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Abstract
We present a comprehensive and quantitative study on
the development of the Linux memory manager. The
study examines 4587 committed patches over the last
five years (2009-2015) since Linux version 2.6.32. In-
sights derived from this study concern the development
process of the virtual memory system, including its patch
distribution and patterns, and techniques for memory op-
timizations and semantics. Specifically, we find that
the changes to memory manager are highly centralized
around the key functionalities, such as memory alloca-
tor, page fault handler and memory resource controller.
The well-developed memory manager still suffers from
increasing number of bugs unexpectedly. And the mem-
ory optimizations mainly focus on data structures, mem-
ory policies and fast path. To the best of our knowledge,
this is the first such study on the virtual memory system.

1 Introduction
The virtual memory system has a long history. It was first
proposed and implemented in face of memory scarcity in
1950s [16, 27, 28, 81, 86]. With this technique, the main
memory seen by programs can be extended beyond its
physical constraints, and the memory can be multiplexed
for multiple programs. Over the past several decades, the
virtual memory has been developing into a mature and
core kernel subsystem, the components and features it
has today are far more than the basic functionalities (i.e.,
page mapping, memory protection and sharing) when it
was developed [22].

However, today’s virtual memory system still suffers
from faults, suboptimal and unpredictable performance,
and increasing complexity for development [10, 41, 62,
70, 82]. On the other hand, the in-memory and big
memory systems are becoming pervasive today [57, 91],
which drives developers to re-examine the design and
implementation of the virtual memory system. A quanti-
tative study of the virtual memory system’s development
process is necessary as developers move forward to next
steps. The insights derived from the study can help de-
velopers build more reliable and efficient memory man-
agement systems and associated debugging tools.

In this paper, we perform a comprehensive study of the
open-source Linux memory manager (mm). We examine

the patches committed over the last five years from 2009
to 2015. The study covers 4587 patches across Linux
versions from 2.6.32.1 to 4.0-rc4. We manually label
each patch after carefully checking the patch, its descrip-
tions, and follow-up discussions posted by developers.
To further understand patch distribution over memory se-
mantics, we build a tool called MChecker to identify the
changes to the key functions in mm. MChecker matches
the patches with the source code to track the hot func-
tions that have been updated intensively.

We first investigate the overall patterns of the exam-
ined patches. We observe that the code base of Linux
mm has increased by 1.6x over the last five years, and
these code changes are mainly caused by bug fixes
(33.8%), code maintenance (27.8%), system optimiza-
tions (27.4%) and new features (11.0%). More interest-
ingly, we find that 80% of the mm patches are committed
to 25% of the source code, indicating that its updates are
highly concentrated. Such an observation discloses the
targeted code regions for our study and future develop-
ment on virtual memory system.

Furthermore, we examine the bugs in Linux mm. We
identify five types of bugs: memory error, checking, con-
currency, logic and programming. These bugs are mainly
located in the functional components of memory alloca-
tion, virtual memory management and garbage collec-
tion. Specifically, mm is suffering from more concur-
rency and logic bugs due to its complicated page state
management. For example, the memory leaks are mainly
caused by the incorrect settings of page states rather than
non-freed pages; a significant number of logical incor-
rectnesses are caused by missing checks on page states.

We further investigate the system optimization patches
in mm. We identify three major sources: data structure,
memory policy and fast path. (1) For data structure,
we find that 76.2% of patches are committed for soft-
ware overhead reduction, and 23.8% of them contributed
to scalability improvement, across the four popular data
structures: radix tree, red-black tree, bitmap and list, and
their derived structures. (2) For policy patches, we find
that most of them are concentrated around five design
trade-offs: lazy vs. non-lazy, local vs. global, sync vs.
async, latency vs. throughput and fairness vs. perfor-
mance. For example, OS developers can alleviate over-
head caused by expensive operations (e.g., memory com-
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Table 1: A brief summary of the Linux mm patch study.

Summary Insights/Implications
O

ve
rv

ie
w

4 types of patches (i.e., bug, optimization, new feature,
code maintenance) were committed to 8 major mm com-
ponents (e.g., memory allocation, resource controller and
virtual memory management). The patch distribution is
highly centralized (§ 3).

(1) the identified 13 hot files from the massive mm source code (about 90
files) unveil the focus of the recent mm development; (2) with these knowl-
edge, developers can narrow their focus to pinpoint mm problems more ef-
fectively.

