and needed four days
for training. Besides, AmoebaNet [23] is an evolutionary
model ran on 450 GPUs for seven days. Furthermore, Au-
tomatically Designing CNN [76] used 15 GPUs took 10 days
for training. The reported GPU days have been taken from
their source papers. Since these papers were published at
different years in the past, the time comparisons may not be
accurate due to changes in technology over time.

Also, Adversarial NAS [77] is another RL–based tech-
nique that applied RL just to find the structure of the discrim-
inator of the network which takes just six GPU days. Besides,
NAS U–Net [38], need two days to find a network, however,
in this method, natural images are used to find the network,
and then medical images are used for network evaluation.
AdaResU–Net [30] and EvoU–Ne [31] are two evolutionary–
based model to find a network structure, such that AdaResU–
Net uses a fixed network structure (the number of blocks and
layers inside of the blocks are kept fixed) and an evolutionary
technique is just applied to find some hyper–parameters.
Finally, our proposed model needs two and a half to four
days for training using one GPU for various datasets. Despite
developing the whole network along with its training param-
eters using an evolutionary model, our proposed model is still
among the models using minimum time for training.

H. PROPOSED DENSERES MODEL FOR 3D

SEGMENTATION

The proposed DenseRes framework is a 2D evolutionary
segmentation model. Developing a 3D evolutionary model
is computationally expensive because we need to evolve a
group of 3D networks to the specified generation, which
requires a massive amount of computation and time. The

TABLE 10. Comparison of the proposed model versus previous work in terms

of the cost.

Architecture
Search Cost
(GPU days)

Search Method Application

NAS [21] 22400 RL Classification
NASNet [75] 2000 RL Classification
AmoebaNet [23] 3150 Evolution Classification
Adversarial NAS [77] 6 RL Segmentation
NAS U–Net [38] 2 RL Segmentation
Automatically Designing CNN [76] 150 RL Segmentation
AdaResU–Net [30] 2.5–4.5 Evolution Segmentation
EvoU–Ne [31] 12–38 Evolution Segmentation
Proposed model 2.5–4 Evolution Segmentation

advantage of using 3D convolution for 3D image analysis
is using the contextual information for segmentation, which
can increase the accuracy of segmentation. In this section, to
show the capability of the proposed model, we also analysed
the obtained 2D models for 3D image segmentation. To do
this, we stack all the segmented 2D image slices on top
of each other to create a 3D volume. Then, we calculate
the volumetric DSC of the obtained volumes and compare
the results with three previous 3D manually designed CNN
networks: 3D U–Net [78], Convnet [79], and 3D Dense U–
Net [36] (see Table 11). We have used the same data for
training both 2D and 3D models, however for training the
2D models, we used image slices, while for 3D models the
corresponding 3D volumes were used.

TABLE 11. Comparison of the proposed model versus prior work based on

obtained DSC for 3D image segmentation.

Models
Promise CHAOS SLIVER07 Spleen Prostate BraTs

DSC±std DSC±std DSC±std DSC±std DSC±std DSC±std

3D U–Net [78] 0.833± 0.043 0.883± 0.021 0.885± 0.021 0.886± 0.071 0.858± 0.009 0.691± 0.08

Convnet [79] 0.779± 0.019 0.381± 0.072 0.898± 0.006 0.90± 0.0004 0.855± 0.016 0.572± 0.045

3D Dense U–Net [36] 0.721± 0.065 0.328± 0.016 0.826± 0.007 0.778± 0.009 0.817± 0.054 0.564± 0.031

DenseRes 0.875± 0.004 0.917± 0.011 0.941± 0.004 0.9387± 0.005 0.833± 0.052 0.701± 0.043

As can be seen from Table 11, we used three previous
3D models for the segmentation of the six various datasets.
To train previous works, the number of training images
was augmented up to 32000 and with a batch size of 16.
Their training parameters were set up based on their source
papers. Since all the previous models are manually designed
networks for a specific segmentation application, in some
cases they obtained high accuracy. In contrast, in other in-
stances such as CHAOS dataset segmentation, we can see
low efficiency using ConvNet and 3D Dense U–Net. Inter-

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

PROMISE12 CHAOS SLIVER Spleen Prostate BraTS

FIGURE 3. One sample segmented image from each dataset using various methods. The red contour is the ground truth, orange is U–Net, olive is Non–Bypass

