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ABSTRACT

The literature on strategic groups has identified mobility barriers as the key to
understanding strategic group phenomena. We develop a genetic algorithm-based model to
examine conditions under which strategic groups emerge and stabilize over time. We find
that mobility barriers, indeed, play an important role in isolating a high performing group of
firms from the rest. Mobility barriers could be considered weapons for incumbents to
safeguard their market territory against potential competitors, but these barriers say nothing
about how firms survive against hostile environmental conditions such as fluctuations of
demand. rapid technological changes. or the rapid saturation of the product market. Our
model suggests that two extra mechanisms, intertemporal stability of payoffs and localization
of competition, are as important as mobility barriers in understanding the emergence and

stability of strategic groups.
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INTRODUCTION

Since Hunt (1972) first coined the term, strategic groups. to point to the existence of
heterogeneous activities within an industry, strategic group phenomena have garnered a great
deal of attention in the strategy field. Fueled by Caves and Porter’s (1977) seminal
theoretical paper on mobility barriers, an empirical research program has emerged to explore
the nature and existence of strategic groups in numerous industries.

Cursory observations of some industries appear to readily confirm the intuition
about the strategic group phenomena. For example, in the U.S. pharmaceutical industry, a
group of innovating firms have sought to survive by committing to R&D activities and
selling novel drugs with above-normal prices, while a group of generic drug makers have
produced imitative drugs with virtually no R&D and sold them at competitive prices. After
World War II, this divergent structure was first observed (Comanor, 1963; Lee, 1998; Temin,
1980), and it has been maintained for almost half a century. Particularly striking in this
industry are the longevity of top pharma giants and their high profitability in spite of the
presence of pounding adversity in carrying out drug innovation (Kurdas, 1998).

Despite the concept’s intuitive appeal, empirical studies have reported mixed
findings and have encountered complexity in demonstrating the existence of stable
intraindustry structure (Cool and Schendel, 1987), leaving room for critics to suggest an
abandonment of the whole research program (Barney and Hoskisson, 1990). In an attempt to
revitalize this stream of research, we offer an evolutionary perspective on strategic group
behavior. Unlike a common approach, which has emphasized static aspects of a group

structure, we focus on a competitive process that generates strategic groups by employing
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genetic algorithms (GAs, hereafter).

Most of conceptual work on strategic groups has been developed by intuition
obtained from empirical observations in complex settings. Even mobility barrier (Caves and
Porter, 1977), the most frequently cited concept, was not presented in an analytically
rigorous manner. Indeed, it is very difficult, if not impossible, to develop a mathematical
structure to study the strategic group phenomena, primarily because the complexity of
strategic groups defies an employment of popular analytical tools in economics. To date, a
few formal models exist to cast light on dynamics of strategic group behavior. The
framework we consider in this paper permits us to fill a gap between conceptual theorizing
and empirical modeling. With their reasonable costs and flexibility of modeling, the GA-
based tools have the potential to sharpen insight into riddles of the strategic group
phenomena.

To address how strategic groups emerge over time, we characterize an industry
landscape by constructing a double-peaked payoff structure with asymmetric realized payoffs
as shown in Figure 1. The horizontal axis represents the space for strategy, and the vertical
axis represents the payoff for a corresponding strategy. The objective of a model firm is to
search for an optimal payoff location without the knowledge of the landscape attributes ex
ante. To make firms’ search process harsher in the region around the higher peak, we
characterize payoffs in this region to be stochastic as shown in Figure 2. The figure
illustrates that firms adopting strategies around the lower peak enjoy deterministic realized
payoffs, while firms adopting strategies around the higher peak realize either positive or zero

payoffs depending on the result of the random draw. Intuitively, this payoff structure says



that an activity associated with a lower peak is rewarded with certainty, whereas a higher
performing action is rewarded with a high level of uncertainty. We impose all our model
firms to start from activities around a lower peak, and then allow some firms to reshuffle
their strategies to move beyond some neighborhood of this lower peak. Competition among
model firms winnows on firms with inferior performance, and at the same time, both random
shifts in strategy and imitation of better performer’s strategy guide market evolution toward
better and better payoff activities. The emergence of strategic groups is detected when a
portion of firms successfully move to the higher peak location at the end of simulation.
Insert Figures 1 and 2 About Here

What mechanisms make this transition successful? If such a transition happens to be
successful, why would firms in the lower peak not follow the firms in the higher peak? In
line with Caves and Porter (1977), the results of our simulation show that mobility barriers
associated with the higher-payoff activities tend to isolate high-performing firms from the
rest of the population. This is no surprise.

But this mechanism says nothing about how this high-performing group arises and
continues to survive in such a harsh condition. Mobility barriers may well be weapons for
incumbents to safeguard their market territory against potential competitors, but not against
hostile environmental conditions such as fluctuations of demand, rapid technological
changes, or the rapid saturation of the product market (Teece, Pisano and Sheun, 1997). We
find that high instability of payoffs associated with these sorts of environmental change is
likely to hinder the maintenance of a group structure. The simulation illustrates and

emphasizes that strategic group emergence hinges upon some sorts of intertemporal stability



in payoffs.

Furthermore, in the current literature of strategic group, there has been no explicit
consideration of how localization of selection pressures has effect on strategic group
behavior, even though the concept of localized competition has been well incorporated in
explaining organizational survival in ecological studies (Baum and Mezias, 1992; Baum
and Singh, 1994a). By modeling this effect explicitly, we can avoid erroneously attributing
this to the effect of mobility barriers. We find that unbridled competition among model
firms over the entire strategy space is likely to hinder strategic group emergence, forcing
the system to converge upon one of the two peaks. In our model, this convergence can be
obtained when all firms are allowed to compete with one another and when competition
winnows on the 10% of lowest performers every period. On the other hand, when we
Impose some restraint on competition such that only firms with similar strategic activities
compete with each other, the industry evolution is more likely to show stable
subpopulations around two local peaks. This means that strategic groups are more likely to
emerge when selection pressures are more localized. In sum, our results suggest that
intertemporal stability of payoffs and localized competition are as important as mobility
barriers in understanding the emergence and stability of strategic groups.

