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Abstract—In the precursor paper [1], a many-objective opti-
mization method (NSGA-III), based on the NSGA-II framework,
was suggested and applied to a number of unconstrained (with
box constraints alone) test and practical problems. In this paper,
we extend NSGA-III to solve generic constrained many-objective
optimization problems. In the process, we also suggest three types
of constrained test problems that are scalable to any number
of objectives and may provide different types of challenges to
a many-objective optimizer. A previously suggested MOEA/D
algorithm is also extended to solve constrained problems. Results
using constrained NSGA-III and constrained MOEA/D show an
edge of the former particularly in solving problems having a
large number of objectives. Further, the NSGA-III algorithm is
made adaptive in deleting and including new reference points on
the fly. The resulting adaptive NSGA-III is shown to provide a
denser representation of the Pareto-optimal front compared to
the original NSGA-III for an identical computational effort. This
and the original NSGA-III paper together suggest and amply test
a viable evolutionary many-objective optimization algorithm for
handling constrained and unconstrained problems. These studies
should encourage researchers to use and pay further attention to
the growing interest in evolutionary many-objective optimization.

Index Terms—Many-objective optimization, evolutionary com-
putation, large dimension, NSGA-III, non-dominated sorting,
multi-criterion optimization.

I. INTRODUCTION

Evolutionary multi-objective optimization (EMO) method-

ologies suggested since early nineties have amply demon-

strated the use of evolutionary algorithms in solving optimiza-

tion problems having mostly two and three objectives [2], [3],

[4]. The main reason for their popularity was their ability to

find multiple trade-off solutions in a single simulation run and

their ease and flexibility to focus on any part of the Pareto-

optimal frontier. Besides their academic use, EMO has also

been practiced in industries, mainly due to the availability

of a number of commercial EMO softwares. EMO has also

been diversified to hybridize with its contemporary fields,
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such as in multiple criterion decision making (MCDM) and

in mathematical multi-objective optimization studies. With

all these all-round developments, despite a few studies, one

aspect mainly remained unexplored: the issue of handling a

large number of objectives. It has been clearly shown in the

EMO literature that an EMO methodology that works so well

for two or three objectives has the ‘curse of dimensionality’

in solving more than three-objective problems [5], [6]. The

main reasons for their poor working – domination principle

being too weak to provide an adequate selection pressure, a

large population size requirement, etc. – were not unknown

to the EMO researchers, but were difficult to alleviate in an

adequate manner. Although a few many-objective evolutionary

algorithms have been suggested in the past [6], [7], [8],

[9], [10], [11], [12], there is still a need for more efficient

algorithms for many-objective optimization, similar to popular

two or three-objective EMO methods, such as NSGA-II [13],

SPEA2 [14] and others.

In the precursor study [1], we suggested an evolution-

ary many-objective optimization algorithm by extending the

NSGA-II framework. Realizing the computational challenge

associated with a population-based optimization algorithm

in converging to Pareto-optimal front and simultaneously

spread its population along the entire front, in NSGA-III,

the latter task is aided by supplying a set of pre-defined

reference points. The algorithm was then expected to focus

its search to find an associated Pareto-optimal solution for

each reference point. Keeping NSGA-II’s emphasis on non-

dominated solutions intact, its elitist selection mechanism was

modified to incorporate three new operations – normalization

of objective vectors and the supplied reference points so as

to have both sets within a single range, association of every

population member with a particular reference point based

on a proximity measure, and niching of accepted population

members in order to ensure a diverse set of solutions. The

results on several test problems and practical problems have

amply demonstrated NSGA-III’s usefulness in solving two to

15-objective unconstrained problems with specified variable

bounds. Since the supplied reference points were chosen as a

diverse set, the obtained trade-off solutions were also likely to

be diverse. Since multiple Pareto-optimal points were targeted

to be found simultaneously in a single simulation run, NSGA-

III provided an efficient parallel search.

In the earlier paper, NSGA-III was restricted to solve prob-
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lems having box constraints alone. In this paper, we extend

NSGA-III to solve constrained many-objective optimization

problems of the following type:

Minimize (f1(x), f2(x), . . . , fM (x)),
subject to gj(x) ≥ 0, j = 1, 2, . . . , J,

hk(x) = 0, k = 1, 2, . . . ,K,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , n.

(1)

One advantage of using an evolutionary algorithm for solving

the above problem is that the box constraints (the last set of

constraints on variables alone) can be handled automatically

by initializing all population members satisfying the bounds

and by ensuring that the creation of offspring solutions are

always within the specified lower and upper bounds. Thus,

a procedure to handle inequality and equality constraints

remains to be incorporated with the NSGA-III algorithm. A

linear equality constraint, if present in a problem, can be used

to eliminate one variable using the constraint. Thus, linear

constraints, in general, help reduce the dimensionality of the

search space.

In this paper, we modify certain operators of NSGA-III to

emphasize feasible solutions more than the infeasible solutions

in a population. Two main changes are suggested in the origi-

nal algorithm for this purpose. The modifications suggested

still keep the overall algorithm parameter-less (besides the

need of usual genetic parameters). Another aspect of the

extension is that if all population members are feasible or

an unconstrained problem is supplied, the constrained NSGA-

III reduces to the original unconstrained NSGA-III algorithm.

To evaluate its performance, the proposed constrained NSGA-

III procedure is applied to a number of many-objective test

problems, suggested here for the first time, and two practical

many-objective problems.

The constrained NSGA-III approach is also applied with a

few preferred reference points to find a handful of solutions on

a preferred region on the Pareto-optimal set. On a test problem

and on a practical problem, the approach is able to find five

or 10 trade-off solutions corresponding five or 10 supplied

preferred reference points.

During the course of the earlier study [1] and this study

on constraint-handling using NSGA-III, we have realized that

in certain problems, not all specified reference points will

correspond to a Pareto-optimal solution. In such a scenario,

the processing of these ‘non-useful’ reference points causes a

waste of computations. In this paper, we rectify this difficulty

by suggesting an adaptive NSGA-III that identifies non-useful

reference points and adaptively deletes and includes new

reference points in addition to the supplied reference points.

Simulation results on a number of many-objective test prob-

lems and practical problems support the modifications made

and demonstrate the usefulness of the proposed procedure.

In the remainder of this paper, we provide a brief overview

of existing many-objective constraint handling procedures in

Section II. Thereafter, the constrained NSGA-III is described

in detail by first providing a brief description of the original

NSGA-III in Section III. As an alternative algorithm, we

extend the MOEA/D-DE algorithm proposed in [15] to solve

constrained problems in the next section. The resulting C-

MOEA/D and proposed constrained NSGA-III algorithms are

then applied to three types of scalable constrained test prob-

lems in Section V. This section also applies the constrained

NSGA-III algorithm to two engineering design problems.

Next, to show NSGA-III’s ability to be hybridized with a

decision-making technique, NSGA-III is applied with a few

preferred reference points. Results on two problems are shown

in Section VI. Thereafter, in Section VII, we have proposed an

adaptive NSGA-III algorithm in detail and applied it to solve

many-objective test problems and practical problems. Conclu-

sions of the extensive study are then drawn in Section IX.

The appendix contains the optimization problem formulations

of two engineering design problems considered in this study.

II. EXISTING MANY-OBJECTIVE CONSTRAINT-HANDLING

PROCEDURES

There is not enough literature on handling constraints in

a many-objective optimization algorithm, as most existing

many-objective EA studies handled unconstrained problems

only. MOEA/D, after its suggestion [7] in 2008, was extended

to include the differential evolution (DE) operator [16], and

later suggested to address constraints using the MOEA/D-DE

approach [15]. We briefly describe the procedure below.

The constrained MOEA/D-DE algorithm [15] is different

from its unconstrained version in the following ways: (i) it uses

a penalty function to handle constraints, but introduces two

penalty parameters s1 and s2 for the purpose, (ii) it restricts

the number of reference directions a new child solution can

be associated with by introducing a limiting parameter nr,

(iii) it chooses a mating partner of a solution based on a

probability distribution involving a parameter δ, and (iv) it uses

the differential evolution [17] to create new solutions which

involves two parameters CR and pm. The results were reported

to depend on the choice of the penalty parameters. Moreover,

fixing six parameters adequately for a problem is the main

drawback of the above constrained MOEA/D-DE approach.

In Section IV, we suggest a different constrained version of

MOEA/D based on the principles of our proposed approach

that may remain as a viable pragmatic extension of MOEA/D

for handling constraints.

The constrained handling approaches proposed by Fonseca

and Fleming [18] and by Deb et al. [19], [13] do not require

any additional parameters. By making pairwise comparisons

between population members, feasible and less constraint-

violated solutions were emphasized. Although these methods

were suggested for multi-objective optimization problems,

they can very well be tried for solving many-objective op-

timization problems. Our proposed NSGA-III approach, de-

scribed next, uses these ideas for handling constraints.

III. PROPOSED NSGA-III WITH A CONSTRAINT

HANDLING APPROACH

Before we describe the constraint handling procedure, we

present a brief outline of recently proposed many-objective

NSGA-II procedure described in the original paper [1].
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NSGA-III starts with description of a set of reference points

Z . The current parent population Pt (at generation t) is used to

create an offspring population Qt by using genetic operations.

The combined population Rt = Pt∪Qt is sorted into different

levels of non-domination. All population members up to the

last front (Fl) that could not be fully accommodated are

saved in a set St and remaining members of Rt are rejected.

Members in St\Fl are already selected for the next generation

and the remaining population slots are selected from Fl. In the

original NSGA-II, the last front members having the largest

crowding distance values (providing widest diversity) were

chosen. The crowding distance operation does not work well

for many-objective problems [20] and here we modify the

selection mechanism by performing a more systematic analysis

of members of St with respect to the supplied reference points.

Objective values and supplied reference points are first

normalized so that they have an identical range. This way,

the ideal point of the set is the zero vector. Each member

of St is then associated with a reference point depending

on the proximity of the member with a reference line ob-

tained by joining the ideal point with the reference point.

This procedure helps determine the number and indices of

population members associated with each supplied reference

point in S\Fl. Thereafter, a niching procedure is used to select

population members from Fl that are not well represented in

St\Fl using the outcome of the above association procedure.

The reference points that have the least number of association

in S\Fl population are looked for an associated point in Fl

set. Such Fl members are then added one at a time to fill the

population. Such a careful selection strategy is found to have

a slightly larger computational complexity of O(N2 logN)
compared to O(N(logN)M−2) complexity of NSGA-II, but

NSGA-III helped solve problems having a large number of

objectives.