Dense, purple is AdaRes U–Net, pink is EvoU–Net, cyan is Res U–Net, green is Dense U–Net, light coral is NAS U–Net, and yellow is proposed DenseRes model.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

PROMISE12 CHAOS SLIVER Spleen Prostate BraTs

FIGURE 4. Five sample segmented images from each dataset using various models. The red contour is the ground truth, orange is U–Net, olive is Non–Bypass

Dense, purple is AdaRes U–Net, pink is EvoU–Net, cyan is Res U–Net, green is Dense U–Net, light coral is NAS U–Net, and yellow is proposed DenseRes model.

estingly, except for the segmentation of the Prostate dataset,
our proposed DenseRes model achieved high accuracy for
the 3D image segmentation. The reason is we developed
networks for each of the datasets independently using an
evolutionary technique. Therefore, we can see that even when
we stack the image slices and evaluate the results in 3D, again
the results are comparable and competitive with original 3D
models for medical image segmentation, and even in most
cases outperformed them. It needs to be outlined that the
2D networks are using a considerably smaller number of
parameters compared to 3D networks and require less time
for training.

Also, this section is provided with an example of the 3D
segmented image in regards to each dataset as subjective
evaluation (see Figure 5). As can be seen from Figure 5,
the proposed model obtained high performance in terms of
3D image segmentation evaluation (the red volume is ground
truth, and the cyan one is the obtained segmentation). The
output segmentation shows the capability of a well-designed
2D network.

I. PROPOSED EVOLUTIONARY MODEL ANALYSIS

In this section, we analysed the proposed evolutionary
DenseRes network evolution, structures and the training pa-
rameters of the obtained networks. All provided information

PROMISE12 CHAOS SLIVER Spleen Prostate BraTs

FIGURE 5. One sample 3D segmented image from each dataset. The red

contour is the ground truth, cyan is output segmentation.

in this section are based on the ten best networks of the best
run for each dataset (collectively 60 networks).

1) Network’s training parameters

In the proposed DenseRes evolutionary technique, the type of
the optimiser and its corresponding learning rate was selected
automatically during the evolution. Based on the obtained
results, for the six datasets, Figure 6 shows that among four
various optimisers, the best networks mainly utilised rmsprop
[80] and adagrad [81]. Also, Figure 6 shows the distribution
of using learning rate. Most of the best networks applied the
smallest learning rate (0.001) for training.

The next training parameters that were found using the

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

FIGURE 6. The type and number of optimisers and the learning rates that the

best networks were used.

FIGURE 7. The number of augmentations and batch size of the best

networks.

evolutionary model are the number of augmentations and
the batch size. The number of training data depends on
the size of the network and its parameters. Using an in-
appropriate number of training images can be the cause of
over or underfitting. Notably, in our proposed model that is
constructed using Dense and Residual blocks, the size of the
constructed networks can be variable, therefore finding the
number of training images automatically can help to increase
the accuracy of the proposed model. As shown in Figure 7,
most of the best networks were trained using 32000 and then
16000 images. Also, Figure 7, shows the distribution of batch
size.

2) Network’s structure parameters

The components that were utilised to create the best net-
work’s structures are analysed in this section. All numbers
in this section are based on the down–sampling and bridging
sections of the found networks. First, the contribution of the
Dense blocks, Res Blocks, convolution layers inside of the
blocks, batch normalisation, and long connections to create
networks are shown in Figure 8. As can be seen, convolution
has the most prominent role in building networks in all six
datasets. Moreover, 108 residual blocks and 136 dense blocks

FIGURE 8. Contribution of the various parameters to create best networks.

FIGURE 9. Contribution of the Dense and Residual blocks to create best

networks.

were used to create the best networks (see Figure 9). As
shown, the ten best networks that were created using the
PROMISE dataset mostly utilised Dense blocks, however, the
ten best networks created using the prostate dataset used the
minimum number of Residual blocks. This diversity shows
the complexity of finding the best combination of blocks to
create a network.

Besides the number of convolution layers, the filter size
also plays a significant role in feature extraction. In the pro-
posed model, the filter size was found for each convolution
layer independently. Based on the best–obtained networks,
190 convolution layers applied 3× 3, 164 convolution layers
used 7 × 7, and just 91 convolution layers utilised 5 × 5
filters—the distribution of the mentioned parameters to create
networks for each dataset are provided in Figure 10.