B
ug

5 types of bugs (i.e., checking, concurrency, logic, mem-
ory error and programming) have various patterns: null
pointer and page alignment are the popular memory er-
rors; checking and logic bugs are pervasive due to the com-
plicated page state management (§ 4).

(1) a set of unified and fine-grained page states can be defined to reduce
the effort on page tracking for kernel developers; (2) the page state machine
should be combined with lock schemes to avoid unnecessary locks; (3) a
formal, machine-checked verification framework for mm is needed.

O
pt

im
iz

at
io

n

4 types of data structure (i.e., radix tree, red-black tree,
bitmap and list) optimizations on software overhead re-
duction and scalability improvement (§ 5.1).

(1) careful examination on nested data structures is necessary to avoid the
consequential side effects as we adjust data structures; (2) the internal scal-
ability inside system calls is not well exploited yet.

Memory policies are tackling 5 design trade-offs: lazy vs.
non-lazy, local vs. global, sync vs. async, latency vs.
throughput and fairness vs. performance (§ 5.2).

(1) lazy policy is preferred as mm interacts with fast devices like processor
cache, while async policy is mostly used for the interaction with slow de-
vices like disk; (2) a large amount of latency-related patches suggest that
mm profilers are desired to identify more latency-critical operations;

Fast path has 8 types of approaches: code reduction, lock-
less optimization, new function, state caching, inline, code
shifting, group execution and optimistic barrier. (§ 5.3).

(1) alleviating redundant functions and reducing lock contentions are the
two major contributors for reducing software overhead; (2) these techniques
can be generalized and applied in other software systems.

Se
m

an
tic 35 key functionalities are identified in 13 hot files in Linux

mm. A majority (75.6%) of them absorb much more
patches on bug fix and optimization. Certain patch pattern
is seen for each functionality (§ 6).

(1) the well-developed memory allocators still have tremendous checking
and lock issues due to the increasing complexity of page state management;
(2) the fault handler in mm is buggy, especially for the cases of out of mem-
ory and allocation failures; (3) the patch patterns on memory policy suggest
that a policy verification and validation framework is in pressing need;

paction, TLB flush) with lazy policies, but associated
checking mechanism has to be implemented to guaran-
tee the program logic is not violated (more patches on
this part are committed than the optimization patch it-
self). (3) We identify eight types of approaches (Table 6)
for fast path optimization in Linux mm, such as code re-
duction, lockless optimization and state caching.

With the MChecker tool, we study the patch distribu-
tion over the core mm functions to understand the vari-
ous patterns on memory semantics. Taking the memory
policy as example, we categorize it in two types: policy
definition and enforcement. We find that policy defini-
tion has more issues than enforcement. And 30% of the
patches were addressing the issues caused by missing
checks (e.g., whether page is dirty), missing one check
fails the policy enforcement.

We briefly summarize the key findings and present the
outline of the paper in Table 1. We discuss the related
work in § 7 and conclude the paper in § 8. In the follow-
ing, we describe the methodologies used in our study.

2 Methodology
In our study, we target at open-source Linux memory
managers, as they provide much more resources (e.g.,
source code, patches, online discussions) for such a study
compared to commercial operating systems. We only
select the stable versions that are still supported by the
open-source community. The selected Linux kernel ver-
sions range from 2.6.32 (released on December 2, 2009)
to 4.0-rc4 (released on March 15, 2015), and the time

garbage 
collection 

swapping

page cache and 
write-backmemory 

allocation

exception 
handling

memory resource 
controller

misc

virtual memory 
management

30.01%

28.72%

9.80%

5.71%
6.25%

7.24%

6.61%

5.60%

Figure 1: Component breakdown of memory manager in
Linux version 4.0-rc4, in terms of lines of codes.

Figure 2: The change in mm code in terms of LoC.

difference between the release dates of two successive
versions is 12 months on average. It is noted that Linux
2.6.32 is the oldest version that is still supported. Thus,
we believe our study over the past five years represents
the latest development trend of the Linux mm.

In order to have a comprehensive study of the se-
lected virtual memory system, we manually examine
most of the committed patches to Linux memory man-
ager (root/mm) following the approaches described in
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Figure 3: The heat map of patch distribution in each component of Linux memory management. Each block represents
the patches committed to the current version since the last stable version. The darker the color, the more patches
applied. The number below the bar indicates the total number of committed patches applied to the given file.