This paper is organized as follows. In section 2, we characterize the strategic group
phenomena. In section 3, we introduce genetic algorithms. Section 4 develops a dynamic
model for strategic group emergence. Section 5 presents simulation results. Finally we

discuss the implications of our findings about strategic group phenomena.



2. STRATEGIC GROUP PHENOMENA
2.1. Complexity of Strategic Group Research

For the past several decades, strategic group research has tried to address three
main issues: (1) strategic group emergence, (2) performance ditference between groups,
and (3) stability of a group structure. The first issue, the process that generates strategic
groups, has received relatively sparse attention in the field. Among the few studies on this
issue, Caves and Porter’s work (1977) is, perhaps, the first one to explain strategic group
formation. They argued that initial random differences in firm preferences or the qualities
of assets can lead firms to adopt differing strategies and to invest differently in mobility
barriers. Later, Porter (1979) added exogenous causes such as technological changes as
drivers of strategic group formation. [n addition, empirical studies attributed the formation
of a new strategic group to changes in competitive environments such as economic growth
or decline (Mascarenhas, 1989). decline of demand growth (Olusoga, Mowka and Noble,
1995), changes in government regulation (Cool and Schendel, 1987; Galbraith, Merrill and
Morgan, 1994), etc. However, these efforts have not resulted in formulation of a systematic
theory about strategic group emergence.

Research on the other two main issues has been more active, drawing a great deal of
attention from empiricists. In this stream of research, mobility barriers have been considered
the key to sustain between-group performance difference as well as to stabilize a group
structure. Yet, results of numerous empirical investigations on performance difference appear
to be inconclusive and often conflicting (Cool and Schendel, 1987). For example, Dess and

Davis (1984), Fiegenbaum and Thomas (1990), Mascarenhas and Aaker (1989), and McGee



and Thomas (1986) found significant performance difference among strategic groups, while
others did not (e.g., Cool and Schendel, 1987, Howell and Frazier, 1983; Lewis and Thomas,
1990).

Furthermore, there has been no agreement on what the stability of a group structure
implies. For example, Amel and Rhoades (1988), and Wiggins and Ruefli (1995) argued that
the stability of group structure could confirm the existence of strategic groups, while Cool
and Schendel (1987), Mascarenhas (1989), McGee, Thomas and Pruett (1995) challenged
this view by pinpointing a complex possibility that changes in a group structure could
happen with environmental changes or firm initiatives.

Despite the accumulation of numerous empirical studies and conceptual work,
success of this research program appears to be mixed at best in answering the question of the
genesis and existence of strategic groups (Hatten and Hatten, 1987). Piling-up of empirical
studies has been adding more complexity to the issue than clarifying it, primarily because
empiricists are severely limited in their ability to control unwanted external variances. This
has led extreme critics to even propose an abandonment of the entire stream of strategic
group research (Barney and Hoskisson, 1990). Nevertheless, one thing that both proponents
and skeptics agree to is that the field needs a solid theory, which can cast light on the issue in
a dynamic setting. Apparently, any of these limitations would be sufficient grounds to push
research in different directions.

2.2. The Evolutionary Framework
We offer an evolutionary framework as a new way of thinking about the strategic

group phenomena. Within this framework, it is rather obvious to answer the question about



what is strategic about strategic group. Here, strategy is meant to be a solution (or an activity
vector in the multidimensional activity space or a gene composition in the genotype space) to
a survival problem, and strategic groups, or stable subpopulations, should be associated with
multiple strategic choices amenable to survival. The main emphasis in this framework is not
on whether multiple subpopulations exist in all industries in a static sense, but on what
mechanisms give rise to the emergence of these subpopulations in dynamic settings. We now
consider four relevant features for strategic group emergence. They are multipeaked payoff
function, mobility barriers, intertemporal stability of payoff, and localized competition.
Multipeaked Payoff Function

Existence of strategic groups implies that more than one strategic choice can be
viable in an industry and that some choice could be better than others. In a modeling term,
this is equivalent to a multipeaked payoff function where there are more than a single local
peak. This is in a direct contrast with the neoclassical competitive market, where the one best
solution exists and where the assumption of global quasi-concavity guarantees that firms
won’t be trapped on an inferior local peak. When this assumption characterizes a payoff
function or landscape, it is meaningless to talk about strategic groups. It is not surprising
why neoclassical economists have not worried about intraindustry heterogeneity.
Mobility Barriers

Given a multipeaked payoff function, a fundamental problem naturally arises in a
study of strategic group emergence: if some firms happen to find a better payoff location,
why would others in lower payoff location not follow these first movers? Obviously, if the

entire population eventually makes a transition to a better payoff location, it would be



meaningless to talk about strategic groups. The relevant issue is what hinders this possibility
when strategic groups are observed in an industry.

Caves and Porter (1977) addressed this question by offering a mechanism, what
they called mobility barriers. In search of better payoff possibilities, firms may adopt
different strategies. When one of these attempts leads higher performance, other firms are
tempted to imitate it. Caves and Porter (1977) argued that because mobility barriers tend to
inhibit this imitative behavior, first movers can sustain high performance.

In characterizing mobility barriers, they mentioned two elements: (1) structural
barriers and (2) conduct-based barriers. The first element may encompass many structural
properties, but we pay attention only to the baseline uncertainty of payoff in adopting a
high-performing activity. For example, if a firm that used to produce generic products
attempts to engage in innovation, it will be exposed to a higher level of uncertainty.

Concerning this point, Caves and Porter (1977: 243) argued:

The cost of making the entry decision is sunk, and many other costs of entering will have limited
salvage value. Each item in our list is uncertain in its value or effect and contributes to determining

the overall variance of expected returns and the chances of ruin following entry.”

The higher the level of uncertainty, the higher structural barrier. The basic idea here is that
the higher performing strategic action is much harder to obtain because stochastic errors
tend to confuse firms in search of better-performing strategic activities. Even when they
find a right activity for a high expected return, its realization in the short run may be often
associated with disappointing results. Or, firms may have to just wait for returns to realize
for a long while due to the lagged nature of payoff (Lee and Harrison, 1998). These

characteristics are not uncommon in risky businesses like innovation where commitment is
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required over nontrivial periods of time (Caves, 1984).