Also, pooling layers have an essential role in excluding
unimportant features from extracted feature maps. In U–
Net–based networks, after each block there is a pooling
layer in the down–sampling section to reduce the size of the
feature maps and consequently to remove less informative
features. Two popular pooling layers are Maxpooling and
Averagepooling layers were chosen by the proposed evolu-
tionary model. As shown in Figure 11, to create the ten best
networks for six datasets, 167 average and 78 max–pooling
layers were utilised. As can be seen from Figure 11, for the
Prostate and CHAOS datasets, the best networks used an
almost equal number of Max and Average pooling, however,
to create a network for spleen dataset, just two Max–poolings
were used. Again the obtained results show the variety of

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

FIGURE 10. Contribution of various filter’s sizes for feature extraction in the

best networks.

FIGURE 11. Contribution of pooling layers to create the best networks.

the network structures and the importance of the automatic
creation of the networks.

Activation functions need to be used to specify the output
of each node in regards to its input, which has an essential
role in the neural network convergence and convergence
speed. However, in some cases, it can prevent the network
from converging. Therefore, it is necessary to specify an
appropriate activation function for each convolution layer,
which is specified for each block in the proposed model. As
shown in Figure 12, networks corresponding to each dataset,
applied various numbers and types of activation function.
Collectively, 145 ReLu and 99 Sigmoid activation functions
were assigned to the blocks.

Finally, in Figure 13, the distribution of using dropout
with various probability is shown. In the proposed model,
it is possible to have a dropout at the end of each block to
control overfitting. When the probability of dropout is zero,
it means there is no dropout, which happens several times in
PROMISE’s best networks. However, Figure 13 shows the
patterns of using dropout in different datasets.

3) Time related parameters

One of the critical parameters to build a network is the
number of trainable parameters that play significant roles
in the training of networks and their accuracy. Moreover,
the training time of the network is related to its size (also
the number of training data). Figure 14, shows the size of
the ten best networks in regards to each dataset. Notably,
networks with significantly different sizes obtained usually

FIGURE 12. Contribution of activation functions to create the best networks.

FIGURE 13. Contribution of dropout operation to create the best networks.

high accuracy in most cases. It shows that increasing the
depth and number of parameters of a network is not always a
solution to create a more precise network.

Finally, in this section, the required wall–time to find a
set of networks corresponding to each dataset, using one
Nvidia GPU is provided in Figure 15. Because the size of
the networks and the number of augmentations are variable,
the training time is different. For example, training of the
proposed model for the CHAOS dataset takes less than 60
hours; however, the case of the Spleen dataset takes about
100 hours. Overall, Figure 15 shows that the proposed model
is not computationally expensive.

4) Network’s evolution

As mentioned above, the proposed evolutionary model was
repeated ten times for each dataset. In Table 16, the evolu-
tionary process is shown during the nine generations for each
dataset. The orange line is training, blue is the test, and green
shows the validation accuracy during the evolution. The solid
line shows the accuracy of the best run during the evolution,
and the dashed line shows the average accuracy of the ten
runs. It needs to be noted that the way the test, validation
and the training sets have been selected randomly can affect
the evolution process. For example, if randomly, unique and
challenging samples are located in the test set while the easy
samples are in the validation set, training will cause high
accuracy in the validation set and low accuracy in the test
set. This problem can be addressed to some extent by using
an appropriate augmentation technique.

Before analysing each model separately, it needs to be out-

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

FIGURE 14. The number of trainable parameters of the best networks for

each dataset.

FIGURE 15. The training time of the proposed model for each dataset.

lined that the evolutionary process starts with 60 population
and then training is continued with 30 networks, which is a
large number of population size compared to previous evolu-
tionary models [30]. As shown in Table 16, in the PROMISE
dataset, the training accuracy starts at about 0.65 and then
increases to 0.73, and then accuracy decreased. Therefore the
best results were obtained in the seventh generation. Also,
in the CHAOS model, there is an inconsistency during the
training as training accuracy increased and decreased during
the training. In the case of the Sliver dataset, training starts
with a set of networks with high accuracy, in average the
best networks obtained 0.94 accuracy, which increased about
one per cent during the training. Besides, evolution in the
Spleen dataset started with 0.77 accuracy in the best run
and ended with ten per cent improvement in segmentation
accuracy in the training set at the end of the training. Also,
for the Prostate dataset, the training accuracy in the best
run starts with 0.77, while increased to 0.90 in the ninth
generation. Lastly, for the brain cancer segmentation, the
training accuracy in the best run starts at 0.47 and then
increased to 0.56 in the last generation.