[23, 26, 37]. Since December 2, 2009, there are totally
5358 patches relevant to Linux mm reported in the patch
repositories of Linux kernel. After excluding the du-
plicated and invalid patches, we examine 4587 patches
(85.6% of the total patches). To precisely analyze and
categorize each examined patch, we manually tag each
patch with appropriate labels after checking the patch,
its descriptions, corresponding source code changes, and
follow-up discussions posted by developers. The labels
include LinuxVersion, CommitTime, SrcFile, MMCom-
ponent, PatchType, Consequence, Keywords, Causes,
Note and etc. For the patch that belongs to several cat-
egories, it will be classified into all the respective cate-
gories and studied from different viewpoints. We place
all the examined patches into our patch database MPatch
for patch classification and statistical analysis.

To facilitate our analysis, we break down the Linux
mm into 8 components according to the functionalities
(see Figure 1). We match the examined patches with each
component. Taking the Linux version 4.0-rc4 for exam-
ple, we use the SLOCCount tool [74] to count the line
of codes (LoC) in each component. Figure 1 shows the
fraction of code serving to accomplish specific function-
alities in mm. The two largest contributors to Linux mm
code are memory allocation (28.7%) and virtual memory
management (30.0%). This is expected with consider-
ing their core functions in virtual memory system. We
will discuss how the patches are distributed among these
eight components in detail in the following sections.

To further analyze the examined patches, we build a

patch analysis tool called MChecker to understand the
memory semantics by mining the relationships between
patches and the key functions in the ‘hot’ files of Linux
mm. This will be discussed in detail in § 6.

3 Virtual Memory Evolution
Linux mm is constantly updated like other subsystems
(e.g., file systems, device drivers) in the Linux kernel.
However, few quantitative studies have been done on the
Linux mm. In our study, we conduct the virtual mem-
ory study from the oldest stable version 2.6.32 until the
version 4.0, demonstrating what mm developers concen-
trated on over the past five years.

3.1 How is the mm code changed?
Taking the Linux 2.6.32 version as the baseline, we ex-
amine the source lines of code changes in different Linux
mm components.We obtain the LoC across different mm
component in total 7 versions using SLOCCout.

As shown in Figure 2, the LoC is increased in all the
mm components across successive years compared with
the baseline 2.6.32. Overall, Linux mm code base has in-
creased by 1.6x over the last five years. Memory alloca-
tion and virtual memory management are the two major
components in mm, the updates to the two components
constantly occupy a large portion of the overall patches.

Understanding the code changes is important for us
to pinpoint how the Linux mm is evolved. More detailed
analysis is given on where and why the mm code has been
changing in the following.
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Figure 4: Patch overview. It shows the patch distribution
according to general types including bug, code mainte-
nance, improvement and new feature.

3.2 Where is the mm code changing?
The patches applied to Linux mm record all the changes
to its code base and provide the evidences showing how
one version transforms to the next. Figure 3 demon-
strates the patch distribution among all the components
in Linux mm. One patch may be applied to several files
in mm, we count it to all the involved files. The aver-
age source LoC changed in each patch is 62, it is much
less than the source LoC in feature patches. For example,
the compressed swap caching (zswap) was introduced in
2013 [84], and a new file named zswap.c with 943 LoC
was added in the code base of Linux mm.

We identify several interesting findings via the heat
map. First, the patches are concentrated around only
a few files in each component (see the darker column
and blocks in the heat map of Figure 3). About 80% of
the patches were applied to the 25% of the source code.
These hot files generally represent the core functions of
the corresponding component. Second, the patches ap-
plied to these hot files are much more than other files. For
instance, the number of patches relevant to huge mem
in virtual memory management component is about 12x
more than that of ‘cold’ files. Third, for these hot files,
most of them are constantly updated along the Linux evo-
lution from one version to the next. Typical examples in-
clude the memcontrol in memory resource controller, the
memory in virtual memory management.

It is understandable that more patches are committed
between Linux 3.2 and 3.10 compared to other intervals,
as the time between the two versions is 19 months which
is longer than the average time interval (12 months).