The second element is related to firms’ proactive actions to erect a barrier. This is
particularly relevant to early movers who found a high-performing strategic choice. In
order not to share such high return with potential entrants. they may attempt to erect a
barrier by increasing scale of production capacity, R&D, marketing, etc. Then, those firms
that are tempted to imitate the first movers may have difficulty matching them. The
argument is quite plausible and intuitively appealing. Are these two types of mobility
barriers necessary for the genesis of strategic groups? The framework we consider here
permits us to check this intuition dynamically as well as to examine other fundamental
issues in strategic group research.

[ntertemporal Stability of Payoff

Mobility barriers may well protect incumbents in a lucrative segment by serving as
weapons against potential entrants. However. the business of survival is not a one-shot
event, but a going concern over time. Mobility barriers do not say anything about how
firms can defend themselves against hostile nature. Suppose that some firms become high
performers by changing their strategic choice as Caves and Porter envisioned. Unless this
choice continues to yield high performance, high performers may not be sustained, and then
multiple strategic groups cannot be observed. There are good reasons why such stability
may not be guaranteed over time. For example, survival of firms in the semiconductor
industry has been at the mercy of highly cyclical nature of industry demand, which is
known as the silicon cycle. Furthermore, firms that continuously succeed in innovations can

enjoy lucrative payoffs over time not because they effectively protect the market territory
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for their old products, but because they can generate new products before returns from old
ones decline substantially. This means that a payoff from one-time success is time-bound.
Teece et al. (1997) argued that strategy research has drawn little attention to such dynamic
aspect of firm survival that requires some sort of intertemporal stability in payoff structure.

In risky business like innovation, such intertemporal stability of payoff is often
established by a positive feedback loop between success probability and return. That is,
winners are more likely to continue to do well because success brings a substantial revenue
stream over several years to let them further seek new technological opportunities. Positive
feedback of this sort tends to stabilize winners’ payotfs over time. Nelson and Winter (1982)
numerically demonstrated that this mechanism indeed operates. Also this is empirically
observed in the study of the history of the aircraft industry (Phillips, 1966) and the history
of the U.S. pharmaceutical industry (Lee, 1998). Especially in the pharmaceutical industry,
it has been argued that pharma giants have their ability to survive costly failures (e.g., Carr.
1998; Kurdas, 1998). We believe that this quality is not any less important than mobility
barriers in understanding the stability of strategic groups. Surprisingly, no one has yet
addressed this issue in strategic group research. Thus, in our model, we build this
mechanism into a payoft structure to confirm our intuition.
Localized Competition

The multi-peaked payoff function is a prerequisite for modeling strategic group
phenomena. Would, then, selection on a multi-peaked payoff function automatically give
rise to strategic group formation? To illustrate this point, we consider two extreme idealistic

conditions. For simplicity, we assume that the market allows for a constant number of firms
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to survive. First, suppose that competition is unrestrained. That is, competition winnows on
any low performers regardless of their strategic differences (i.e., competition is happening
on the entire horizontal axis in Figure 1). Here the strategic choice of each firm influences
the survival chance of any other firms in the entire space. A computer simulation in Figure
3 illustrates that a group structure does not emerge. Note that the payoff is deterministic and
mobility barriers are absent in this illustrative simulation. Here the bar chart represents the
percentage of firms in the higher-peak region, and at the end of a simulation run, 100% of
firms move to the higher-peak region. As high-performing firms begin to survive on the
high-performance terrain, they tend to quickly replace the lower performers in the left. If
time is sufficiently long, selection will force the system to converge on the highest peak as
shown here.

Insert Figure 3 About Here.

Now consider another ideal situation where competition happens only within some
local space. In other words, firms with similar strategies compete with one another more
intensely than firms with dissimilar strategies do. The essence of localized competition is
that the more firms resemble one another, the lower their individual payoff will be. A
simulation result shown in Figure 4 indicates that two groups of firms emerge over time. As
the bar chart indicates, the percentage of firms in the higher-peak region increases at the
beginning and becomes stable around some point below 100%. That is, the market is
divided into two groups of firms. Note that the larger number of firms (roughly 70%) are in
the higher-peak region, because the mechanism of mobility barrier is absent in this ideal

case. This happens primarily because as more firms move to the higher-peak region. the



industry payoff will be shared by more firms, and the average firm performance goes down
up to the point where it equals the average firm performance in the lower-peak region.
Obviously, this kind of equality in average performance between strategic groups is
unrealistic due to the presence of mobility barriers in most cases.

Insert Figure 4 About Here.

The upshot is that market selection on a multipeaked payoff function is likely to
form a group structure when the localized competition feature is present. The result is
consistent with Hawley (1950). He argued that the localized competition between like
entities for finite resources eventually leads to differentiation of entities. Some ecological
studies (Baum and Mezias, 1992; Baum and Singh, 1994a, 1994b; Hannan and Freeman,
1977; Hawley, 1950) have used the concept of localized competition in explaining the
differentiation of firms, firm failure, and founding.

Also, this feature is implicitly assumed in the concept of strategic groups, implying
that not all firms in an industry engage in unbridled head-to-head competition among one
another in the entire space. That is, the more similar activities two firms take, the more
intense competition is between the two. For example, Caves and Porter’s (1977) notion of
conduct-based barrier explicitly assumes that as far as first movers make it hard for other
firms to follow them, the supranormal return does not have to be shared with entire firms in
an industry.

However, we emphasize that the localized competition feature is distinct from the
mechanism of mobility barrier, which simply capitalizes on this feature to localize

crowding to a specific niche. Unless one models two distinct mechanisms explicitly, he or
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she may possibly misattribute the effect of one to the other. In GAs, localized competition
was first operationalized by Goldberg and Richardson (1987), using their modeling term
“sharing.” They used this operational concept to treat a special optimization problem in
GAs.

We apply this sharing concept to model strategic group emergence. Firms in some
neighborhood of the activity space compete for the same scarce resources. Given some
fixed demand or resources, an increase in the number of firms within the neighborhood
means increased competition, which in turn results in degradation of the payoffs of all firms
in this neighborhood. On the other hand, when two firms maintain some remote distance
from each other, the payoft degradation will be smaller or nil. The process of localized
competition discourages crowding of firms around a specific strategic choice and is likely
to generate strategic groups.