Overall, despite the limited number of generation, we can
see improvement in segmentation accuracy during evolution.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed the first evolutionary DenseRes
model for medical image segmentation, leveraging from U–
Net [32], Res U–Net [35], Dense U–Net [36], and GA [11],
such that our proposed automatic model can uncover an

accurate network structure along with its training param-
eters for each dataset precisely and quickly. Experimental
results utilising six different datasets show that the proposed
DenseRes evolutionary technique can be used as a general
model for developing a network automatically for different
segmentation purposes. That is one of the most significant
achievements of the proposed model. Because developing
a precise network structure along with its parameters is
sometimes completely different from a dataset or application
to another one and there is no general rule to address this.
However, using a general technique like our proposed model
can address this problem, especially as the obtained networks
are relatively small and do not need extensive computation.

The proposed model is not computationally expensive,
such that to find the best network using one GPU, the
maximum training time was about 100 hours. That is again
reachable and comparable to other automatic techniques [21],
[23], which used hundreds of GPUs in some cases, thus it is
effective and computationally reasonable and cheap. Another
essential aspect of our proposed model is that, unlike most
of the previous automatic techniques that included only a
part of their parameters in their search space, we include all
necessary parameters in the search space and by utilising the
relatively large population size, our proposed model found
good parameters. Such that the end–user even does not need
to set the batch size and augmentation numbers manually,
which have a strong effective on whether a network is over
or under fitted.

We evaluated the proposed model for medical image seg-
mentation; and the proposed model is flexible enough to be
applied to other medical segmentation datasets, in addition
to those we used. Besides, with modifying the proposed
encoding model and changing the number of channels from
one to three, it is possible to develop networks for natural
image segmentation. Also, depending on the size of the
input image; the number of blocks can be increased to find
deeper networks. In addition, based on our proposed encod-
ing model, other evolutionary techniques can be applied in
this application instead of GA. Lastly, other block’s struc-
tures (like attention models) can be included in the search
space to find more complicated networks’ structure. Finally,
in this paper, we show that using the combination of the
existing network structures and an evolutionary technique, is
an effective technique to find a 2D network automatically.
However, the results show that even our proposed model
works well for 3D segmentation.

ACKNOWLEDGMENT

This research was undertaken with the assistance of resources
and services from the National Computational Infrastructure
(NCI), which is supported by the Australian Government.

REFERENCES

[1] T. Back, Evolutionary algorithms in theory and practice: evolution strate-
gies, evolutionary programming, genetic algorithms. Oxford university
press, 1996.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

FIGURE 16. The evolution of the ten best networks for each dataset.

[2] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 2, no. 4.

[3] K. O. Stanley, “Neuroevolution: A different kind of deep learning,”
Obtenido de https://www. oreilly. com/ideas/neuroevolution-a-different-
kindof-deep-learning el, vol. 27, no. 04, p. 2019, 2017.

[4] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genetic
algorithms and neural networks: A survey of the state of the art,” in
[Proceedings] COGANN-92: International Workshop on Combinations of
Genetic Algorithms and Neural Networks. IEEE, 1992, pp. 1–37.

[5] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24–35, 2019.

[6] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architec-
tures to learning,” Evolutionary intelligence, vol. 1, no. 1, pp. 47–62, 2008.

[7] A. Baldominos, Y. Saez, and P. Isasi, “On the automated, evolutionary
design of neural networks: past, present, and future,” Neural Computing
and Applications, pp. 1–27, 2019.

[8] V. K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design of feedfor-
ward neural networks: A review of two decades of research,” Engineering
Applications of Artificial Intelligence, vol. 60, pp. 97–116, 2017.

[9] X. Yao and M. M. Islam, “Evolving artificial neural network ensembles,”
IEEE Computational Intelligence Magazine, vol. 3, no. 1, pp. 31–42, 2008.

[10] D. J. Montana and L. Davis, “Training feedforward neural networks using
genetic algorithms.” in IJCAI, vol. 89, 1989, pp. 762–767.