We now propose an extension of the above NSGA-III pro-

cedure to handle generic equality and/or inequality constraints.

We discuss the modifications one by one.

A. Modifications in the Elitist Selection Operator

Recall that the combined population Rt needs to be sorted

according to different non-domination levels. For uncon-

strained problems, the objective function values alone are

considered for the domination check between two solutions.

But in the presence of constraints, we follow the constraint-

domination principle adopted in NSGA-II [13] using the ideas

from [18], [19]:

Definition A solution x(1) is said to constraint-dominate

another solution x(2), if any one of the following conditions

is true:

1) if x(1) is feasible and x(2) is infeasible,

2) if x(1) and x(2) are infeasible and x(1) has a smaller

constraint violation value, or

3) if x(1) and x(2) are feasible and x(1) dominates x(2)

with the usual domination principle [21], [22].

For calculating the constraint violation value (CV (x)) of a

solution x, we suggest normalizing all constraints by dividing

the constraint functions by the constant present (that is, for

gj(x) ≥ bj , the normalized constraint function becomes

ḡj(x) = gj(x)/bj − 1 ≥ 0 and similarly h̄k(x) can also be

normalized) and then using the following measure:

CV (x) =

J
∑

j=1

〈ḡj(x)〉+

K
∑

k=1

|h̄k(x)|, (2)

where the bracket operator 〈α〉 returns the negative of α, if

α < 0 and returns zero, otherwise.

The population Rt of size 2N can be sorted into differ-

ent non-domination levels according to the above constraint-

domination principle. If every population member is infeasible,

the non-domination sorting procedure will assign the solution

having the smallest CV in the first front, the solution with

the next smallest CV in the second front and so on. Thus,

there will be a total of 2N fronts, unless there exists two

solutions having an identical CV value. On the other hand,

if all population members are feasible, the non-domination

sorting will be identical to that obtained by the usual domina-

tion principle. In most cases, the population may have some

feasible solutions (set F ) and some infeasible solutions (set I).

In this case, the above sorting procedure will arrange feasible

solutions according to their non-domination levels in the top

of the sorted levels and the infeasible solutions will occupy

the next levels one (in most cases) in each front starting with

the least constraint-violated solution.

Once the combined population Rt is sorted according to

constraint-domination, the number of feasible solutions Nf in

Rt is counted. If Nf ≤ N , meaning that there are at most N
feasible points in Rt, we definitely select all feasible solutions

for Pt+1 and the remaining (N − |Pt+1|) population slots are

filled with top levels of the infeasible solutions (having smaller

CV values). However, if Nf > N , meaning that there are

more feasible solutions in Rt than required, we do not consider

the infeasible solutions at all and follow the unconstrained

NSGA-III selection procedure with feasible solution set Rt\I.

In either case, we then update the population ideal (zmin)

and nadir points (zmax) using the objective values of feasible

solutions for the normalization procedure, discussed in the

original NSGA-III paper.

B. Modification in Creation of Offspring Population

The original NSGA-III algorithm suggested to use a popu-

lation size (N ) almost equal to the number of reference points

(H). The parameter H is derived from a combinatorial value
(

(M+p−1)
p

)

for a given p. The population size is recommended

to be the smallest multiple of four, greater than H . Thus,

every population member is likely to be associated with a

different reference point and at the end it is desired that

there will be at least one Pareto-optimal solution associated

with every reference point. Due to this one-member-to-one-

reference-point expectation, no additional tournament selec-

tion was applied to the parent population Pt to create the

offspring population Qt. However, in the presence of infeasible

solutions in the population, there is a need for bringing back

the tournament selection operator particularly for emphasizing
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a feasible solution over an infeasible solution and a small CV
solution over a large CV solution.

For this purpose, we select two members from Pt at random,

and a binary tournament selection is applied, as follows, to

select a better solution:

Definition The modified tournament selection operation be-

tween solutions p1 and p2 is defined as follows:

1) if p1 is feasible and p2 is infeasible, select p1 else if p2
is feasible and p1 is infeasible, select p2,

2) if p1 and p2 are infeasible then if p1 has a smaller

constraint violation CV , select p1, else if p2 has a

smaller constraint violation CV , select p2, and

3) if both p1 and p2 are feasible then p1 or p2 is chosen at

random.

The above conditions for choosing a solution over another is

similar to that used in defining constraint-domination, except

that when both solutions are feasible, a random solution is now

chosen, thereby implying that there is no tournament selection

performed in this case.

Similarly, another pair of members are randomly selected

from population Pt and the above modified tournament se-

lection is applied to select the second parent. Thereafter,

crossover and mutation operators are applied on both parents

to produce two offspring solutions as usual. This process is

continued till N offspring are created to form the population

Qt.

The overall procedure is presented in a pseudo-code in

Algorithm 1. Notice how the procedure becomes similar to

the unconstrained NSGA-III selection operator (described in

the original study [1]) when there is no infeasible population

member or when there is equality or inequality constraints

specified in the optimization problem formulation.

Algorithm 1 Tournament Selection(p1, p2) procedure

Require: p1, p2
Ensure: p′

1: if feasible(p1) = TRUE and feasible(p2) = FALSE then

2: p′ = p1
3: else if feasible(p1) = FALSE and feasible(p2) = TRUE

then

4: p′ = p2
5: else if feasible(p1) = FALSE and feasible(p2) = FALSE

then

6: if CV (p1) > CV (p2) then

7: p′ = p2
8: else if CV (p1) < CV (p2) then

9: p′ = p1
10: else

11: p′ = random(p1, p2)
12: end if

13: else

14: p′ = random(p1, p2)
15: end if

The rest of the NSGA-III procedure described in the original

paper [1] remains the same. A careful analysis will reveal that

the above constrained NSGA-III approach does not introduce

any new parameter for handling constraints. This remains as a

hallmark feature of our proposed constraint handling approach.

IV. PROPOSED CONSTRAINT-MOEA/D METHOD

(C-MOEA/D)

The original MOEA/D approach [7] was extended to include

the DE operator to develop MOEA/D-DE approach [16], and

subsequently suggested a constrained MOEA/D-DE approach

to handle constraints [15], but as discussed in Section II,

the constrained MOEA/D-DE approach is based on a penalty

function concept that requires two penalty parameters. In

addition, the approach also requires four other parameters that

are needed to be set right in solving an arbitrary problem.

In the original NSGA-III study [1], we have reported that

MOEA/D approach, in principle, can perform well in solving

many-objective optimization problems, which the developers

of MOEA/D did not demonstrate.

Here, we modify the MOEA/D-DE approach with a similar

constrained handling approach as described above, hoping that

the proposed C-MOEA/D can also become a competing and

alternate algorithm for constrained many-objective problem

solving. We make the following modifications to the original

MOEA/D-DE approach [15], [16].

When a child solution y is compared with a randomly

picked member x from its neighborhood, instead of replac-

ing the member just based on performance metric (PBI or

Tchebycheff), the constraint violation, if any, of both solutions

are checked. Following four scenarios can occur:

1) Solution x is feasible while solution y is infeasible.

Then, x is not replaced by y. No computation of PBI

or Tchebycheff metric is needed for any of these two

solutions.

2) Solution x is infeasible while solution y is feasible.

Then, x is replaced by y.

3) Both solutions x and y are infeasible. If x has a larger

constraint violation than y (that is, CV (x) > CV (y),
then x is replaced by y.

4) Both solutions x and y are feasible. Here, we propose

the use of a performance measure. If PBI (or Tcheby-

cheff) metric value of x is worse than that of y, then x

is replaced by y.

The above modifications are in tune with that adopted in

constrained NSGA-III algorithm and should provide an ad-

equate emphasis for feasible and small-CV solutions in the

population. Importantly, no new parameter is introduced in the

algorithm. Moreover, in the original study [1], the DE operator

for creating offspring solutions did not perform well with the

rest of the MOEA/D algorithm. Based on that study, here, we

do not use the DE operator, instead a real-coded GA with SBX

and polynomial mutation operators are used for creating the

offspring population. We also propose the use of PBI metric

(instead of the Tchebycheff metric), as PBI metric was found

to work better in the original study [1]. We name this version

of MOEA/D as constrained MOEA/D or simply C-MOEA/D.
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V. RESULTS

In this section, we present simulation results of the proposed

constrained NSGA-III and C-MOEA/D approaches. For this

purpose, we use a number of constrained test problems having

three to 15 objectives, designed to introduce different types of

difficulties to an algorithm. The problems are scalable both in

the number of objectives and in the number of variables.

For each problem, 20 different runs with different initial

populations are carried out and the best, median and the worst

IGD performance values (which can only be computed for a

test problem with a known Pareto-optimal front) are reported.

To compute IGD value, first, we compute the targeted points

(Z) on the known Pareto-optimal front from the supplied ref-

erence points or directions in the normalized objective space.

Then, for an algorithm, we obtain the final non-dominated

points (set A) in the objective space. Now, we compute the

IGD metric value as the average Euclidean distance of points

in set Z with their nearest members of all points in set A:

IGD(A,Z) =
1

|Z|

|Z|
∑

i=1

|A|

min
j=1

d(zi, aj), (3)

where d(zi, aj) = ‖zi − aj‖2. For both algorithms, the

population members from the final generation are presented

and used for computing the above IGD metric. The number

of reference points, population size and other parameters are

kept in agreement with the original study [1] and are tabulated

in Tables I and II. In case of C-MOEA/D, two parameters δ

TABLE I
NUMBER OF REFERENCE POINTS/DIRECTIONS AND CORRESPONDING

POPULATION SIZES USED IN CONSTRAINED NSGA-III AND C-MOEA/D
ALGORITHMS.

No. of Ref. pts./ NSGA-III MOEA/D
objectives Ref. dirn. popsize popsize
(M ) (H) (N ) (N ′)

3 91 92 91
5 210 212 210
8 156 156 156
10 275 276 275
15 135 136 135

TABLE II
PARAMETER VALUES USED IN CONSTRAINED NSGA-III AND C-

MOEA/D. n IS THE NUMBER OF VARIABLES.