All of the four factors described above look relevant to the emergence of strategic
groups. Are they all in fact important in the genesis of strategic groups? In Section Four, we
develop a dynamic model to experiment with each of these factors. Before doing this, we
briefly introduce the basic idea of GAs.

3. Genetic Algorithms

One may wonder why we adopt GAs to examine the strategic group phenomena. As
typical in our field, researchers can directly examine real dynamic systems as they are. Yet,
because of enormous complexity involved in them, direct encounter with them is often
more confusing than clarifying the issues of researchers’ interest. An alternative strategy is

to build a computational model and to gain insight from observing its behavior in a

-
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controlled setting. Such controllability and manageability are a virtue of computational
tools like cellular automata or GAs. This virtue has made them become popular with the

rise of science of complexity. In this vein, Holland’s (1998: 17) argument is illuminating:

Computer-based models present the modeler with a rigorous challenge. The claims of verbally
described models are often established by rhetoric. What appear to be equally strong arguments
often back competing claims for the same mode!... The same can sometimes be said of traditional
mathematical models, where even the most rigorous mathematical proofs skip “obvious” steps. [t is

impossible to skip steps in a computer program.

Although GAs have been primarily applied to optimization problems, it can be used in
understanding the behavior of diverse complex adaptive systems such as the ecosystem or
the market economy (Holland, 1975; Mitchell, 1996). For example, Axelroad (1997) used
this tool to understand the complex behavior of a game theoretic model. In the field of
organization science, Bruderer and Singh (1996) applied the GA to study organizational
learning. Of special interest to us are the concepts of niche and species, which have been
used in some GAs to address multi-modal problems (Goldberg and Richardson, 1987; Deb
and Goldberg, 1989). Since strategic group emergence shares some analytical similarities
with the problem of speciation, we can benefit from this particular application of GAs.

What, then, are genetic algorithms? They are a class of robust and efficient search
methods based on the conicept of biological evolution in nature (Holland, 1975; Goldberg,
1989). The basic elements of GAs are population, the Darwinian notion of selection, and
genetic operators. A population, likened to a population of living organisms, consists of

individuals or solutions. Since this study explores strategic group phenomena, we use the
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term “firms” instead of individuals. Each firm is typically represented in the form of bit
strings, likened to genes in a living organism. The bit strings can represent many different
firm characteristics: it can represent organizational structure, strategies, or the amount of
R&D investment. Each firm is evaluated based on a fitness function, or a performance
criterion. Then, the selection mechanism removes less fit (or poorly performing) firms from
the population at each generation (i.e., survival of the fittest).

Another important elements are genetic operators: crossover and mutation. The
genetic operators specify how new bit strings are generated from old ones. In crossover,
two bit strings (parents) mate with each other and generate their offspring by combining
some components of their bit strings. In the market evolution, the inheritance of some
attributes from parents to offspring runs parallel with the fact that imitators tend to
benchmark leading firms and copy some of their attributes. Here firms with a higher fitness
value have higher chances to be selected as parents. Mutation modifies one or more bit
string values of a firm in generating offspring, selected at random. The mutation is
analogous to a major strategic change in the market evolution.

A typical GA works as follows: (1) it begins by randomly generating an initial
population; (2) during each iteration, called a generation, firms in the population are evaluated
by a fitness function; (3) parents are selected based on their fitness and paired to produce new
firms, called offspring; (4) a new generation is formed by selecting firms based on their fitness
s0 as to keep the population size constant; (5) the GA terminates when a prespecified stopping

conditions are satisfied, typically some number of generations.
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4. Model

We assume that the payoft function for model firms is characterized by two
asymmetric peaks as shown in Figure 1. Here, the vertical axis represents industry payoff (e.g.,
the total amount of profit opportunity in each niche) and the horizontal axis represents
strategic choice or activity. This is a sort of idealization of an industry landscape where two
strategic activities are associated with two local peaks.

We assume that a firm’s strategic choice x takes on a real value between 0 and 1.
For modeling purpose, this number is encoded as a 10-bit string, where each bit takes on a
value of 0 or 1. For example, 1000000001 represents 0.5015. The value can be any decision
variable that affects the competitive posture of a firm. What the value can represent
depends on the characteristics of an industry. For instance, it can be an R&D expenditure in
the pharmaceutical industry, where R&D investment shapes firm competitiveness as well as
intraindustry heterogeneity in performance (Porter, 1979). Alternatively, this value can be
considered as a budget allocation ratio in a two-dimensional unit simplex. For example, 0.7
means that a firm allocates 70% of its budget into R&D investment for new product
development and 30% into production of known products. Or, each bit can represent one
organizational element and thus a 10-bit string can indicate how 10 organizational elements
are configured.

Our GA begins by randomly generating an initial population of 50 firms between 0
and 0.5 (Note that the entire activity space ranges from 0 to 1). We deliberately set up such a
relatively homogeneous condition merely to provide a clearer view of our mechanisms. Then,

some firms are allowed to explore a new region of the activity space in an attempt to increase
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their performance. This type of exploratory, or entrepreneurial activity, is analogous to
mutation in biological evolution. As is the case in biological evolution, not all new strategic
choices are associated with higher payoffs.

During each generation, firms in the population are evaluated using a fitness function
(described below). After evaluating the fitness, or performance, of each firm in the population,
parents are selected and paired to produce a specified number of offspring. Offspring in GAs
are essentially competitors to their parents since GAs select out some portion of least fit
strings. Since parents and their offspring share some similarities in solutions, offspring can be
considered as imitators whereas parents are considered as target firms to be benchmarked and
imitated. The better a firm performs, the more likely it will be imitated by others. In the
language of GAs, this intuition is captured in the following selection rule: A probability for
any firm to become a parent in the next generation is proportional to its fitness.

In producing offspring, two genetic operators—crossover and mutation—are applied.
Crossover can be thought of either as a change in firm strategies by combining strategies of
previously successful firms or as a founding of a new firm that recombines strategies of
previously successful firms (Bruderer and Singh, 1996). It operates on two firms (parents) at a
time and generates offspring or an imitator by combining attributes from both parents. We
used uniform crossover, in which the imitator inherits a value for each gene position from one
or the other parent with probability .5 (i.e., randomly). Mutation independently modifies one
or more gene values of a firm. As described before, mutation is considered an abrupt or
exploratory strategic change in our case. We used the mutation probability of 0.005. In other

words, the probability of value changes in any bit is .05 (.005x10 bits).
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A new generation is formed by removing lowest performing firms (i.e.. those with
lowest fitness values) from the population and by adding offspring. Our GA removes and adds
10% of the population during each generation. Finally, our GA terminates when 2000
generations is reached.