3.3 Why is the mm code changed?
We identify that the mm source code changes come from
four sources: new feature, bug fixes, optimization and
code maintenance. We classify the patches into these
four categories, and examine how each category con-
tributes to the evolution of Linux mm.

Figure 5: The changes of patch distribution along the
Linux mm evolution, taking Linux 2.6.32 as the baseline.

Figure 4 shows the patch distributions among the 8
components. Overall, 33.8% of the patches are applied
for bug fixes, 27.8% of the patches are relevant to code
maintenance, 27.4% are for system optimizations, and
11.0% are new features. Common sense suggests that
virtual memory system has been developed into a mature
system, our findings reveal that the bug fixes are still the
main thread of patch contributions.

Furthermore, we examine how the four types of
patches changed over time. As shown in Figure 5, we
find that bug patches are increasing steadily, indicating
more bugs are expected in Linux mm as the complexity
of its code base is increasing (see Figure 2). The per-
centage of code maintenance and new feature patches
keep at a constant level in general, but a slightly increase
in new feature patches is seen recently. Perhaps most
interestingly, optimization patches are decreasing over
time, which can be expected as Linux mm becomes more
adapted to current systems (e.g., multi-core processors).

Summary: Linux mm is being actively updated,
The code changes are highly concentrated around its
key functionalities: 80% of the patches were com-
mitted to the 25% of the source code.

4 Memory System Bugs
In this section, we examine the bug patches in detail to
understand their patterns and consequences.

4.1 What are mm bugs?
With the tagging of these patches, we classify the bug
patches into 5 general types: memory error (MErr),
checking, concurrency, logic and programming. Each
general type is further broken down into multiple sub-
types according to their causes, as shown in Table 2.
Like the systems such as file systems [37] and device
drivers [29], many bugs are general software bugs (e.g.,
programming bugs). In this paper, we are more interested
in memory-related bugs, for example the alignment bugs
in MErr, and the logic bugs (§ 4.2).

4.2 How mm bugs are distributed?
The heat map of Linux mm bug distribution among its
eight components is shown in Figure 6. More bugs lie in
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Figure 6: Bug distribution among Linux mm components.

Table 2: Classification of bug patches.

Sub-type Description

M
E

rr alignment data/page alignment and padding.
null pointer refer to an invalid object.

C
he

ck
in

g inapt check inappropriate check.
miss check check is required.
unec check unnecessary check.
wrong check check conditions are incorrect.

C
on

cu
rr

en
cy

async opts faults due to async operations
better lock lock is implemented in better way.
dead lock two or more threads are blocked.

lock contention concurrently access to shared locks or data
structures.

miss lock lock is required.
miss unlock the unlock is missed.
unec lock unnecessary lock.
double unlock unlock twice.

L
og

ic

accounting error in collecting statistics.
case-by-case bug fix requires specific knowledge.
fault handler error and exception handling.
order the order of execution is violated.
return err return code is not correct.
parameter misuse of parameters.
state update issues in updating state and data structures.
corner case uncovered cases in implementations.

Pr
og

ra
m

m
in

g configuration wrong/missed configuration.
document comments & docs for functions.
API issues caused by interface changes.
debug issues happened in debugging.
misc any other programming issues

the three major components memory allocation, virtual
memory management, and GC, which matches with the
patch distribution as shown in Figure 3. More specifi-
cally, we identify several interesting findings in mm:

Memory Error (MErr): We find that null pointer
dereferences (e.g., [45, 67, 76]) are the most common
bugs because of the missing validations of pointers be-
fore using them in mm. These bugs happened even
in mm’s core functions such as slub, which is unex-
pected. The alignment of data structures and pages are
important factors in mm optimizations, however bugs fre-
quently happen at boundary checking and calculations
for padding (e.g., [5, 6]). As they usually involve many
shift operations, validating the correctness of the bit ma-
nipulations is necessary.

Checking: As mm involves many state checking op-
erations, especially in memory allocation and garbage
collection (GC) components. The checking bugs appear
frequently due to inappropriate and incorrect checking,
for instance, the GC has to check if a page is used or not
before the page migration is issued; free bootmem core
may free wrong pages from other nodes in NUMA with-
out correct boundary checking [47].