Parameters NSGA-III MOEA/D

SBX probability [23], pc 1 1
Polynomial mutation prob. [2], pm 1/n 1/n
ηc [23] 30 20
ηm[23] 20 20

(probability with which the parent solutions are selected from

neighborhood) and nr (maximal number of solutions replaced

by an offspring solution) are set as 0.9 and 2, respectively,

as suggested by the developers [15]. In contrast, the proposed

constrained-handling NSGA-III does not require setting of any

new parameter.

A. Constrained Problems of Type-1

In Type-1 constrained problems, the original Pareto-optimal

front is still optimal, but there is an infeasible barrier in ap-

proaching the Pareto-optimal front. This is achieved by adding

a constraint to the original problem. The barrier provides

infeasible regions in the objective space that an algorithm must

learn to overcome, thereby providing a difficulty in converging

to the true Pareto-optimal front. DTLZ1 and DTLZ3 problems

[24] are modified according to this principle in this study.

For the type 1 constrained DTLZ1 (or C1-DTLZ1), only a

part of objective space that is close to Pareto-front is made

feasible, as shown in Figure 1. The objective functions are

kept the same as they were in the original DTLZ1 problem,

while the following constraint is now added:

c(x) = 1−
fM (x)

0.6
−

M−1
∑

i=1

fi(x)

0.5
≥ 0. (4)

The feasible region and the Pareto-optimal front are shown

for a two-objective C1-DTLZ1 problem in Figure 1. In all

simulations, we use k = 5 variables for the original g-function

[24], thereby making a total of (M + 4) variables to the M -

objective C1-DTLZ1 problem.

In the case of C1-DTLZ3 problem, a band of infeasible

space is introduced adjacent to the Pareto-optimal front, as

shown in Figure 2. Again, the objective functions are kept the

same as in original DTLZ3 problem [24], while the following

constraint is added:

c(x) =

(

M
∑

i=1

fi(x)
2 − 16

)(

M
∑

i=1

fi(x)
2 − r2

)

≥ 0. (5)

where, r = {9, 12.5, 12.5, 15, 15} is the radius of the hyper-

sphere for M = {3, 5, 8, 10, 15}. For C1-DTLZ3, we use k =
10, so that total number of variables are (M + 9) in a M -

objective problem.

Feasible

Pareto�front

�0

�0.1

�0.2

�0.3

�0.4

�0.5

�0.6

�0 �0.1 �0.2 �0.3 �0.4 �0.6�0.5

Fig. 1. Two objective version of
C1-DTLZ1 problem.

Infeasible

�0

�1

�2

�3

�4

�5

�6

�0 �1 �2 �4 �5 �6�3

Pareto�front

Fig. 2. Two objective version of
C1-DTLZ3 problem.

Both algorithms (NSGA-III and C-MOEA/D) are tested

on three to 15 objective versions of above two problems.

Figure 3 shows that in the case of three-objective C1-DTLZ1

problem, NSGA-III is able to reach the feasible region and find

a well-distributed set of points on the entire Pareto-optimal

front. C-MOEA/D is also able to find a nice distribution of

points (Figure 4). However, as it is evident from Table III,

in most of the cases for the C1-DTLZ1 problem, NSGA-

III performs better than C-MOEA/D in terms of the IGD

metric. Interestingly, the best performance of C-MOEA/D is

in most cases better than that of NSGA-III. However, as the
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TABLE III
BEST, MEDIAN AND WORST IGD AND GD METRIC VALUES OBTAINED FOR NSGA-III AND C-MOEA/D ON M -OBJECTIVE C1-DTLZ1 AND C1-DTLZ3
PROBLEMS. BEST PERFORMANCE IS SHOWN IN BOLD. IN CASES WHERE ALGORITHM GOT STUCK IN LOCAL PARETO-FRONT THE CORRESPONDING IGD

VALUE IS NOT SHOWN INSTEAD THE NUMBER OF SUCCESSFUL RUNS OUT OF 20 ARE SHOWN IN BRACKETS.

Problem M MaxGen NSGA-III C-MOEA/D
IGD GD IGD GD

C1-DTLZ1 1.229 × 10−3 1.266 × 10−3
6.430× 10

−4
6.430× 10

−4

3 500 4.932× 10
−3

4.989× 10
−3 6.817× 10−3 6.817× 10−3

2.256× 10
−2

2.222× 10
−2 2.461× 10−2 2.307× 10−2

2.380 × 10−3 2.951 × 10−3
8.686× 10

−4
8.686× 10

−4

5 600 4.347 × 10−3 4.727 × 10−3
3.637× 10

−3
3.637× 10

−3

1.024× 10
−2

1.051× 10
−2 1.224× 10−2 1.224× 10−2

4.843 × 10−3 4.843 × 10−3
4.019× 10

−3
4.019× 10

−3

8 800 1.361 × 10−2 1.361 × 10−2
1.142× 10

−2
1.142× 10

−2

4.140 × 10−2 4.140 × 10−2
2.380× 10

−2
2.380× 10

−2

3.042× 10
−3 3.394 × 10−3 3.271× 10−3

3.271× 10
−3

10 1000 6.358× 10
−3 6.636 × 10−3 6.412× 10−3

6.412× 10
−3

2.762 × 10−2 2.806 × 10−2
1.747× 10

−2
1.747× 10

−2

4.994× 10
−3

5.422× 10
−3 8.800× 10−3 8.800× 10−3

15 1500 1.041× 10
−2

1.098× 10
−2 1.258× 10−2 1.258× 10−2

2.930× 10
−2

2.988× 10
−2 3.037× 10−2 3.037× 10−2

C1-DTLZ3 8.649 × 10−4 8.724 × 10−4
4.398× 10

−4
4.398× 10

−4

3 1000 8.139× 10
−3

1.008× 10
−2 (8) −

(13) − − −

1.028 × 10−3 1.684 × 10−3
2.651× 10

−4
2.651× 10

−4

5 1500 5.101× 10
−2

1.144× 10
−1 (8) −

(15) − − −

1.656× 10
−3

1.656× 10
−3 4.998× 10−1 5.086× 10−1

8 2500 1.196× 10
−2

1.423× 10
−2 (1) −

(14) − − −

2.437 × 10−3 2.834 × 10−3
4.710× 10

−4
4.710× 10

−4

10 3500 1.445× 10
−2

1.572× 10
−2 (6) −

(18) − − −

4.541× 10
−3

5.212× 10
−3 − −

15 5000 (9) − − −

− − − −

number of objectives increase (10 ad 15-objective problems),

the performance of NSGA-III is clearly better.

Additionally, we compute the GD metric value for NSGA-

III solutions and tabulate the best, median and worst values in

Table III. Small GD values indicate that NSGA-III solutions

are close to the true Pareto-optimal fronts in each case.

Corresponding GD metric values of MOEA/D with PBI ap-

proach are also presented. GD metric values for both methods

are similar, although interestingly in most cases whichever

algorithm produced a better IGD value also made a smaller

GD value. It is important to highlight here that GD metric

indicates the convergence property of an algorithm, but cannot

reveal the diversity in the solutions. On the other hand, the

IGD metric indicates a combined measure of both diversity

and convergence and is a more reliable metric for comparing

multi-objective optimization algorithms.

Figures 5 and 6 show Pareto-optimal fronts (corresponding

to median IGD value) obtained by NSGA-III and C-MOEA/D,

respectively, for the three-objective C1-DTLZ3 problem. It

is clear that while NSGA-III was able to reach the global

Pareto-front, C-MOEA/D (the median-performed run) was not

able to cross the infeasibility barrier and instead got stuck in

the infeasible region. This problem is a difficult problem and

Table III shows that in case of three, five and 10 objectives,

although C-MOEA/D finds a better best IGD value but the

success rate is less for C-MOEA/D as compared to NSGA-

III. In all the cases for C-MOEA/D success rate is less than

50% while for NSGA-III it is more than 60% in all the cases

except for 15 objectives where it is 45% and there C-MOEA/D

was unable to reach the Pareto-front in any of the 20 runs. This

problem was found to be difficult for both algorithms, but the

performance of NSGA-III was found to be somewhat better

than C-MOEA/D.

B. Effect of ηc on C-MOEA/D

In the above simulations with C-MOEA/D, ηc = 20 is used,

simply because of the preference of this value by the original

developers of MOEA/D on unconstrained problems. Since, a

somewhat higher value (ηc = 30) is used with NSGA-III to

have a higher probability of creating offspring solutions close

to parent solutions in a higher-dimensional space, we rerun

C-MOEA/D algorithm with ηc = 30 for C1-DTLZ1 problem

and tabulate results in Table IV. C-MOEA/D results are

not significantly different from previous C-MOEA/D results

obtained with ηc = 20.

C. Constrained Problems of Type-2

While type 1 constrained problems introduced difficulties in

arriving at the entire Pareto-optimal front, type-2 constrained

problems are designed to introduce infeasibility to a part of the

Pareto-optimal front. Such problems will test an algorithm’s

ability to deal with disconnected Pareto-optimal fronts. To

accomplish this, DTLZ2 [24] and the convex DTLZ2 problems

[1] are modified.
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Fig. 3. Obtained solutions using NSGA-III on three-objective C1-DTLZ1
problem.
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Fig. 4. Obtained solutions using C-MOEA/D approach on three-objective
C1-DTLZ1 problem.
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Fig. 5. Obtained solutions using NSGA-III on three-objective constrained
C1-DTLZ3 problem.
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In C2-DTLZ2 problem, only the region of objective space
that lies inside each of the M +1 hyper-spheres of radius r is
made feasible. Of (M+1) hyper-spheres, M are placed at the
corners of unit hyper-plane and the (M + 1)-th is placed at
the intersection of the equally-angled line with objective axes
and the original Pareto-optimal front. This way, the Pareto-
optimal front is disconnected, as shown in Figure 7. Objective
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Fig. 7. Two-objective version of
C2-DTLZ2 problem.
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Fig. 8. Two-objective version of
convex C2-DTLZ2 problem.

functions are calculated in the same way as in the original

DTLZ2 problem, except that a constraint is now introduced:

c(x) = max







M
max
i=1



(fi(x)− 1)2 +
M
∑

j=1,j #=i

f2

j − r2



 ,

[

M
∑

i=1

(fi(x)− 1/
√

M)
2

− r2
]}

,

where r = 0.4, for M = 3 and 0.5, otherwise. For an M -

objective C2-DTLZ2 problem, k = 10 is used, thereby having

a total of (M + 9) variables.