In our GA models, we manipulate four parameters: structural barrier, conduct-based
barrier, intertemporal stability of payoff function, and localized competition.

Structural and Conduct-based Barriers

As described before, mobility barriers are decomposed into structural and conduct-
based barriers. For the structural one, we only consider uncertainty of payoffs associated with
strategic change. In our standard model, we assume that the lower-performing activity is
associated with relatively more frequent payoff or lower risk. On the other hand, a higher
performing activity is associated with higher risk. For simplicity, we specified a payoff
function such that the first half of the region [0, 0.3) is deterministic and that the second half
[0.5, 1] is stochastic. Then, we characterize a stochastic payoff such that a draw of strategic
choice can result in either zero payoff or a positive payoff. This simplifying assumption
captures the essence of a payoff structure in industries where a risk-averse group and a risk-
taking group can coexist. We use p, to denote success probabilities for first movers at the
time of entering high payoff location. The smaller the value of p,, the higher the level of the
structural barrier.

The second component of mobility barrier is the conduct-based barrier. Caves and
Porter (1977) argued that first movers can erect a barrier by increasing a scale of production

capacity, marketing intensity, or R&D intensity. Since these attempts can lower success
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probability of late movers in entering an attractive segment of the market, we can
operationalize the conduct-based barrier as follows. Let p, be the late entrants’ success
probability. When p, is lower than p, there exists a conduct-based barrier. Then, the larger
difference between p, and p,, the higher the level of the conduct-based barrier. Define n, as a
threshold of conduct-based barriers being established. For instance, if #, is 35, the success
probability of firms that enter the niche with higher payoff is p, until there are 5 firms in the
niche. On the other hand, we assume that there are neither structural nor conduct-based
barriers to entry in the case of lower payoff location. This reflects the concept of
asymmetrical mobility barriers in the literature (e.g., Hatten and Hatten, 1987; Oster, 1982).
Intertemporal Stability of Payoff Function

As described in Section 2, it is usually the case that success confers further success
(Nelson and Winter, 1982). The positive feedback of this sort tends to stabilize winners’
payoffs over time. For example, when one shot payoff from the success of innovation is huge
enough to support the firm’s R&D expenditure for a long time, or patent protection is long
enough, the payoff function can be thought of as very stable. For simplicity, firms located in a
lower payoff region receive nonzero payoffs over time as long as they are alive, while firms in
a higher payoff region may receive zero payoff depending on the result of random draw even
though their previous payoffs are positive. In our model, p, represents the intertemporal
stability of the payoff function. p, of 0.953, for instance, means that once a firm is successful at
a particular generation, its success probability at the next generation is 95%. In the lower peak
region, p, is set to 1.00.

All the landscape characteristics described above can be formally represented as



follows:

v =sine(3n x)+ 3x if0< x<0.5,
=sine(31 x) + 3x if0.5< x< landr>p,
=0 if0.5< x< landr<p,

where » ~ Uniform(0,1) and p is a success probability. Now, p is described by the three
probabilities described above as follows:
p=p, ifage=0andn,< n,
=p, ifage=0andn,>n,
=p,  ifage>0
where age is the number of generations for which a firm has survived, », is a threshold of
conduct-based barriers, and 7, is the number of firms in the higher payotf location. When p
=p,=p,=p,= 1, the landscape is completely deterministic.
Localized Competition
As described in Section 2, localized competition forms niche-like and species-like
subdivision of the environment and population. In nature, different species do not directly
compete with one another. Instead they exploit separate niches in which other organisms have
little interest or advantages. Similarly, the intensity of competition between two
subpopulations is positively associated with their similarity (Baum and Mezias, 1992; Baum
and Singh, 1994a, 1994b; Hannan and Freeman, 1977; Hawley, 1950). Such a phenomenon
can be modeled by using the operational concept of sharing in GAs (Goldberg and Richardson,
1987; Deb and Goldberg, 1989). In sharing, instead of allowing a full measure of payoff for

each firm, it is forced to share its payoff with its neighbors. Goldberg and Richardson (1987:
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41) noted: “These sharing functions help mitigate unbridled head-to-head competition
between widely disparate points in a search space.”

In our GA, the fitness function is defined as follows:

f=yIm,
where £ is performance, y, is the payoff, and m, is the niche count for firm i. m, is defined as

follows:
N
m, = sh(d;),
J=!

where M is the population size, d, =] x, - x, | is the distance between firms i/ and /,

and sh(d,) is the sharing function. sh(d,) is defined as follows:

shdy=1-(d/c,,,)" ifd<o

share

=0, otherwise.
Here, 0 . determines the range of neighborhood and « is an arbitrary parameter
value for the power law sharing function. All the firms within the neighborhood ¢ . share

a focal firm’s payoff. For instance, ¢ of 0.10 indicates that all the firms located within

share
the distance of 0.10 from the focal firm are its neighbors. The smaller the value of o .,
the more localized the competition. In our experiments, we choose 0.10, 0.25, 0.50, 0.75,
and 1.00 for o ,,, as shown in Figure 5. Figure 6 illustrates the behavior of power law
sharing function for selected values of @, given that ¢ . is set to 0.50. We use a of 0.5. A
model with a of positive infinity and ¢ . of 1.00 in this research setting will produce

identical results with a regular GA model in the absence of sharing.

Insert Figures 5 and 6 About Here
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5. Results

As mentioned before. our standard model includes all of the four parameters:
conduct-based barrier, structural barrier, intertemporal stability of payoff, and localized
competition. Again note that the first three stochastic parameters operate only for the
higher-payoff region to characterize the difficulty in surviving there. On the other hand,
such harsh conditions are completely absent in the lower-payoff region. Figure 7 shows a
typical simulation result of our standard model, when parameter values for @, 0 .. P P»
and p, are set to 0.50, 0.50, 0.96, 0.10, and 0.01 respectively. The figure illustrates the
emergence of two groups after 2000 generations. Of the total of 50 firms, 11 percent are
located near the higher peak, while the remainders are around the lower peak. The average
fitness (or performance) of the firms near the higher peak is much higher than that of the
firms around the lower peak.