Concurrency: We find that more miss lock and lock
contention bugs appeared in virtual memory manage-
ment due to the complicated page states, and more ef-
forts are required for kernel developers to track the page
states. In addition, the page state machine can be com-
bined with lock schemes to avoid unnecessary locks, for
instance, when kernel pages are charged or uncharged,
the page cgroup lock is unnecessary as the procedure has
been serialized (e.g., [40]).

Logic: We identify three important logic bugs: case-
by-case, state update and fault handler. For the first
two types, they may not stall the system or generate ex-
ceptions immediately, but they make the system execute
in unexpected workflow or states, resulting in incorrect
states or runtime error eventually. Fixing these bugs of-
ten require domain specific knowledge. For example,
when shmem intends to replace a swap cache page, the
original implementation calls cgroup migration without
lrucare based on the incorrect assumption that the page
is not on the LRU list. As for fault handler bugs, many
of them were caused by lack of or inappropriate imple-
mentation of exception handling (e.g., [56, 77, 85]).

There is still a long way to have a bug-free virtual
memory system. It is much hard for formal proof to ver-
ify the correctness of concurrency events [31], and few
previous work has the formal, machine-checked verifica-
tion for virtual memory system specifically.

4.3 What are the mm bug consequences?
We further examine the consequences of mm bugs to un-
derstand how serious they are. We classify the bug con-
sequences into 7 types with reference to the classification
in [37]. Figure 7 shows that logic bugs lead to wrong be-
haviors and runtime errors with higher chances. Concur-
rency bugs are more likely to make system crash or hang,
since they often produce null pointers and deadlocks if
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Figure 7: Bug consequence.

the shared data structures are not maintained properly.
Moreover, we find that checking bugs are also the ma-

jor contributors to the wrong behaviors and runtime er-
rors in Linux mm. More interestingly, we find that the
memory leaks are mainly caused by MErr and logic
bugs. It is noted that most of the memory leaks in mm are
not caused by not-freed memory, they are mostly caused
by the accounting (e.g., the unused page is not counted
as free page) and fault handler bugs (e.g., pages are not
reclaimed when fault happens). For programming bugs
that mainly cause compilation errors, runtime error and
wrong behaviors, they are easier to be fixed compared
with other types of bugs.

Summary: Memory leaks in mm were mainly
caused by the accounting bugs and inappropriate
implementation of fault handler (e.g., page fault),
instead of non-freed memory. The complex states of
pages complicate the implementation of the check-
ing and locking mechanism, which requires large ef-
fort for kernel developers to track the correct states.

5 Memory Optimizations
As discussed in § 3, optimization (27.4% of total patches)
is one of the major contributors to the code changes in
Linux mm. We identify several sources that contributed
to the optimizations in mm: data structure, policy and
fast path. In this section, we will explain how these opti-
mizations were performed in improving Linux mm.

5.1 Memory Data Structures
In virtual memory system, data structure is one the crit-
ical factors for its efficiency [10, 15, 20]. Likewise, the
data structures in Linux mm are constantly tuned to re-
duce software overheads, and specialized data structures
are leveraged for special purposes such as page lookup
and memory allocation.

5.1.1 What are the common data structures?

We identify four popular data structures in Linux mm:
radix tree, red-black tree, bitmap and list, according to
their relevant patch distributions.

Radix tree [65, 66] is typically used within ad-
dress space structure in Linux mm for tracking in-core
pages for page caches, because of its storage efficiency
for sparse trees. Red-black tree [69] such as the one
in vm area struct can perform lookups in logarithmic

1: struct memcg_cache_params {
2:     bool is_root_cache;
3:     union {
4:         struct kmem_cache *memcg_caches[0];
5:         struct {
6: struct mem_cgroup *memcg;
7: struct list_head list;
8: struct kmem_cache *root_cache;
9: bool dead;
10: atomic_t nr_pages;
11: struct work_struct destroy;
12:        };
13:    };
14: };

struct memcg_cache_params {
bool is_root_cache;
struct list_head list;
union {

struct memcg_cache_array
__rcu *memcg_caches;

struct {
struct mem_cgroup *memcg;
struct kmem_cache *root_cache;

};
};

};

Linux 3.8 Linux 4.0

Figure 8: Comparison of memcg cache params structure
in Linux version 3.8 and 4.0.

Table 3: Typical examples of approaches to reduce soft-
ware overhead of different data structures.