For the convex C2-DTLZ2 described in [1], we construct

a different feasible region. The region in the objective space

lying inside a hyper-cylinder with (1, 1, . . . , 1)T as the axis

and radius r is kept infeasible, thereby creating an infeasible

hole through the objective space. This also produces a hole on

the Pareto-optimal front, as demonstrated for a two-objective

version of convex C2-DTLZ2 problem in Figure 8. The

objective functions are kept the same as before, while the

following constraint is added:

c(x) =

M
∑

i=1

(fi(x)− λ)
2
− r2 ≥ 0, (6)
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TABLE IV
IGD AND GD VALUES WITH C-MOEA/D ALGORITHM WITH ηc = 30.

Problem M MaxGen NSGA-III C-MOEA/D
IGD GD IGD GD

C1-DTLZ1 1.229 × 10−3 1.266 × 10−3
9.624× 10

−4
9.624× 10

−4

3 500 4.932× 10
−3

4.989× 10
−3 6.360× 10−3 6.360× 10−3

2.256× 10
−2

2.222× 10
−2 2.276× 10−2 2.226× 10−2

2.380 × 10−3 2.951 × 10−3
1.998× 10

−3
1.998× 10

−3

5 600 4.347 × 10−3 4.727 × 10−3
3.960× 10

−3
3.960× 10

−3

1.024 × 10−2 1.051 × 10−2
9.597× 10

−3
9.597× 10

−3

4.843 × 10−3 4.843 × 10−3
3.442× 10

−3
3.442× 10

−3

8 800 1.361 × 10−2 1.361 × 10−2
9.150× 10

−3
9.150× 10

−3

4.140 × 10−2 4.140 × 10−2
3.514× 10

−2
3.514× 10

−2

3.042× 10
−3

3.394× 10
−3 5.042× 10−3 5.042× 10−3

10 1000 6.358× 10
−3

6.636× 10
−3 7.960× 10−3 7.960× 10−3

2.762 × 10−2 2.806 × 10−2
1.536× 10

−2
1.536× 10

−2

4.994× 10
−3

5.422× 10
−3 8.088× 10−3 8.088× 10−3

15 1500 1.041× 10
−2

1.098× 10
−2 1.595× 10−2 1.595× 10−2

2.930 × 10−2 2.988 × 10−2
2.893× 10

−2
2.893× 10

−2

C2-DTLZ2 1.581 × 10−3
1.764× 10

−2
3.844× 10

−4 2.690× 10−2

3 250 2.578 × 10−3
1.990× 10

−2
5.526× 10

−4 2.761× 10−2

6.733× 10
−3

2.214× 10
−2 7.014× 10−1 5.815× 10−2

2.762 × 10−3 1.944 × 10−1
5.404× 10

−4
1.623× 10

−1

5 350 3.873 × 10−3 1.977 × 10−1
7.304× 10

−4
1.682× 10

−1

7.596× 10
−3 2.001 × 10−1 3.343× 10−2

1.687× 10
−1

1.404 × 10−2 3.576 × 10−1
2.926× 10

−3
3.126× 10

−2

8 500 2.352 × 10−2 4.728 × 10−1
4.975× 10

−3
2.602× 10

−1

8.662× 10
−1 5.126 × 10−1 1.131 3.690× 10

−1

1.978 × 10−2 4.637 × 10−1
9.661× 10

−4
1.897× 10

−1

10 750 2.694 × 10−2 4.717 × 10−1
1.491× 10

−3
1.910× 10

−1

3.491× 10
−2 4.765 × 10−1 8.774× 10−1

2.928× 10
−1

3.117 × 10−2 3.420 × 10−1
1.668× 10

−2
1.713× 10

−2

15 1000 3.544 × 10−2 3.836 × 10−1
2.129× 10

−2
3.828× 10

−1

9.343× 10
−1

4.363× 10
−1 1.204 4.579× 10−1

C3-DTLZ4 1.862 × 10−2 1.987 × 10−2
6.918× 10

−3
6.918× 10

−3

3 750 2.456× 10
−2

2.930× 10
−2 4.959× 10−1 8.371× 10−2

5.586× 10
−1

9.158× 10
−2 7.510× 10−1 9.478× 10−2

3.247 × 10−2 3.461 × 10−2
5.571× 10

−3
5.571× 10

−3

5 1250 3.854× 10
−2

4.088× 10
−2 2.207× 10−1 8.007× 10−2

3.466× 10
−1

1.601× 10
−1 7.209× 10−1 2.302× 10−1

5.558× 10
−2

5.558× 10
−2 3.782× 10−1 2.255× 10−1

8 2000 2.646× 10
−1

2.075× 10
−1 8.923× 10−1 4.277× 10−1

8.886× 10
−1 4.976 × 10−1 1.216 4.703× 10

−1

4.247 × 10−2 4.386 × 10−2
8.395× 10

−3
8.395× 10

−3

10 3000 5.927× 10
−2

6.061× 10
−2 7.008× 10−1 4.056× 10−1

9.092× 10
−1

4.849× 10
−1 1.156 5.077× 10−1

1.134× 10
−1

1.172× 10
−1 1.181 3.849× 10−1

15 4000 9.325× 10
−1 5.803 × 10−1 1.450 5.125× 10

−1

1.424 7.206× 10
−1 1.651 8.992× 10−1

where λ = 1
M

∑M

i=1 fi(x) and the radius r =
{0.225, 0.225, 0.26, 0.26, 0.27} for M = {3, 5, 8, 10, 15}. To-

tal number of variables for this problem are (M + 9).
We now present results of both algorithms on these two

problems. Since in these problems only a part of Pareto-

optimal front is feasible, there may exist some reference

points/directions for which there is no corresponding feasible

point on Pareto-optimal front. So while calculating the IGD

metric, only the Pareto-optimal points (Z) corresponding to

useful reference points/directions are used. It could be that

some reference points have more than one Pareto-optimal

points associated with it. For IGD metric value computation

and for plotting the final population, we have considered only

one Pareto-optimal point that has the smallest perpendicular

distance from the extended reference line corresponding to a

reference point/direction.

Table V clearly shows that in the case of C2-DTLZ2

problem, both NSGA-III and C-MOEA/D give similar perfor-

mance, however in all the cases (3-15 objectives) C-MOEA/D

could not come close to the true Pareto-optimal front in all

20 runs (which is indicated by a large value of worst IGD

values). However, despite the best performance of NSGA-III

is not better than C-MOEA/D, NSGA-III performs well in all

20 runs. The table also shows the number of useful reference

points out of total supplied reference points for constrained

NSGA-III procedure. The rest of the reference points do

not associate with any feasible Pareto-optimal solution, hence

not solution is found by constrained NSGA-III for them.

GD metric values are calculated and presented in the table.

Interestingly, the algorithm performing better in terms of IGD

metric also shows a better GD metric value.

Figures 9 and 10 show that both algorithms are able to find
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Fig. 9. Obtained solutions using NSGA-III on three-objective C2-DTLZ2
problem.
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Fig. 10. Obtained solutions using C-MOEA/D approach on three-objective
C2-DTLZ2 problem.
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Fig. 11. Obtained solutions using NSGA-III on three-objective constraint
convex C2-DTLZ2 problem.
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Fig. 12. Obtained solutions using C-MOEA/D approach on three-objective
constraint convex C2-DTLZ2 problem.

the disconnected Pareto-optimal regions for the three-objective

C2-DTLZ2 problem. Column 3 of Table V shows the number

of reference points out of total supplied reference points are

able to find at least one Pareto-optimal solution. We discuss

more about this in Section VII.

However, in the case of convex C2-DTLZ2 problem, as can

be seen from Table V, NSGA-III outperforms C-MOEA/D

for three to 15-objective versions of the problem. Figure 11

shows that on a three-objective convex C2-DTLZ2 problem,

NSGA-III is able to find the feasible Pareto-optimal points.

No point in the intermediate infeasible portion of the front is

found. However, as shown in Figure 12, although intermediate

infeasible points were not found by C-MOEA/D, it could not

find the points on the front boundary. A similar observation

was also made while solving the convex DTLZ2 problem using

the unconstrained MOEA/D algorithm [1].

D. Constrained Problems of Type-3

Type-3 problems involve multiple constraints and the entire

Pareto-optimal front of the unconstrained problem need not

be optimal any more, rather portions of the added con-

straint surfaces constitute the Pareto-optimal front. We modify

DTLZ1 and DTLZ4 problems for this purpose here by adding

M different constraints. In the case of C3-DTLZ1 problem,

objective functions are same as in the original formulation

[24], however, following M linear constraints are added:

cj(x) =

M
∑

i=1,i#=j

fj(x) +
fi(x)

0.5
− 1 ≥ 0, ∀j = 1, 2, . . . ,M.

(7)

For C3-DTLZ1 problem, k = 5 is used in the original

g-function, thereby making a total of (M + 4) variables.

Figure 13 shows constraints and feasible region for the two-

objective C3-DTLZ1 problem. Notice how the unconstrained

Pareto-optimal front is now infeasible by the presence of two

constraints.

Similarly, problem DTLZ4 is modified by adding M
quadratic constraints of the type:

cj(x) =
f2
j

4
+

M
∑

i=1,i#=j

fi(x)
2 − 1 ≥ 0, ∀j = 1, 2, . . . ,M.

(8)

Another difficulty posed by DTLZ4 is that it introduces bias

for creating solutions in certain parts of the objective space.

For this problem, we have used n = M+4 variables. Figure 13

shows the respective constraints and resulting Pareto-optimal
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TABLE V
BEST, MEDIAN AND WORST IGD AND GD METRIC VALUES OBTAINED FOR NSGA-III AND C-MOEA/D ON M -OBJECTIVE C2-DTLZ2 AND CONVEX

C2-DTLZ2 PROBLEMS. BEST PERFORMANCE IS SHOWN IN BOLD. U IS THE NUMBER OF USEFUL REFERENCE POINTS THAT GENERATED A

PARETO-OPTIMAL SOLUTION AND H IS THE TOTAL NUMBER OF SUPPLIED REFERENCE POINTS.