Insert Figure 7 About Here

We conducted experiments, one at a time, by varying each of the four parameters
in the standard model: conduct-based barrier, structural barrier, intertemporal stability of
payoft, and localized competition. Each experiment is carried out with fifty simulation runs
to generate quasi-asymptotic outcomes.

Table 1 reports the results of variation in conduct-based barrier (p,). Here, p, and p,
represent intertemporal stability of payoff and structural barrier respectively. The difference
between p, and p, indicates the height of conduct-based barrier. The outcomes of
experiments are presented in the last five columns. Two criteria are applied to ‘detect

whether strategic groups emerge after 2000 iterations. The first criterion is whether at least
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one firm with a positive fitness value is located around each peak after 2,000 generations.
The results shown in the column of “% of SG Emergence” indicate what percent of 50
simulation runs result in the emergence of strategic groups. The other criterion in the
column of “% of Firms in High Peak” represents what percent of the population belongs to
the group in the neighborhood of the higher peak, when the strategic groups emerge. When
two strategic groups emerge, we estimate the average fitness values (or performance) for
firms around the lower and the higher peaks. Their differences and their t-values are listed
in the last column.

The results of the experiment with p, show that the higher the level of barrier, the
lower the chance for strategic group emergence as well as the percentage of firms near the
higher peak. The results imply that the first movers’ barrier-erecting activity does reduce
the number of firms near the higher peak by lowering late movers’ chance of successful
entry. That, in turn, increases the performance of firms near higher peak as shown in the
corresponding values in the seventh column. The decrease in the percentage of strategic
group emergence above results from the fact that even the successful first movers may not
continue to survive in the later generation and that the decrease in the success probability of
late movers.

Insert Table 1 About Here

The second major variation in Table 2 examines the effect of structural barrier,
namely the uncertainty of exploring unknown strategic choices. If we vary the value of p,
only, conduct-based barrier — the difference between the success probability of first movers

and that of late entrants — is also changing. Therefore we can not isolate the effect of
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structural barrier from that of conduct-based barrier. To isolate the effect of conduct-based
barrier, we also vary p, by two ways. First, we set the value of p, as proportional to p,.
Second, we set the value of p, to have the same distance from the value of p,. See the results
of variation in values of p, The basic idea behind manipulating this variable is that the
lower the value of p, the higher the level of structural barrier. The results show that the
harder it is to explore a better-performing activity as operationalized in decreasing success
probabilities, the smaller the chance for strategic group emergence is, and the smaller the
number of firms in the neighborhood of the higher peak is. Again, the level of performance
for the high performing group is negatively correlated with the number of firms near the
higher peak. All of these results should not be surprising to those who are familiar with the
strategic group literature.
Insert Table 2 About Here

Now, let us take a look at the effects of intertemporal stability of payoff. See the
results shown in Table 3, where each value of p, represents the chance of obtaining the same
payoff at the next generation. The results appear to be very sensitive to small changes in p,.
As this value drops by a small increment, the chance of strategic group emergence as well
as the average number of firms near the higher peak gets smaller rapidly. Although this is
not operationalized as a part of mobility barriers, its effect is quite similar to that of
mobility barriers.

Insert Table 3 About Here
To illustrate the unusual effect of intertemporal stability of payoft, we take an

extreme case, which is shown in the last row of Table 3. When p, is set to 1, the difference
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in the average performance between the low- and the high-performing groups becomes
statistically insignificant. This is somewhat surprising since the two types of mobility
barriers described above are still in operation. To further examine why this might happen,
we traced the evolution of strategic group behavior over time as shown in Figure 8. Since
the payoff for the higher peak region is guaranteed over time when any firm correctly
discovers it, one can consider this as a relatively benign condition. Over time, the number
of firms near the higher peak increases, resulting in overcrowding. This in turn reduces the
average level of performance. This result is neither obvious nor explicitly discussed in the
literature when researchers talk about mobility barriers.
Insert Figure 8 About Here
Finally, we varied the conditions for localized competition. The results are shown

in Table 4. Note that the smaller the value of ¢ is, the more localized competition is.

share

The results indicate that two strategic groups are more likely to emerge when competition is

more localized. The extreme case is when ¢ is 1.0 and « is positive infinity. In this case,

share
the competition is not localized at all (i.e., no sharing). As we remove the localized
competition mechanism from the standard model, the chance for strategic group emergence
drops from 46% to 18%. Given the presence of the two types of mobility barriers, removing
the effect of localized competition from the standard model results in a major change in
outcomes.

Insert Table 4 About Here

Figures 9 and 10 illustrate why strategic groups are unlikely to emerge when the

localized competition is absent. At the end of 2000 generations, all the model firms
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converge upon one of the two local peaks. Where the system will end up depends on
chance events. This is equivalent to what Arthur (1994) called path-dependence. In any
case, this is a typical outcome when the localized competition effect is removed.

Insert Figures 9 and 10 About Here

6. Discussion and Conclusions

We examined conditions under which strategic groups emerge out of random
strategic choices when selection, in conjunction with innovation (mutation) and imitation
(crossover), guides market evolution toward higher and higher performing activities. Given
the landscape characterized by a double-peaked payoff structure and by the high uncertainty
of obtaining reward in the region around the higher peak, the emergence of a group structure
1s detected when a portion of firms successfully move to the higher peak location at the end
of a simulation run. Our simulation experiments established the importance of three
mechanisms that can influence strategic group behavior: (1) mobility barriers, (2) stability of
payoff, and (3) localized competition. We now return to the major issues in strategic group
research and discuss them with our findings about the three mechanisms.
Emergence and Stability of Strategic Groups

To address the emergence and stability of a group structure, existing studies have
used initial differences in preferences and qualities of assets (Caves and Porter, 1977),
various enactment of environments (Fombrun and Zajac, 1987), and changes in competitive
environments. These studies have primarily sought to explain why firm heterogeneity in

strategy might arise. Once a group structure emerges, on the other hand, mobility barriers
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have been conceived to be the key to stabilize this structure (Caves and Porter, 1977).