Type Overhead Source Optimization Example

ra
di

x
tr

ee

Tree walking Provide hints, cache intermedi-
ate states [48]

Linear search Add bit-optimized iterator [64]

rb
tr

ee

Tree walking Optimized tree walking [1, 44]
Lock contention Batch lookup [11]
Balancing tree Reduce lazy operations [52]

lis
t

List search Limit list length [43]
Lock contention Add per-node LRU list [35]
Storage overhead Dynamic allocation

time, and its insert and delete operation can be finished in
bounded time. It is used to track VMAs. Bitmap is usu-
ally used to index pages in RAM, which involves bit ma-
nipulation frequently. Besides these specific data struc-
tures, other data structures such as list are widely used in
Linux mm. Most of the recent patches are related to their
derived data structures, such as LRU list which is used by
multiple mm components to track page access frequency.

5.1.2 How are data structures optimized?

We identify that the optimization of mm data structures
mostly focuses on two aspects: software overhead reduc-
tion (76.2%) and scalability improvement (23.8%).

Reducing software overhead. In Linux mm, we
find that the software overhead on these data structures
mainly come from the following sources: tree walk, tree
balance, lock contention and storage cost. A variety of
approaches have been applied to address these issues as
shown in Table 3. For instance, to reduce lock con-
tentions, multiple lookups can be performed in batch
once a lock is acquired.

Reorganizing data structures is another approach that
usually adopted to improve memory efficiency. How-
ever, this approach may introduce additional overhead
that offsets its benefits. Beyond our expectation, a sig-
nificant portion of patches were applied to avoid the ex-
tra overhead caused by nested data structures. An in-
teresting example is shown in Figure 8. The structure
memcg cache param in Linux version 4.0 shrinks com-
pared to its initial design in version 3.8. However, the
saved memory does not justify, as the pointer dereference
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in its correlated structure kmem cache may cause extra
cache line access. Thus, the pointer was replaced with
embedded variable [73]. As we adjust data structures in
virtual memory system, their referenced data structures
are often overlooked, producing side effects.

Improving scalability for data structures. Scalabil-
ity issue is another major aspect of data structure opti-
mizations. Most of the scalability issues are caused by
locking for atomic access to shared data structures. We
find that a main thread of the applied patches is to decen-
tralize the data structures and replace the shared counter-
parts with per-core, per-node and per-device approaches.

With the increasing memory size and core counts,
the scalability issues become more prominent [10, 90],
appropriate usage of data structures is critical for both
performance and memory efficiency, such as recent
work [11] suggested that replacing red-black tree with
radix tree to track non-overlapping virtual memory re-
gions for mmap and munmap provides better scalabil-
ity. Furthermore, the system support for new memory
technologies like persistent memory bring new scalabil-
ity challenges, the dramatically increased physical mem-
ory capacity generates large pressure on memory man-
agement, e.g., a 1 TB of persistent memory with 4 KB
page size requires 256 million page structures [14, 61].

To scale OS kernels, Clements et al. [12] proposed a
commutativity tool to guide the implementation of high-
level APIs, however it cannot expose the internal scala-
bility issues (e.g., global vs. local data structure) inside
the system calls. Our findings on mm data structures sug-
gest that it is necessary to build tools to check the bottle-
necks introduced by global and shared data structures.

Summary: The software overhead and scalabil-
ity issues caused by data structures remain big con-
cerns for OS developers: more efforts on system-
wide optimization for nested data structures, and the
internal scalability inside system calls are required.

5.2 Policy Design: Tackling Trade-offs
Memory is one of the most desired yet constrained re-
source in computer systems, multiple design trade-offs
have to be made to fully utilize the resource and to
improve performance. We find that a majority of the
patches relevant to the policy design are concentrated on
tackling these trade-offs. Through the patch study, we
expect to learn from the lessons with policy designs and
implementations conducted by OS developers.

5.2.1 What are the trade-offs?

Based on our patch study, we summarize the trade-offs
that OS designers have frequently tackled in Table 4, and
also present a case study for each of them. The software
overhead caused by expensive operations, such as mem-
ory compaction, page migration and TLB flush, can be

Table 4: Classification of typical design choices in Linux
mm based on the analysis of optimization patches.

Trade-off % Case Study
Latency Vs.
Throughput 10.9 disk access upon page fault and swapping.

Synchronous
Vs.