[11] J. H. Holland et al., Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[12] S. Harp, “Towards the genetic synthesis of neural networks,” Proc. of
ICGA-89, pp. 360–369, 1989.

[13] Q.-H. Ling, Y.-Q. Song, F. Han, and H. Lu, “An improved evolutionary
random neural networks based on particle swarm optimization and input-
to-output sensitivity,” in International Conference on Intelligent Comput-
ing. Springer, 2017, pp. 121–127.

[14] T. Hassanzadeh, K. Faez, and G. Seyfi, “A speech recognition system based
on structure equivalent fuzzy neural network trained by firefly algorithm,”
in 2012 International Conference on Biomedical Engineering (ICoBE).
IEEE, 2012, pp. 63–67.

[15] J. Koutník, J. Schmidhuber, and F. Gomez, “Evolving deep unsupervised
convolutional networks for vision-based reinforcement learning,” in Pro-

ceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation. ACM, 2014, pp. 541–548.

[16] A. Martín, R. Lara-Cabrera, F. Fuentes-Hurtado, V. Naranjo, and D. Ca-
macho, “Evodeep: a new evolutionary approach for automatic deep neural
networks parametrisation,” Journal of Parallel and Distributed Computing,
vol. 117, pp. 180–191, 2018.

[17] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolutional
neural networks for image classification,” IEEE Transactions on Evolu-
tionary Computation, vol. 24, no. 2, pp. 394–407, 2019.

[18] A. Baldominos, Y. Saez, and P. Isasi, “Evolutionary convolutional neural
networks: An application to handwriting recognition,” Neurocomputing,
vol. 283, pp. 38–52, 2018.

[19] B. Wang, Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional
neural networks by variable-length particle swarm optimization for image
classification,” in 2018 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2018, pp. 1–8.

[20] B. Wang, Y. Sun, B. Xue, and M. Zhang, “A hybrid differential evolution
approach to designing deep convolutional neural networks for image
classification,” in Australasian Joint Conference on Artificial Intelligence.
Springer, 2018, pp. 237–250.

[21] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[22] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning representa-
tions by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1,
1988.

[23] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 4780–4789.

[24] B. Fielding and L. Zhang, “Evolving image classification architectures
with enhanced particle swarm optimisation,” IEEE Access, vol. 6, pp.
68 560–68 575, 2018.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[26] J. Kennedy, “Particle swarm optimization,” Encyclopedia of machine
learning, pp. 760–766, 2010.

[27] Y. Sun, B. Xue, and M. Zhang, “Automatically evolving cnn architectures
based on blocks,” arXiv preprint arXiv:1810.11875, 2018.

[28] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[30] M. Baldeon-Calisto and S. K. Lai-Yuen, “Adaresu-net: Multiobjective
adaptive convolutional neural network for medical image segmentation,”
Neurocomputing, vol. 392, pp. 325–340, 2020.

[31] T. Hassanzadeh, D. Essam, and R. Sarker, “Evou-net: an evolutionary deep
fully convolutional neural network for medical image segmentation,” in
Proceedings of the 35th Annual ACM Symposium on Applied Computing,
2020, pp. 181–189.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on Medi-
cal image computing and computer-assisted intervention. Springer, 2015,
pp. 234–241.

[33] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[35] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual u-net,”
IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 5, pp. 749–753,
2018.

[36] M. Kolařík, R. Burget, V. Uher, K. Říha, and M. K. Dutta, “Optimized
high resolution 3d dense-u-net network for brain and spine segmentation,”
Applied Sciences, vol. 9, no. 3, p. 404, 2019.

[37] T. Hassanzadeh, L. G. Hamey, and K. Ho-Shon, “Convolutional neural
networks for prostate magnetic resonance image segmentation,” IEEE
Access, vol. 7, pp. 36 748–36 760, 2019.

[38] Y. Weng, T. Zhou, Y. Li, and X. Qiu, “Nas-unet: Neural architecture search
for medical image segmentation,” IEEE Access, vol. 7, pp. 44 247–44 257,
2019.

[39] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[40] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” arXiv preprint arXiv:1202.2745, 2012.

[41] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional
networks,” in 2010 IEEE Computer Society Conference on computer
vision and pattern recognition. IEEE, 2010, pp. 2528–2535.