Problem M U/H MaxGen NSGA-III C-MOEA/D
IGD GD IGD GD

C2-DTLZ2 1.581× 10−3
1.764× 10

−2
4.600× 10

−4 2.687 × 10−2

3 58/91 250 2.578× 10−3
1.990× 10

−2
5.842× 10

−4 2.762 × 10−2

6.733× 10
−3

2.214× 10
−2 6.792 × 10−1 3.208 × 10−2

2.762× 10−3 1.944× 10−1
7.223× 10

−4
7.539× 10

−2

5 80/210 350 3.873× 10−3 1.977× 10−1
8.126× 10

−4
1.684× 10

−1

7.596× 10
−3 2.001× 10−1 7.621 × 10−1

1.695× 10
−1

1.404× 10−2 3.576× 10−1
2.291× 10

−3
3.525× 10

−2

8 72/156 500 2.352× 10−2 4.728× 10−1
4.201× 10

−3
2.637× 10

−1

8.662× 10
−1 5.126× 10−1 1.111 3.723× 10

−1

1.978× 10−2 4.637× 10−1
1.454× 10

−3
1.880× 10

−1

10 110/275 750 2.694× 10−2 4.717× 10−1
1.776× 10

−3
1.917× 10

−1

3.491× 10
−2 4.765× 10−1 8.773 × 10−1

2.912× 10
−1

3.117× 10−2 3.420× 10−1
1.659× 10

−2
1.859× 10

−2

15 30/135 1000 3.544× 10−2 3.836× 10−1
2.434× 10

−2
3.829× 10

−1

9.343× 10
−1

4.363× 10
−1 1.193 4.581 × 10−1

C2-DTLZ2 3.134× 10
−3

2.688× 10
−2 5.880 × 10−2 6.442 × 10−2

Convex 3 47/91 250 5.857× 10
−3

2.944× 10
−2 6.335 × 10−2 7.072 × 10−2

8.554× 10
−3

3.320× 10
−2 6.561 × 10−2 8.137 × 10−2

6.842× 10
−3

5.508× 10
−2 1.496 × 10−1 1.081 × 10−1

5 97/210 750 1.189× 10
−2

5.924× 10
−2 1.553 × 10−1 1.112 × 10−1

1.615× 10
−2

6.120× 10
−2 1.596 × 10−1 1.130 × 10−1

1.838× 10
−2

1.336× 10
−1 2.022 × 10−1 1.806 × 10−1

8 64/156 1500 2.802× 10
−2

1.370× 10
−1 2.039 × 10−1 1.815 × 10−1

4.208× 10
−2

1.426× 10
−1 2.050 × 10−1 1.821 × 10−1

1.796× 10
−2

1.457× 10
−1 1.902 × 10−1 1.872 × 10−1

10 100/275 2500 2.793× 10
−2

1.479× 10
−1 1.911 × 10−1 1.877 × 10−1

6.489× 10
−2

1.613× 10
−1 1.914 × 10−1 1.880 × 10−1

1.784× 10
−2

4.318× 10
−2 1.650 × 10−1 1.231 × 10−1

15 120/135 3500 2.127× 10
−2

4.690× 10
−2 1.659 × 10−1 1.238 × 10−1

2.940× 10
−2

5.316× 10
−2 1.689 × 10−1 1.268 × 10−1

Infeasible

Pareto�front

�0

�0.2

�0.4

�0.6

�0.8

�1

�0 �0.2 �0.4 �0.6 �0.8 �1

Fig. 13. Two objective version of
C3-DTLZ1 problem.

Infeasible

Pareto�front

�0

�0.5

�1

�1.5

�2

�0 �0.5 �1 �1.5 �2

Fig. 14. Two objective version of
C3-DTLZ4 problem.

front for the C3-DTLZ4 problem.

For C3-DTLZ1 problem, Table VI shows that NSGA-

III outperforms C-MOEA/D mostly in the case of higher-

objective problems. Figures 15 and 16 show that both al-

gorithms are able to find a fairly uniformly distributed set of

points over the entire Pareto-optimal front for three-objective

C3-DTLZ1 problem. It is clear how the three constraints take

their share of the Pareto-optimal front in this problem. The

GD metric value for three to eight-objective C3-DTLZ1 prob-

lems is better for C-MOEA/D algorithm, whereas for higher

objective problems GD metric value is better for NSGA-III.

In the case of C3-DTLZ4, Figure 17 shows the distribution

of points found by NSGA-III for three-objective C3-DTLZ4

problem corresponding to the run having the median IGD

value. Clearly, NSGA-III is able to locate points on all three

quadratic constraint surfaces, thereby finding points on the

entire Pareto-optimal front. On the contrary, C-MOEA/D is

not able to find a single point on two of the three constraint

surfaces, as shown in Figure 18. Table VI shows that NSGA-III

has performed well on all objective versions of this problem

in terms of both IGD and GD metric values. C-MOEA/D,

like in C3-DTLZ1 problem, is able to solve three and five-

objective version for some runs, but it is not able to solve

higher-objective versions of the problem very well.

E. Discussion of the Results

Based on above results on three types of constrained many-

objective optimization problems, it can be concluded that

the proposed NSGA-III performs fairly well in all types of

problems considered in this study. It is also important to

note that the successful application of NSGA-III has come

without having to fix any additional parameter other than the

usual genetic parameters, such as population size, operator

probabilities, etc. A careful handling of infeasible and feasible

solutions through the constraint-domination principle and in

creating offspring population emphasize feasible and less-

violated infeasible solutions. NSGA-III’s non-dominated sort-

ing, updated normalization process of objectives, association

mechanism for linking a population member with a reference
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TABLE VI
BEST, MEDIAN AND WORST IGD AND GD METRIC VALUES OBTAINED FOR NSGA-III AND C-MOEA/D ON M -OBJECTIVE C3-DTLZ1 AND C3-DTLZ4

PROBLEMS. BEST PERFORMANCE IS SHOWN IN BOLD.

Problem M MaxGen NSGA-III C-MOEA/D
IGD GD IGD GD

C3-DTLZ1 5.221 × 10−3 5.437 × 10−3
1.461× 10

−3
1.461× 10

−3

3 750 9.120 × 10−3 1.328 × 10−2
4.323× 10

−3
3.894× 10

−3

2.058× 10
−2 3.028 × 10−1 3.284× 10−2

3.261× 10
−2

1.130 × 10−2 1.152 × 10−2
5.482× 10

−4
5.482× 10

−4

5 1250 1.964 × 10−2 2.312 × 10−2
1.115× 10

−2
7.222× 10

−3

4.745 × 10−2 5.318 × 10−2
1.713× 10

−2
9.499× 10

−3

1.243× 10
−2

1.243× 10
−2 5.878× 10−2 2.293× 10−2

8 2000 2.104× 10
−2

2.207× 10
−2 7.817× 10−2 4.224× 10−2

8.196× 10
−2 1.701 × 10−1 1.159× 10−1

5.394× 10
−2

8.450× 10
−3

8.941× 10
−3 6.053× 10−2 2.634× 10−2

10 3000 1.509× 10
−2

1.671× 10
−2 8.968× 10−2 3.797× 10−2

3.753× 10
−2

3.886× 10
−2 1.104× 10−1 5.321× 10−2

4.042× 10
−3

4.976× 10
−3 2.222× 10−1 1.836× 10−1

15 4000 1.064× 10
−2

1.206× 10
−2 3.769× 10−1 2.725× 10−1

2.055× 10
−1

2.069× 10
−1 4.091× 10−1 2.822× 10−1

C3-DTLZ4 1.862 × 10−2 1.987 × 10−2
5.372× 10

−3
5.372× 10

−3

3 750 2.456× 10
−2

2.930× 10
−2 4.948× 10−1 8.186× 10−2

5.586× 10
−1

9.158× 10
−2 8.320× 10−1 9.658× 10−2

3.247 × 10−2 3.461 × 10−2
6.610× 10

−3
6.610× 10

−3

5 1250 3.854× 10
−2

4.088× 10
−2 2.195× 10−1 9.141× 10−2

3.466× 10
−1

1.601× 10
−1 8.761× 10−1 2.607× 10−1

5.558× 10
−2

5.558× 10
−2 1.503× 10−1 1.103× 10−1

8 2000 2.646× 10
−1

2.075× 10
−1 8.171× 10−1 3.870× 10−1

8.886× 10
−1 4.976 × 10−1 1.322 4.675× 10

−1

4.247× 10
−2

4.386× 10
−2 6.414× 10−2 5.051× 10−2

10 3000 5.927× 10
−2

6.061× 10
−2 4.450× 10−1 2.940× 10−1

9.092× 10
−1

4.849× 10
−1 1.234 5.106× 10−1

1.134× 10
−1 1.172 × 10−1 1.126 3.225× 10

−2

15 4000 9.325× 10
−1 5.803 × 10−1 1.454 5.094× 10

−1

1.424 7.206× 10
−1 1.645 8.356× 10−1

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

f
3

Fig. 15. Obtained solutions using NSGA-III on three-objective C3-DTLZ1
problem.
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Fig. 16. Obtained solutions using C-MOEA/D approach on three-objective
C3-DTLZ1 problem.

point, and the niching operator to carefully choose members

from the last accepted non-dominated front are all able to

produce a correct signal for providing an adequate emphasis

for feasible and infeasible solutions in the population and help

in progressing towards the Pareto-optimal front on all three

types of constrained search regions. NSGA-III has repeatedly

shown its successful performance on three to 15-objective

versions of these challenging problems.

Based on the principles used for emphasizing feasible and

infeasible population members in constrained NSGA-III, we

have also suggested a constrained MOEA/D algorithm (C-

MOEA/D) that has also been found to perform well on most of

these test problems. However, in more challenging problems,

particularly having a large number of objectives (M > 5), it

has not been able to perform as well as NSGA-III. It is worth

noting here that C-MOEA/D requires four extra parameters to

be set properly in a problem. In this study, we have used

the values suggested in the original MOEA/D study [15],

but a parametric study is needed to determine if some other

values would allow the proposed C-MOEA/D to perform better
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Fig. 17. Obtained solutions using NSGA-III on three-objective C3-DTLZ4
problem.
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Fig. 18. Obtained solutions using C-MOEA/D approach on three-objective
C3-DTLZ4 problem.

on these challenging problems. For brevity, we belabor this

parametric study for C-MOEA/D and leave further study with

the C-MOEA/D approach and investigate how the proposed

NSGA-III algorithm will perform on some practical many-

objective optimization problems in the next section.

F. Engineering Constrained Optimization Problems

Having tested NSGA-III’s ability in solving various kinds of

constrained test problems, it is now applied to two engineering

design optimization problems. The first problem has three

objectives and ten constraints, while the second one has five

objectives and seven constraints.