Asynchronous
22.3

With asynchronous method, mm can avoid
delays while executing expensive opera-
tions like swapping, compaction.

Lazy Vs.
Non-lazy 15.6 Expensive operations (e.g., TLB flush,

page migration) can be executed in batch.

Local Vs.
Global 33.1

Maintaining per-process variables im-
proves scalability, but it increases storage
overhead, e.g., slub vs. slab allocator.

Fairness Vs.
Performance 18.1 Fairness guarantee when memory is

shared among multiple processes.

Table 5: Examples of applying lazy policy in Linux mm.

Functionality Example
vmalloc lazy TLB flush, lazy unmapping
mempolicy lazy page migration between nodes
huge memory lazy huge zero page allocation
frontswap lazy backend initialization
cleancache lazy backend registration
backing-dev lazy inode update on disk

significantly alleviated using asynchronous or lazy poli-
cies. However, such benefit is not free because they com-
plicate the program logic, leading into serious runtime
errors like data inconsistency. We will present how the
policy design decisions were made in Linux mm, with a
focus on the new class of mm optimizations.

5.2.2 How are the policy decisions made in mm?

Latency matters in memory manager. This trade-off
of latency vs. throughput centers around the page cache
and write-back component in mm. The I/O requests are
issued in batch and served in a disk-friendly order to ex-
ploit the full bandwidth of disks for high throughput, but
it may increase I/O latency. For instance, the original
design of readahead component favors sequential access
for higher I/O throughput, making the average latency of
random reads disproportionately penalized [68]. A gen-
eral approach on decision-making for this trade-off is to
prioritize the dominate workloads patterns, so systems
pay little or acceptable cost on its downsides.

More interestingly, we identify 137 patches commit-
ted specially for reducing the latencies of mm operations
(e.g., page allocation, vma lookup, page table scanning).
As in-memory systems are becoming pervasive and la-
tency matters to today’s application services, it is worth-
while to build mm profilers or test framework to identify
more latency-critical operations.

Async is popular, but be careful to its faults. Asyn-
chronous operations are widely used to hide expensive
operations in mm. For example, async compaction was
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Table 6: Classification of approaches for fast path optimization in Linux mm.

Type % Description Example
Code

Reduction 34.1 Simplify the fast path logic and reduce redundant
codes.

Avoid redundant get/put page in munlock vma range

as pages will not be referred anymore [50].
Lockless

Optimization 27.3 Reduce the usage of lock and atomic operations. Lockless memory allocator in SLUB [34, 36].

New
Function 11.6 Improve with new mm functionality. New SLUB fast paths are implemented for

slab alloc/free with cmpxchg local [75].
State

Caching 8.2 Cache the states to avoid expensive functions. Pre-calculate the number of online nodes instead of always
calling expensive num online nodes [59].

Inline 6.4 Inline simple functions in fast path. Inline buffered rmqueue [58].
Code

Shifting 4.7 Move unfrequently executed code from fast path to
slow path.

In SLUB allocator, slow path executes the irq enable/disable
handlers, fast path will execute them only at fallback [78].

Group
Execution 4.1 Avoid calling the same function repeatedly. Using pte walk to avoid the repeated full page table trans-

lation and locks in munlock vma pages range [49].
Optimistic

Barrier 3.6 Optimistically skip or reduce the number of barriers,
and re-execute the logic once false failure is detected.

Using only read barriers in get/put mems allowed to ac-
celerate page allocation [13].

introduced to reduce the overhead caused by expensive
memory compaction; the expensive trim command [80]
in SSDs should be issued in parallel with other I/O op-
erations before actual writes happened due to its long la-
tency. We find that the common issues in implementing
async mechanisms located in their fault handlers for ex-
ceptions (e.g., early termination [46]).

Trying lazy policy to alleviate expensive operations.
The key idea of lazy policy is to delay several expensive
operations, and batch them into a single operation or sys-
tem call if semantics are allowed. Table 5 shows a set of
cases that have leveraged lazy policy to reduce the fre-
quency of expensive operations. In contrast to async pol-
icy used usually as mm interacts with slow devices, lazy
policy is more beneficial when mm components interact
with fast devices (e.g., CPU, processor cache, TLB) ac-
cording to our patch studies.