[42] Y. Bengio, P. Simard, P. Frasconi et al., “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[43] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The
one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2017 IEEE Conference on. IEEE, 2017, pp. 1175–1183.

[44] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
arXiv preprint arXiv:1505.00387, 2015.

[45] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 315–323.

[46] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[47] G. Litjens, R. Toth, W. van de Ven, C. Hoeks, S. Kerkstra, B. van
Ginneken, G. Vincent, G. Guillard, N. Birbeck, J. Zhang et al., “Evaluation
of prostate segmentation algorithms for MRI: the PROMISE12 challenge,”
Medical Image Analysis, vol. 18, no. 2, pp. 359–373, 2014.

[48] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoo-
rian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey
on deep learning in medical image analysis,” Medical Image Analysis,
vol. 42, pp. 60–88, 2017.

[49] D. Shen, G. Wu, and H. I. Suk, “Deep learning in medical image analysis,”
Annual Review of Biomedical Engineering, vol. 19, pp. 221–248, 2017.

[50] H. C. Shin, K. Roberts, L. Lu, D. Demner Fushman, J. Yao, and R. M.
Summers, “Learning to read chest X-rays: Recurrent neural cascade model
for automated image annotation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2497–2506.

[51] H. I. Suk, S. W. Lee, D. Shen, A. D. N. Initiative et al., “Latent feature
representation with stacked auto-encoder for AD/MCI diagnosis,” Brain
Structure and Function, vol. 220, no. 2, pp. 841–859, 2015.

[52] R. Cheng, H. R. Roth, L. Lu, S. Wang, B. Turkbey, W. Gandler, E. S.
McCreedy, H. K. Agarwal, P. Choyke, R. M. Summers et al., “Active
appearance model and deep learning for more accurate prostate segmen-
tation on MRI,” in Medical Imaging 2016: Image Processing, vol. 9784.
International Society for Optics and Photonics, 2016, p. 97842I.

[53] R. Cheng, H. R. Roth, N. S. Lay, L. Lu, B. Turkbey, W. Gandler, E. S. Mc-
Creedy, T. J. Pohida, P. A. Pinto, P. L. Choyke et al., “Automatic magnetic
resonance prostate segmentation by deep learning with holistically nested
networks,” Journal of Medical Imaging, vol. 4, no. 4, p. 041302, 2017.

[54] H. Jia, Y. Xia, Y. Song, W. Cai, M. Fulham, and D. D. Feng, “Atlas reg-
istration and ensemble deep convolutional neural network-based prostate
segmentation using magnetic resonance imaging,” Neurocomputing, vol.
275, pp. 1358–1369, 2018.

[55] K. Yan, C. Li, X. Wang, A. Li, Y. Yuan, D. Feng, M. Khadra, and J. Kim,
“Automatic prostate segmentation on MR images with deep network and
graph model,” in Engineering in Medicine and Biology Society (EMBC),
2016 IEEE 38th Annual International Conference of the. IEEE, 2016, pp.
635–638.

[56] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” arXiv preprint
arXiv:1901.06032, 2019.

[57] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Ter-
zopoulos, “Image segmentation using deep learning: A survey,” arXiv
preprint arXiv:2001.05566, 2020.

[58] M. Sornam, K. Muthusubash, and V. Vanitha, “A survey on image classi-
fication and activity recognition using deep convolutional neural network
architecture,” in 2017 Ninth International Conference on Advanced Com-
puting (ICoAC). IEEE, 2017, pp. 121–126.

[59] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 2881–2890.

[60] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[61] O. Delalleau and Y. Bengio, “Shallow vs. deep sum-product networks,” in
Advances in Neural Information Processing Systems, 2011, pp. 666–674.

[62] T. Blickle and L. Thiele, “A comparison of selection schemes used in
genetic algorithms. tik-report 11, tik institut fur technische informatik und
kommunikationsnetze,” Computer Engineering and Networks Laboratory,
ETH, Swiss Federal Institute of Technology, Gloriastrasse, vol. 35, p.
8092, 1995.

[63] A. E. Kavur, M. A. Selver, O. Dicle, M. Baris, and N. S. Gezer. CHAOS -
combined (CT-MR) healthy abdominal organ segmentation challenge data.
https://doi.org/10.5281/zenodo.3431873.