GA-based models imply that adopting different strategies is indeed necessary for
strategic group emergence. In our model, without the mutation operator, model firms
cannot move beyond the neighborhood of the lower-performing region. However, such
adoption of different strategic activities is not a sufficient condition for strategic group
emergence. At least, some of these choices should be able to survive from selection
pressures in the market. So, what is missing in the literature is an explicit consideration of a
selection process although some scholars alluded it (Cool and Schendel, 1987).

The viability of strategic choices in our model depends on several mechanisms.
One of those is localized competition, which serves to mitigate unrestrained head-to-head
competition among firms with diverse strategic choices. In particular, we impose the
condition such that competition degrades only the payoffs of firms that share strategic
similarity with one another. Such restraint on competition, or localization of competition, is
shown to be essential in the emergence of strategic groups. Without this restraint, market
evolution forces unbridled competition among all firms regardless of their strategic
difference, guiding the market to converge upon one of the two local peaks, where all the
model ﬁrrﬁs become homogeneous in their strategy. Our findings suggest that strategic
group research can benefit from drawing upon the notions of niche and localized
competition (Baum and Mezias, 1992; Baum and Singh, 1994a, 1994b; Hannan and
Freeman, 1977; Hawley, 1950).

[n the strategic group literature, mobility barriers have been considered the main

mechanism to stabilize a group structure when it happens to emerge (e.g., Caves and Porter,
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1977). Our findings do suggest that this mechanism deters the mobility of the lower-
performing group to the higher-performing activity region. However, this mechanism does
not say much about how incumbents in the higher peak can continue to survive. Even
though some firms may choose a right activity by chance and enjoy a high payoff once,
instability of a payoff structure can easily eliminate these firms in the next several rounds
as they quickly run out of luck. Such instability may be caused by fluctuations in demand
or a quick market saturation of leading products. Unless there are some dynamic
mechanisms to allow winners to persist, strategic groups are unlikely to be sustained.
Positive feedback inherent in Schumpeterian dynamics could be an example of such
mechanism. In Schumpeterian dynamics, winners are more likely to innovate and thereby
to escape from such instability since the revenue stream from one-shot success carries
forward and allows them to seek new technological opportunities more aggressively. This,
in turn, tends to breed further success in the future. Over time, winners become resilient to
inherent risk in innovation (Lee, 1998). Our study shows that stability of strategic groups is
sensitive to intertemporal stability of a payoft structure.
Performance

In the strategic group literature, mobility barriers are conceived essential to sustain
performance difference between strategic groups (Caves and Porter, 1977; McGee and
Thomas, 1986). Indeed, we found that performance difference is more likely to be
pronounced when mobility barriers are high, confirming the above intuition. Yet, a rare
anomaly arises when we imposed perfect stability (i.e, p, = 1) of a payoff in the higher-

payoff region. Intuitively this condition means that once a firm becomes a winner, its



survival is continuously guaranteed. In this benign environment, between-group
performance difference is not shown to be significant despite the presence of both structural
and conduct-based barriers. As shown in Figure 8, performance difference does arise at the
early stage of the industry evolution but disappears as more firms keep entering. The basic
message is that mobility barriers cannot deter entry in the long run when one-shot winners
can continue to do well.

The complexity shown above may partially explain why we do not have consistent,
uniform support from empirical studies for the differential performance hypothesis (Cool
and Schendel, 1987). Our model is very simple compared to reality, but even the simple
model generates such complex behavior: existence of performance difference depends not
only on the degree of mobility barriers but also other factors such as stability of payoff and
the stage of industry evolution. Then, it may be rather naive to expect consistent support for
intraindustry heterogeneity in performance across diverse industries where complexity is
likely to be much more pronounced.

In conclusion, our study established the systematic basis for considering mobility
barriers in the context where a selection process constantly exerts an influence on firm
survival. Mobility barriers are shown to play a substantial role in maintaining performance
difference between groups when a group structure emerges. However, the findings of this
study suggest that mobility barriers alone are not sufficient for the emergence and stability
of strategic groups as many researchers have argued. Equally essential mechanisms in
playing the latter role are restraint on competition and stability of industry payoff. Yet, to

our knowledge, no one has attempted to conceptualize these mechanisms explicitly and to



show their precise implications in dynamic settings. We argue that the field can benefit
trom pushing research in the direction we explored.

Obviously, our model is a sort of idealization, which is remote from any real
industry situation. Because of its controllability and simplicity, we can gain some insight
into conceivable strategic group behavior. Yet, the very simple features leave many caveats
and limitations, which point to directions for future research. In particular, we assumed that
the industry landscape do not change over time. In reality, changes in industry landscape
are more a rule than an exception. Future research can examine the effect of regulatory
changes or technological breakthrough on strategic group behavior. This type of research
can generate very important policy implications and provide insights in understanding

dynamics of strategic group changes (Cool and Schendel, 1987).
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Table 1. Variation in Conduct-based Barriers

T

» , , % of SG %igf:iior;ns Average Fitness
i 4 " Emergence Peal? Low Peak | High Peak Difference (1)
0.005 50.0% 6.0% 0.045 0.651 0.606 (8.02**)
0.01 46.0% 6.5% 0.046 0.673 0.627 (8.57**)
0.02 60.0% 8.0% 0.047 0.522 0.475 (5.37*%)
0.03 70.0% 7.6% 0.046 0.543 0.497 (5.95*%)
0.04 62.0% 9.5% 0.048 0.526 0.478 (5.43*%)
0.96 | 0.10 0.05 68.0% 10.3% 0.048 0.470 0.422 (5.61*%)
0.06 90.0% 12.6% 0.049 0.448 0.399 (4.64*%)
0.07 88.0% 12.8% 0.049 0.434 0.385 (6.13*%)
0.08 88.0% 15.5% 0.051 0.384 0.333 (4.92**)
0.09 96.0% 18.7% 0.053 0.336 0.283 (4.38**)
0.10 94.0% 21.9% 0.053 0.320 0.265 (3.99**)
Table 2. Variation in Structural Barriers
P p p % of SG | % of Firms in Average Fitness
: U " Emergence | High Peak | Low Peak |High Peak Difference ()
0.01 0.001 2.0% 2.2% 0.043 2.025 | 1.982(2363.53*%)
0.05 0.005 40.0% 5.3% 0.045 0.600 | 0.555 (7.69**)
0.10 0.010 46.0% 6.5% 0.046 0.673 | 0.627 (8.57*%)
0.96 0.15 0.015 92.0% 9.4% 0.047 0.524 | 0.477(6.89*%)
0.20 0.020 90.0% 9.8% 0.048 0.477 | 0.429(5.33*%)
0.30 0.030 98.0% 11.4% 0.04% 0.477 | 0.429 (6.00**)
0.40 0.040 100.0% 12.5% 0.050 0.449 | 0.399(5.98*")
0.50 0.050 100.0% 12.5% 0.049 0.461 | 0412(53.96* |
0.10 0.01 46.0% 6.5% 0.046 0.673 | 0.627 (8.57*%) !
0.15 0.06 90.0% 11.9% 0.049 0.435 | 0.385(5.49*%)
0.96 0.20 0.11 100.0% 23.4% 0.056 0322 | 0.266 (4.73**)
) 0.30 0.21 100.0% 48.4% 0.082 0.193 | 0.111(2.62*%%) |
0.40 0.31 100.0% 62.3% 0.107 0.168 | 0.061 (2.40**) J
0.50 0.41 100.0% 68.0% 0.126 0.158 | 0.032(L.51) R
Note: : standard model