1) Car Side Impact Problem: This problem aims at min-

imizing the weight of car and at the same time minimize

the pubic force experienced by a passenger and the average

velocity of the V-Pillar responsible for withstanding the impact

load. All the three objectives are conflicting, therefore, a

three-dimensional trade-off front is expected. There are ten

constraints involving limiting values of abdomen load, pubic

force, velocity of V-Pillar, rib deflection, etc. There are 11

design variables describing thickness of B-Pillars, floor, cross-

members, door beam, roof rail, etc. Mathematical formulation

for the problem is given in the Appendix.

For this problem, p = 16 is chosen so that there are

H =
(

3−1+16
16

)

or 153 reference points in total. The reference

points are initialized on the entire normalized hyper-plane on

the three-objective space. NSGA-III is applied with 156 popu-

lation members and run for 500 generations. Other parameters

are kept the same as before. Out of 153 reference points

95 unique solutions corresponding to 95 reference points are

found. These points are shown in Figure 19. No solution with

an association to other 58 reference points is found, meaning

that these reference points may not correspond to any feasible

trade-off points.

These results are next tested against a classical generative

method. For this purpose, 6,216 reference points are created

(by taking p = 110). Thereafter, the ideal and the nadir points

are estimated using the 95 solutions obtained by NSGA-III.

The ideal and the nadir points are then used to normalize

the objectives. Now, corresponding to each of 6,216 reference
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Fig. 19. 95 unique solutions are found on the entire front on the three-
objective car-side impact problem.

points, the PBI metric is minimized using Matlab’s fmincon

routine, which uses a classical single-objective constrained

optimization method. The resulting 6,216 points are then

collected and dominated points are removed. Remaining non-

dominated points are then shown in Figure 19 in small dots.

The figure clearly shows that all the points found by NSGA-

III are nicely distributed over the entire surface formed by the

classical generative procedure. To investigate the closeness of

NSGA-III points with that obtained by the classical generative

procedure, the convergence metric (average distance of NSGA-

III points from the closest fmincon optimized points) is com-

puted and the minimum, median and maximum convergence

metric values are found to be 9.80(10−4), 1.10(10−3), and

1.30(10−3), respectively. These values are small and they

clearly indicate that NSGA-III is able to converge close to the

true trade-off front of this problem. The spread of solutions is

demonstrated visually through Figure 19.

We have observed that in solving the constrained test prob-

lems of Type 2 (refer Table V), not all reference points resulted

in a feasible solution. We observed a similar phenomenon

occurring in a practical optimization problem in the original

study [1] as well. Applying an algorithm on carefully designed
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test problems help evaluate the algorithm’s performance on

challenging problems before they are applied to a practical

problem. Since NSGA-III performed fairly well on such test

problems, it is interesting to note that NSGA-III is able

to solve a practical problem exhibiting a similar challenge.

However, if many problems in practice have such a property,

some of NSGA-III’s effort would go waste in trying to find a

solution corresponding to a reference point that do not end up

creating any feasible solution. We address this issue later in

Section VII and suggest an adaptive NSGA-III algorithm for

automatically identifying such non-useful reference points.

2) Water Problem: This is a five objective problem taken

from literature [2], [25]. There are three design variables and

seven constraints. Mathematical formulation for the problem

is given in the appendix.

210 reference points are created using p = 6 and NSGA-III

algorithm (with N = 212) is ran for 1,000 generations for

this problem. To show a five-objective trade-off front, we first

identify the ideal and nadir points from a set of NSGA-III

points obtained with 20 different runs from different initial

populations. Then, the objective values are normalized and

presented on a value path plot in Figure 20. The figure shows

that NSGA-III is able to find 210 well-distributed set of trade-

off points.

1 2 3 4 5
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Fig. 20. A value path plot for the five-objective water problem shows that
NSGA-III is able to find a well-distributed set of trade-off solutions.

To investigate the near-optimality of constrained NSGA-III

solutions, we solve the same problem using Matlab’s fmincon

method in a generative manner for 4,845 reference points

one at a time. Of them, 4,503 obtained trade-off solutions

are found to be feasible. These fmincon solutions and the

constrained NSGA-III solutions are shown in the scatter matrix

plot in Figure 21. The lower left plots are shown for fmincon

results and the upper right plots are for constrained NSGA-III

solutions. For convenience of comparison of two similar plots,

the (i, j)-th (i > j) should be compared with (j, i)-th plot, for

which the axes are interchanged for an easier viewing. Notice

that the 210 solutions found by the constrained NSGA-III are

widely distributed on the entire Pareto-optimal front.

VI. CONSTRAINED NSGA-III WITH PREFERRED

REFERENCE POINTS

So far, we have demonstrated constrained NSGA-III’s abil-

ity to find a well-distributed set of points on the entire Pareto-

optimal front. For this purpose, we started with a set of refer-

ence points that are uniformly distributed on the normalized

hyper-plane using Das and Dennis’s structured approach [26].

However, in some practical scenario and for the purpose of

Fig. 21. A scatter plot showing constrained NSGA-III results (top-right
plots) vis-a-vis classical generative results obtained using fmincon (bottom-
left plots).

decision-making, only a few solutions (≈ 10 or so) may be

desired to be found on a preferred part of the Pareto-optimal

front. We demonstrate here the constrained NSGA-III’s ability

for such a purpose.

In the case of finding a preferred set, the user will supply a

set of preferred reference points (Hp) in the region of his/her

preference. In addition, we include M extreme reference

points (1, 0, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T and so on, to make

the normalization process to work well and make a total of

|Hp|+M reference points (set H). These extreme points are

needed to ensure the ideal and nadir points of the population

members are properly calculated for the normalization pur-

pose in the NSGA-III algorithm. We then run the NSGA-III

algorithm as it is.

First, we solve the constrained type 1 DTLZ1 problem (C1-

DTLZ1) introduced in this paper. Recall that this problem

introduces difficulty for an algorithm to approach the Pareto-

optimal front, as only the region close to the Pareto-optimal

front is feasible. Only five reference points (Hp) are chosen

in the middle of the normalized hyper-plane, as shown in

Figure 22. Three more extreme points are added to make a total

of eight reference points (set H). The figure shows a typical

outcome of the NSGA-III procedure run with 48 population

members for 750 generations and using the reference set H .

After eight solutions are obtained, only the ones corresponding

to the supplied preferred reference points (Hp) are reported.

However, if the user would like to know the extreme Pareto-

optimal points, they can also be reported, as these solutions

already exist in the final population.

Since C1-DTLZ1 problem is scalable in terms of number

of objectives, next we try a 10-objective version of C1-

DTLZ1 problem. In this case, only 10 preferred reference

points are randomly generated in the intermediate portion

(fi ∈ [0.4, 0.6]). 10 extreme points are added to the set in

creating the reference point set H and constrained NSGA-III

procedure is applied with a population size 100 and run for
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Fig. 22. A preferred set of reference points find corresponding Pareto-optimal
solutions for C1-DTLZ1 problem.

TABLE VII
BEST, MEDIAN AND WORST IGD VALUES FOR C1-DTLZ1 PROBLEM

WITH RANDOMLY SUPPLIED REFERENCE POINTS.

Problem M N MaxGen NSGA-III

C1-DTLZ1 3.100× 10−3

3 48 750 1.420× 10−2

8.69× 10−1

8.100× 10−3

10 100 1500 2.390× 10−2

4.762× 10−1

1,500 generations. Table VII shows the IGD values obtained

using the expected Pareto-optimal points from the reference

points and the NSGA-III obtained points. Small IGD values

indicate that near-Pareto-optimal points are obtained in the

case of 10-objective problem.

Next, we apply the preference-based NSGA-III procedure

to the car side impact problem discussed in Subsection V-F1.

In this case as well, we specify five reference points at the

intermediate portion of the normalized hyper-plane (fi ∈
[0.4, 0.6]). The constrained NSGA-III procedure is run with

28 population members for 500 generations and with a total

of (5+3) or 8 reference points. Figure 23 shows the obtained

solutions on the trade-off front obtained using Matlab’s fmin-

con procedure (discussed earlier). It can be seen that obtained

solutions lie on the trade-off frontier.

VII. A-NSGA-III: AN ADAPTIVE APPROACH TO

NSGA-III

NSGA-III requires a set of reference points to be supplied

before the algorithm can be applied. We have suggested the

following in the original NSGA-III study. If the user has no

particular preference on a particular part of the Pareto-optimal

front, a structured set of points can be created by using Das

and Dennis’s approach [26] on a normalized hyper-plane — a

hyper-plane that is equally inclined to all objective axes and

intersects each axis at one. For a three-objective problem, this

means that the supplied reference points are spread uniformly

over the triangle with its apexes at (1, 0, 0)T , (0, 1, 0)T and

(0, 0, 1)T . A reference line for each reference point can be

defined as a line joining the origin and the reference point.
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Fig. 23. Five preferred set of reference points find five corresponding trade-
off solutions for the car side impact problem. Points shown with dots are
obtained earlier using classical fmincon method.

NSGA-III is designed to find Pareto-optimal points that are

closer to each of these reference points in the sense that their

perpendicular distance from the extended reference line is

minimum. Now, in many constrained or even unconstrained

problems, not every extended reference line may intersect with

the Pareto-optimal front. Thus, there will be some reference

points with no Pareto-optimal point associated with them

while others will have more than one point associated with

them, and hence NSGA-III may not end up distributing all

population members uniformly over the entire Pareto-optimal

front. We have witnessed this in certain problems in the

original study [1] while solving the practical problems and

also in Section V-F of this study.

To illustrate further, let us consider the three-objective

inverted DTLZ1 problem (which we describe later in Subsec-

tion VIII-A) shown in Figure 24. The corresponding Pareto-

Fig. 24. Only 28 out of 91 reference points find a Pareto-optimal solution.

optimal front is shown as a shaded triangle. If we use a set

of structured reference points (shown with open circles), they

will lie uniformly on the normalized triangle (hyper-plane). It

is clear that the reference lines originating from many of these

reference points do not intersect with the Pareto-optimal front.
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When optimized, these reference points will end up associated

with no Pareto-optimal point. We call these reference points

as ‘useless’ reference points and those that will generate a

Pareto-optimal points are called ‘useful’ reference points, for

our discussions here. To discuss further, we use 91 reference

points (with p = 12) as shown in the Figure 24, and run

the original NSGA-III procedure [1] with a population size

of 92 to find the Pareto-optimal points. As shown in the

figure, 28 Pareto-optimal points (shown in big solid circles)

are found from 28 different useful reference points, but the

remaining 63 reference points could not associate a Pareto-

optimal solution. The solutions marked in small open circles

are duplicate solutions to the 28 useful reference points. Since

location of these solutions are not used in any significant way

in the algorithm, their distribution is somewhat random. The

presence of these random points makes the distribution of the

final population non-uniform, but importantly it causes a waste

in computational efforts in processing these solutions.