[64] T. Heimann, B. Van Ginneken, M. A. Styner, Y. Arzhaeva, V. Aurich,
C. Bauer, A. Beck, C. Becker, R. Beichel, G. Bekes et al., “Comparison
and evaluation of methods for liver segmentation from ct datasets,” IEEE
transactions on medical imaging, vol. 28, no. 8, pp. 1251–1265, 2009.

[65] Medical segmentation decathlon. https://decathlon-10.grand-
challenge.org/.

[66] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest et al., “The multimodal
brain tumor image segmentation benchmark (brats),” IEEE transactions on
medical imaging, vol. 34, no. 10, pp. 1993–2024, 2014.

[67] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B.
Freymann, K. Farahani, and C. Davatzikos, “Advancing the cancer genome
atlas glioma mri collections with expert segmentation labels and radiomic
features,” Scientific data, vol. 4, p. 170117, 2017.

[68] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T.
Shinohara, C. Berger, S. M. Ha, M. Rozycki et al., “Identifying the best
machine learning algorithms for brain tumor segmentation, progression
assessment, and overall survival prediction in the brats challenge,” arXiv
preprint arXiv:1811.02629, 2018.

[69] D. Zill, W. S. Wright, and M. R. Cullen, Advanced engineering mathemat-
ics. Jones & Bartlett Learning, 2011.

[70] P. Y. Simard, D. Steinkraus, J. C. Platt et al., “Best practices for convo-
lutional neural networks applied to visual document analysis.” in Icdar,
vol. 3, no. 2003, 2003.

[71] F. Chollet et al., “Keras,” 2015.
[72] L. R. Dice, “Measures of the amount of ecologic association between

species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.
[73] S. S. Chandra, J. A. Dowling, K.-K. Shen, P. Raniga, J. P. Pluim, P. B.

Greer, O. Salvado, and J. Fripp, “Patient specific prostate segmentation in

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3039496, IEEE Access

3-d magnetic resonance images,” IEEE transactions on medical imaging,
vol. 31, no. 10, pp. 1955–1964, 2012.

[74] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation,” 2011.

[75] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8697–
8710.

[76] A. Mortazi and U. Bagci, “Automatically designing cnn architectures
for medical image segmentation,” in International Workshop on Machine
Learning in Medical Imaging. Springer, 2018, pp. 98–106.

[77] N. Dong, M. Xu, X. Liang, Y. Jiang, W. Dai, and E. Xing, “Neural
architecture search for adversarial medical image segmentation,” in In-
ternational Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2019, pp. 828–836.

[78] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3d u-net: learning dense volumetric segmentation from sparse anno-
tation,” in International conference on medical image computing and
computer-assisted intervention. Springer, 2016, pp. 424–432.

[79] L. Yu, X. Yang, H. Chen, J. Qin, P.-A. Heng et al., “Volumetric convnets
with mixed residual connections for automated prostate segmentation from
3d mr images.” in AAAI, vol. 17, 2017, pp. 36–72.

[80] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude,” COURSERA: Neural networks
for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[81] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning
Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

TAHEREH HASSANZADEH Obtained a Mas-
ter degree in Artificial Intelligence (AI) from
Azad University–Qazvin branch, Iran and a Mas-
ter by Research degree in Computing from Mac-
quarie University, Australia. Currently, she is a
Researcher at the University of New South Wales
(UNSW), Australia. Tahereh’s research interests
are AI, medical image processing, deep learning,
and optimisation.

DARYL ESSAM Received his B.Sc. degree in
computer science from University of New Eng-
land, Australia in 1990 and his Ph.D. degree from
University of New South Wales, Australia, in
2000. Since 1994, he has been with the Canberra
campus, UNSW, where he is currently a Senior
Lecturer. His research interests include genetic
algorithms, with a focus on both evolutionary op-
timisation and large scale problems.

RUHUL SARKER Obtained his Ph.D. from Dal-
housie University (former TUNS), Canada. He is
a Professor in the School of Engineering and IT
(SEIT), and the Director of Faculty PG Research
at UNSW Canberra (located at ADFA) since May
2015. He also served as Deputy Head of School
(Research) of SEIT (2011-2014). Prof. Sarker’s
broad research interests are decision analytics, CI
/ evolutionary computation, operations research,
and applied optimisation.

VOLUME 4, 2016 17