Localized competition: Both & and 7, are setto 0.50 in all models.

p, : intertemporal stability of payoff function of firms around a high payoff location.

py: success probability of first movers at the time of entering a high payoff location.

p, : success probability of late entrants at the time of entering a high payoff location.

1 t-statistics; * o = 0.05, ** o = 0.01



Table 3. Variation in Intertemporal Stability

P p p % of SG % of Firms Average Fitness

! ! " Emergence | in High Peak | Low Peak High Peak Difference (¢)
0.90 6.0% 5.2% 0.046 0.558 0.512 (11.09**)
0.91 16.0% 3.3% 0.045 0.936 0.891 (6.43*%)
0.92 14.0% 3.8% 0.044 0.828 0.784 (18.75**)
0.93 22.0% 5.7% 0.045 0.679 0.643 (7.45**)
0.94 20.0% 3.1% 5.044 0.800 0.756 (8.88*%)
0.95 0.10 | 0.01 28.0% 4.6% 0.045 0.748 0.703 (8.22**)
0.96 46.0% 6.5% 0.046 0.673 0.627 (8.57*%) |
0.97 70.0% 6.4% 0.046 0.559 0.513 (6.53**) J
0.98 92.0% : 8.0% 0.047 0.584 0.537 (5.64**)
0.99 100.0% | 11.3% 0.049 0.494 0.445 (5§.57*%)
1.00 100.0% [ 63.6% 0.111 0.141 0.030 (1.15)

Note: : standard model

Localized competition: Both @ and 0, are setto 0.50 in all models.

p, - intertemporal stability of payoff function of firms around a high payoff location.

p,: success probability of first movers at the time of entering a high payoff location.

p, : success probability of late entrants at the time of entering a high payvoff location.

I t-statistics; * o = 0.05, ** o = 0.01

Table 4. Variation in Localized Competition

p.. p;, and p, are set t0 0.96, 0. 10, and 0.01 respectively in all models.

Sharing % of SG % of Firms Average Fimess
G epae o Emergence | in High Peak | Low Peak | High Peak Difference ()
0.10 | 0.5 82.0% | 8§1% |  0.138 1.198 1.040 (5.19*%) |
025 | 0.3 70.0% 74% | 0072 0.838 0.787 (6.12**) i
0.50 | 0.5 46.0% 65% | _ 0.046 0.673 0.627 (8.57*%)
075 | 0.5 38.0% 49% | 0.040 0.293 0255 (2.94*%)
1.00 | 0.3 34.0% 42% | 0.038 0.170 0.132 (11.10*%) |
[ 100 |+ 18.0% 3.7% | 0.031 0.053 0024 (15300 |
Note: : standard model

p, : intertemporal stability of payoff function of firms around a high pavoff location.

py: success probability of first movers at the time of entering a high payoff location.

p, : success probability of late entrants at the time of entering a high pavoff location.

£ t-statistics; * oo = 0.05, ** o = 0.01



Figure 1. Industry Landscape: Bimodal Payoff Function (y = sine(3n x) + 3x)

4 o o001 s v A 58 v+ - S — — S—
(0.868, 3.551)
3
< (0.201, 1.551)
1
0
0 0.2 0.4 0.6 0.8 1
Strategy
Figure 2. Realized Payoff (n=200, p = 0.1 when x > 0.5)
4 N
F 1%
3 ?)T ™

Payoft
[av]

0 LM‘II_
0 0.2

0.4 0.6 0.8
Strategy



Figure 3. Evolution of Strategic Groups and Their Performance
(Without sharing, P,= 1.0, P, = 1.0, P,=1.0)
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Figure 4. Evolution of Strategic Groups and Their Performance
(With sharing, P,=10,P= 1.0, P,=1.0)
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Figure 5. Power Law Sharing Functions:

a =0.5 with Selected Values of o ,,,,

—
TR It e

e

i
vy i
08 AN i
[T '
\"‘: N
06 J\\ |E
[ ;
0.4 \\
4
0.2
T~
: 5=1
0 T~ —
0 0.1 0.25 0.5 0.75
d

Figure 6. Power Law Sharing Functions:

O orare =0.5 with Selected Values of «

sh(d)

40



o, of Firms in High Peak

Figure 7. A Typical Simulation Result of the Standard Model
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Figure 8. Evolution of Strategic Groups and Their Performance
(With sharing, p,=10,P~= 0.10, P,=0.01)

70.00% [ 0.6
60.00% - 05
50.00% k
| 04 9
)]
40.00% \[ ]
[V
0.3 g’
30.00% F 8
| g
i 02 <
20.00% F
|
10.00% - T 01
0.00% NS E 0

1 2 3 4 5 6 7 8 9 10 1 121314151617181920
Generation (100)

1% of Firms in High Peak
_e Average Fitness-Low Peak
—— Average Fitness-High Peak

41



Figure 9. A Simulation Result without Sharing:

Convergence to A Lower Peak
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Figure 10. A Simulation Result without Sharing:

Convergence to A Higher Peak
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