One possible remedy to this problem is to increase the

number of supplied reference points (H) by increasing p, so

that relatively more points can now appear on the Pareto-

optimal front, but this is particularly not a viable suggestion,

as this will require a larger population size yielding more

computational efforts and still there will be several population

members which are just randomly distributed over Pareto-

optimal front. Ideally, it would be good to allocate all reference

points in a such a manner so as to generate a uniformly

distributed set of Pareto-optimal points, but the knowledge of

which reference points will create Pareto-optimal solutions in

an arbitrary problem is not known a priori. To alleviate the

difficulty, we suggest here an adaptive NSGA-III procedure to

adaptively identify non-useful reference points and re-allocate

them in the hope of creating a Pareto-optimal solution for each

of them at the end. There are two modifications made on the

NSGA-III procedure after the new population Pt+1 of size N
is created:

1) Addition of new reference points, and

2) Deletion of existing reference points.

We describe the criterion and modus operandi of each of these

two operations in the following subsections.

A. Addition of Reference Points

Note that after the niching operation, Pt+1 population is

created and the niche count ρj (the number of population

members that are associated with j-th reference point) for

each reference point is updated. Recall that the population

size (N ) is kept more or less equal to the number of chosen

reference points (H). Thus, it is expected that if all reference

points are useful in finding a non-dominated point, ρj = 1
for all reference points. But if ρj ≥ 2 is observed for any

(j-th) reference point (considered crowded), this has probably

happened at the expense of some other reference point (say k-

th one) for which ρk = 0. If k-th reference point is supposed to

be a useful one, the NSGA-III procedure will eventually find

an associated population member for it. But if k-th reference

point is useless, then NSGA-III will never find an associated

population member. It is then better to replace the k reference

point with a new reference point close to the crowded j-th

reference point. However, we do not have a priori knowledge

about the eventual usefulness of the k-th reference point. In

this case, we simply add a set of reference points centering

around the crowded j-th reference point. The procedure is

described in Figure 25.

Fig. 25. Addition of reference points.

We simply introduce a simplex of M points (obtained using
(

M+p−1
p

)

with p = 1) having a distance between them same

as the distance between two consecutive reference points on

the original simplex. For example, for M = 3 objectives, three

new points will be added around the j-th reference point, as

shown in the figure. If there are more than one reference points

for which ρj ≥ 2, the above inclusion step is executed for

each of these reference points. Before a new reference point is

accepted, two checks are made: (i) if it does not lie on the first

quadrant, it is not accepted, and (ii) if it already exists in the

set of reference points, it is not accepted. The j-th reference

point is not allowed to have another inclusion operation until

all original reference points have a chance to be operated for

inclusion as above.

As it may have become clear from above discussion that

in many cases it might happen that too many reference points

are added and many of them eventually become non-useful,

that is no population member is associated with them. Also

if too many reference points exist, they will slow down

the algorithm. Thus, we consider the possibility of deleting

non-useful reference points, as described in the following

subsection.

B. Deletion of Reference Points

After the inclusion operation is performed, the niche count

of all reference points are updated. Note that
∑|H|

j=1 ρj = N .

Now, if there exists exactly N reference points having ρj = 1,

that is, we have a scenario in which N of the reference points

have one associated member from Pt+1, we have a perfect sce-

nario in which points are well-distributed among the reference

points. We then arrange to delete all included reference points

(excluding the original reference points) having ρj = 0. Thus,

the original reference points are always kept (even if their
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niche count is zero) and all those included reference points

that have an niche count exactly one.

The inclusion and deletion operations adaptively relocate

reference points based on the niche count values of the respec-

tive reference points. We now show the results of this adaptive

NSGA-III algorithm to a number of challenging problems

including a couple of practical optimization problems.

VIII. RESULTS WITH A-NSGA-III

First, we consider two test problems – the first problem

is an unconstrained inverted DTLZ1 problem and the second

problem is a constrained type 2 problem. For both problems,

three and five-objective versions are tried and the hyper-

volume indicator is used as a performance measure.

A. Inverted DTLZ1 Problem

The DTLZ1 problem is modified so that the corresponding

Pareto-optimal front is inverted. The problem is such that

minimum of each objective function has a unique solution.

It is called an inverted function because it is in disagreement

with our defined hyper-plane for which the maximum (and

not minimum) point of each objective among all points on

the hyper-plane is a unique point. One feature of this problem

is that many reference points on created on the normalized

hyper-plane will not have an associated Pareto-optimal point.

Therefore, the use of A-NSGA-III may turn out to be an useful

algorithm.

The objective functions are calculated using the original

formulation of DTLZ1 problem, however after calculating

the objective function values, the following transformation is

made:

fi(x) ← 0.5(1 + g(x))− fi(x), (9)

where g(x) was defined in DTLZ1 formulation [24].

Three and five-objective versions of this problem are solved

using A-NSGA-III. To show the usefulness of the adaptive

method, if any, we also compare it with the original NSGA-

III procedure, where no update of reference points is made.

In case of three-objective inverted DTLZ1 problem, NSGA-

III is able to find only 28 well-distributed points (as shown in

Figure 26). Here, for visual clarity, only the closest population

member for each useful reference point (having ρ > 0) is

shown, while rest members which are just randomly dis-

tributed are not shown. Although 91 reference points were

supplied, only 28 of them could find a representative Pareto-

optimal point and hence out of 92 population members only

28 are well distributed. Figure 27 shows the distribution of

solutions with A-NSGA-III. 81 well-distributed points are now

found. This is a remarkable performance of our proposed

adaptive procedure.

Next, we show the results on five-objective inverted DTLZ1

problem using the hyper-volume metric. Table VIII shows the

best, median and worst hyper-volume values obtained in 20

runs for both the algorithms. Clearly, the use of the adaptive

approach is able to find an increased hyper-volume value in

both three and five-objective cases. Both NSGA-III and A-

NSGA-III approaches use an identical number of population

TABLE VIII
BEST, MEDIAN AND WORST HYPER-VOLUME VALUE OBTAINED FOR

NSGA-III AND A-NSGA-III ON M -OBJECTIVE INVERTED DTLZ1 AND

C2-DTLZ2 PROBLEMS. BEST PERFORMANCE IS SHOWN IN BOLD.

M MaxGen NSGA-III A-NSGA-III

Inverted DTLZ1 Problem

9.845× 10−2
1.010× 10

−1

3 400 9.722× 10−2
9.907× 10

−2

9.598× 10−2
9.852× 10

−2

3.011× 10−2
3.144× 10

−2

5 600 2.950× 10−2
3.014× 10

−2

2.861× 10−2
2.975× 10

−2

Constrained DTLZ2 Problem

4.374× 10−1
4.533× 10

−1

3 250 4.347× 10−1
4.464× 10

−1

4.324× 10−1
4.438× 10

−1

4.838× 10−2
5.839× 10

−2

5 350 4.716× 10−2
5.697× 10

−2

4.475× 10−2
4.983× 10

−2

members for computing the hyper-volume metric. In the case

of NSGA-III, some reference points may have more than one

associated population members. Since only the one closest to

each reference point is used for the niching purpose, other

associated population members may not be well-distributed on

their own. On the other hand, A-NSGA-III reallocates non-

useful reference points in a structured manner so that each

reference point can find an associated population member for

obtaining a better diversity of points. Thus, the hyper-volume

metric value is better for A-NSGA-III.

B. Type-2 constrained DTLZ2 Problem (C2-DTLZ2)

As mentioned in Section V-C, in C2-DTLZ2 problem, the

Pareto-optimal front is disconnected, that is, there are natural

gaps in Pareto-optimal front. Thus, there may exist some

original reference points with no associated Pareto-optimal

point. In such a case, not all points obtained by NSGA-III will

be well-spread, however as discussed above, with the adaptive

approach a better distribution of points can be achieved.

A set of 91 reference points are supplied initially. Figure 29

clearly shows that on three-objective C2-DTLZ2 problem, A-

NSGA-III finds 91 well-distributed set of points on the feasible

part of the Pareto-optimal front, whereas the constrained

NSGA-III finds only 58 such points (Figure 28). The superior

performance of A-NSGA-III is also clear from the larger

hyper-volume value depicted in Table VIII for three and five-

objective inverted DTLZ1 and constrained DTLZ2 problems.

C. Two Problems from Practice

Having shown the improved performance of A-NSGA-III

on two three and five-objective test problems, we now test the

method to a couple of practical optimization problems.

1) Crash-worthiness in Design of Vehicles: This is a three-

objective unconstrained problem considered in [1]. NSGA-

III results are re-plotted here for convenience in Figure 30.

Although 91 reference points were chosen, only 40 of them

are able to find associated trade-off solutions. We now apply

A-NSGA-III with an identical parameter setting. As shown in

Figure 31, 83 unique solutions are now found. A comparison
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Fig. 26. Obtained solutions using NSGA-III on three-objective inverted
DTLZ1 problem (only the closest solution for every useful reference point
is shown).
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Fig. 27. Obtained solutions using adaptive reference points based NSGA-
III approach on three-objective inverted DTLZ1 problem (only the closest
solution for every useful reference point is shown).
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Fig. 28. Obtained solutions using NSGA-III on three-objective C2-DTLZ2
problem (only the closest representative feasible point for each reference
point is shown).
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Fig. 29. Obtained solutions using A-NSGA-III approach on three-objective
C2-DTLZ2 problem (only the closest representative feasible point for each
reference point is shown).

of the two figures reveal that the points found by A-NSGA-III

are more dense and describes the nature of the trade-off front

more clearly than that with NSGA-III mainly due to former’s

ability to re-allocate reference points more uniformly on the

fly. It is worth mentioning that A-NSGA-III does not require

any additional parameter than what are needed in NSGA-

III. A-NSGA-III adaptively re-allocates the supplied reference

points so that more feasible trade-off points can be discovered.

2) Car-side Impact Problem: This is a constrained opti-

mization problem and was discussed in Section V-F. The trade-

off front obtained earlier had a different shape than the chosen

normalized reference plane on which the reference points are

supplied. The obtained front is reproduced here in Figure 32.

95 of 156 reference points could find a feasible trade-off

solution using NSGA-III.

Identical parameter values are used with A-NSGA-III and

obtained trade-off front is shown in Figure 33. Now, all 156

reference points find an associated trade-off point. A compari-

son of the two figures reveals that A-NSGA-III points are more

dense and provide a better picture of the trade-off front than

that obtained using NSGA-III. Importantly, all 156 reference

points were considered in NSGA-III in all generations and the

procedure has resulted in only 95 feasible and well-distributed

trade-off points, whereas by processing 156 reference points,

A-NSGA-III is able to find 156 different and well-distributed

set of trade-off points. These results amply show the usefulness

of A-NSGA-III approach for solving practical many-objective

optimization problems.

Above results on the test problems and two practical

problems clearly show the efficacy of the adaptive NSGA-

III approach. With an increase in number of objectives, real-

world problems are likely to possess complicated fronts, as

it is evident from several practical test problems used in the

original study [1] and in this study. Thus, in such cases and

in cases where no information about the shape, orientation,

discontinuity, convexity etc. of the Pareto-optimal front is

known beforehand, the A-NSGA-III approach may be found

to be useful.

IX. CONCLUSIONS

In this paper, we have extended the recently proposed

NSGA-III approach for solving many-objective optimization
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Fig. 30. Obtained solutions using NSGA-III on the three-objective crash-
worthiness problem.
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Fig. 31. Obtained solutions using A-NSGA-III approach on the three-
objective crash-worthiness problem.
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Fig. 32. Obtained solutions using NSGA-III on three-objective car-side
impact problem.
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Fig. 33. Obtained solutions using adaptive reference points based NSGA-
III approach on three-objective car-side impact problem.

problems with box constraints to generic many-objective

constrained optimization problems. The constraint-domination

principle, instead of the usual domination principle, has been

suggested for classifying population members into different

non-dominated fronts. Furthermore, a modified tournament

selection operator has been applied along with recombination

and mutation operators for generating the offspring population.

The constrained algorithm is such that when there is no

constraint in a problem or when all population members are

feasible in a particular generation, the approach is identical

to the original NSGA-III approach developed for solving

box-constrained problems in [1]. Like the original NSGA-

III approach, the proposed constrained NSGA-III algorithm

does not require any additional parameter. This remains as a

hallmark property of the proposed algorithm.

Additionally, this study has suggested an efficient extension

of MOEA/D algorithm for handling constraints. Although

our proposed constraint handling part of the algorithm does

not require any parameter, C-MOEA/D’s other operations

require four parameters. To evaluate both constraint handling

algorithms, this paper has also suggested three types of test

problems providing three different kinds of challenges to any

many-objective constraint handling algorithm. Both algorithms

have shown their ability to solve most of the test problems

involving three to 15 objectives, but the proposed C-MOEA/D

algorithm has shown its weakness in solving problems having

a large number of objectives. A parametric study is then

needed to improve its performance. However, on most prob-

lems the proposed constrained NSGA-III has been able to

converge and find a well-distributed set of points up to 15-

objective problems.

As a by-product of the development of the above two

algorithms, this paper has also suggested three different types

of scalable constrained test problems for many-objective opti-

mization. Hopefully, these test problems and their subsequent

modifications will offer adequate challenges to many-objective

EMO algorithms in the years to come.

Based on the success of NSGA-III on test problems, it is

then applied to two engineering design problems involving

three and five objectives. In both cases, NSGA-III is able

to find a well-distributed set of trade-off solutions. The con-

strained NSGA-III algorithm has also been shown to perform

satisfactorily on problems where a few preferred reference

points are supplied, thereby suggesting the practical usefulness

of the constrained NSGA-III algorithm.

It has been observed that reference point or reference
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direction based approaches may, in some problems, fail to find

a unique associated Pareto-optimal solution for each supplied

reference points, particularly if theoretically there does not

exist such a Pareto-optimal point for a reference point. This

feature has been found to be commonly present in real-

world many-objective constrained problems. We have then

suggested an adaptive NSGA-III approach which adaptively

adds and deletes reference points depending on the crowding

of population members on different parts of the current non-

dominated front. The approach has been tested on two different

types of problems having three and five objectives. In all prob-

lems, the proposed A-NSGA-III has been found to discover

more and well-distributed points on the Pareto-optimal fronts.

An application of A-NSGA-III to two engineering design

problems have also shown the usefulness of the proposed

adaptive approach.

With the two-part study ([1] and this paper) presenting

the development and application of an evolutionary many-

objective optimization algorithm based on the framework of

NSGA-II, we believe that we have addressed a long-awaited

issue in the area of evolutionary multi-objective optimization

(EMO). Testing on a number of unconstrained problems

having box constraints alone in [1] and on generic constrained

problems in this study amply suggest that evolutionary meth-

ods can be useful as well to solve many-objective optimiza-

tion problems (shown up to 15 objectives in both studies).

Although further improvements are possible, the proposed

adaptive NSGA-III approach should also remain as a useful

algorithm for adaptively relocating reference points in the

relevant part of the Pareto-optimal front. Importantly, these

two extensive studies have paved directions for future research

and should motivate EMO researchers to develop further and

better algorithms for many-objective optimization in the near

future.

ACKNOWLEDGMENT

The authors acknowledges the support provided by Michi-

gan State University, East Lansing, USA for their visit during

which this work was initiated.

REFERENCES

[1] K. Deb and H. Jain, “An improved NSGA-II procedure for many-
objective optimization Part I: Problems with box constraints,” Indian
Institute of Technology Kanpur, Tech. Rep. 2012009, 2012.

[2] K. Deb, Multi-objective optimization using evolutionary algorithms.
Chichester, UK: Wiley, 2001.

[3] C. A. C. Coello, D. A. VanVeldhuizen, and G. Lamont, Evolutionary

Algorithms for Solving Multi-Objective Problems. Boston, MA: Kluwer,
2002.

[4] K. C. Tan, E. F. Khor, and T. H. Lee, Multiobjective Evolutionary

Algorithms and Applications. London, UK: Springer-Verlag, 2005.
[5] K. Deb and D. Saxena, “Searching for Pareto-optimal solutions through

dimensionality reduction for certain large-dimensional multi-objective
optimization problems,” in Proceedings of the World Congress on

Computational Intelligence (WCCI-2006), 2006, pp. 3352–3360.
[6] E. J. Hughes, “Evolutionary many-objective optimisation: Many once

or one many?” in IEEE Congress on Evolutionary Computation (CEC-

2005), 2005, pp. 222–227.
[7] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm

based on decomposition,” Evolutionary Computation, IEEE Transactions

on, vol. 11, no. 6, pp. 712–731, 2007.

[8] D. K. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. Zhang, “Ob-
jective reduction in many-objective optimization: Linear and nonlinear
algorithms,” IEEE Transactions on Evolutionary Computation, in press.

[9] D. Hadka and P. Reed, “Borg: An auto-adaptive many-objective evolu-
tionary computing framework,” Evolutionary Computation, p. in press,
2011.
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APPENDIX

CAR-SIDE IMPACT PROBLEM FORMULATION

Mathematical formulation of the three-objective problem is
given below. All objectives are to be minimized.

f1(x) =1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5

+ 0.00001x6 + 2.73x7,

f2(x) =F

f3(x) =0.5(VMBP + VFD)

g1(x) =1.16− 0.3717x2x4 − 0.0092928x3 ≤ 1

g2(x) =0.261− 0.0159x1x2 − 0.06486x1 − 0.019x2x7 + 0.0144x3x5

+ 0.0154464x6 ≤ 0.32

g3(x) =0.214 + 0.00817x5 − 0.045195x1 − 0.0135168x1

+ 0.03099x2x6 − 0.018x2x7 + 0.007176x3

+ 0.023232x3 − 0.00364x5x6 − 0.018x2

2 ≤ 0.32

g4(x) =0.74− 0.61x2 − 0.031296x3 − 0.031872x7 + 0.227x2

2 ≤ 0.32

g5(x) =28.98 + 3.818x3 − 4.2x1x2 + 1.27296x6 − 2.68065x7 ≤ 32

g6(x) =33.86 + 2.95x3 − 5.057x1x2 − 3.795x2 − 3.4431x7

+ 1.45728 ≤ 32

g7(x) =46.36− 9.9x2 − 4.4505x1 ≤ 32

g8(x) ≡F = 4.72 − 0.5x4 − 0.19x2x3 ≤ 4

g9(x) ≡VMBP = 10.58− 0.674x1x2 − 0.67275x2 ≤ 9.9

g10(x) ≡VFD = 16.45 − 0.489x3x7 − 0.843x5x6 ≤ 15.7

Variable bounds are given given as follows:

0.5 ≤ x1 ≤ 1.5, 0.45 ≤ x2 ≤ 1.35, 0.5 ≤ x3 ≤ 1.5,
0.5 ≤ x4 ≤ 1.5, 0.875 ≤ x5 ≤ 2.625, 0.4 ≤ x6 ≤ 1.2,
0.4 ≤ x7 ≤ 1.2

WATER PROBLEM FORMULATION

Mathematical formulation of the five-objective problem is
given below. All objectives are to be minimized.

f1(x) =106780.37(x2 + x3) + 61704.67

f2(x) =3000.0x1

f3(x) =30570 ∗ 0.02289.0x2/(0.06 ∗ 2289.0)0.65

f4(x) =250.0 ∗ 2289.0exp(−39.75x2 + 9.9x3 + 2.74)

f5(x) =25.0((1.39/(x1x2)) + 4940.0x3 − 80.0)

g1(x) =0.00139/(x1x2) + 4.94x3 − 0.08 ≤ 1

g2(x) =0.000306/(x1x2) + 1.082x3 − 0.0986 ≤ 1

g3(x) =12.307/(x1x2) + 49408.24x3 + 4051.02 ≤ 50000

g4(x) =2.098/(x1x2) + 8046.33x3 − 696.71 ≤ 16000

g5(x) =2.138/(x1x2) + 7883.39x3 − 705.04 ≤ 10000

g6(x) =0.417(x1x2) + 1721.26x3 − 136.54 ≤ 2000

g7(x) =0.164/(x1x2) + 631.13x3 − 54.48 ≤ 550

0.01 ≤x1 ≤ 0.45

0.01 ≤x2, x3 ≤ 0.10.
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