Since lazy policy may change the execution order of
subsequent functions, which would make systems in un-
expected states temporarily, careful examination should
be conducted as we decide whether a specific function
should be delayed or not. For instance, the operation of
flushing virtual cache on vunmap in pcpu unmap cannot
be deferred as the corresponding page will be returned to
page allocator, while TLB flushing can be delayed as the
corresponding vmalloc function can handle it lazily [18].

Decentralizing global structures for better scalabil-
ity. As seen in our patch study, more per-node, per-cpu
variables are replacing their global counterparts to im-
prove the system scalability. For example, new dynamic
per-cpu allocator was introduced to avoid the lock con-
tention involved in memory allocations. This approach
has also been widely adopted in other subsystems such
as device drivers, CPU scheduler and file systems.

Memory resource scheduling for fairness and per-
formance. The trade-off between fairness and perfor-
mance is a well-known yet hard problem. In Linux mm,
we find that this type of patches mainly concentrated on

the memory allocation and reclamation. In page allo-
cation, round-robin algorithm is used to guarantee zone
fairness. However, this algorithm did not consider the
latency disparity across zones, resulting in remote mem-
ory reference and performance regression. During page
reclamation, the allocator reclaimed page in LRU order
which can only provide the fairness for low order pages
but not for pages at higher order, which could penal-
ize the performance of the applications (e.g., network
adapter) that desire high-order pages [38].

Summary: Most of the policy patches are tack-
ling five types of trade-offs. The experiences with
mm development provide us the hints on how and
where each policy would be leveraged in practice.

5.3 Fast Path
To further reduce the software overhead, another opti-
mization approach is to accelerate the commonly exe-
cuted codes, which is named as fast path. We iden-
tify that Linux mm maintains fast paths in most of its
key components, such as memory allocation, memory
resource controller, and virtual memory management.
These fast paths are carefully and frequently re-examined
in every version of Linux kernels, contributing many
patches to the code base of Linux mm. We study these
patches to understand what are the common techniques
leveraged in fast path optimizations.

Based on our patch study, we categorize the tech-
niques used for fast path in Linux mm into eight types
as described in Table 6. We find that code reduction and
lockless optimization are the most commonly used tech-
niques for fast path, which contributed 61.4% of the fast
path related patches. As case studies, we list a set of
patches for these types in Table 6. For instance, on the
fast path for the allocation and deallocation of page table
pages, there are two costly operations: finding a zeroed
page and maintaining states of a slab buffer. To reduce
these overheads, new component called quicklist was in-
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troduced to replace the allocation logic as it touches less
cache lines and has less overhead of slab management.
Another interesting approach is optimistic barrier, which
is proposed to reduce the synchronous overheads caused
by system call like barrier and fence, e.g., the full mem-
ory barriers on both reads and writes are replaced with
only read barriers on the fast path, while re-executing the
code with slow path when false failure is detected.

Summary: There are 8 types of optimizations for
fast path. Code reduction and lockless optimization
are the two most widely used techniques to alleviate
redundant functions and reduce lock contention.

6 Memory Semantics
In order to better understand memory semantics, we
build a tool named MChecker to pinpoint the modi-
fied functions in source code by leveraging the informa-
tion (e.g., which lines of code are changed) provided in
patches. MChecker will place the located functions un-
der the record of the corresponding patch in MPatch. By
analyzing the call graphs of specific memory operations,
we can identify their core functions. And with the infor-
mation provided by MPatch, we can easily understand
what are the common bugs lying in these functions, how
these functions were optimized and etc.

In this paper, we analyze the hot files which are
evolved with more committed patches (see Figure 3).
Due to the space limitation of the paper, we only present
the hot functions that were updated intensively in Ta-
ble 7. Across the 35 major functionalities (the 3rd col-
umn in Table 7), 75.6% of them have more patches for
bugs and optimization than those for code maintenance
and new feature, which demonstrates the main thread of
contributions from the open-source community.

6.1 Memory Allocation
The memory allocation and deallocation functions in the
kernel space are mostly implemented in page alloc,
slab, slub and slob files which are the cores of the
well-known buddy system. As the default memory allo-
cator, slub absorbs 1.6-7.2x more patches than other two
allocators. The functions in these hot files can be catego-
rized into allocation/free, create/destroy and page/cache
management to fulfill the implementation of the user-
space malloc and free functions. As memory alloca-
tors become mature, about half of the relevant patches
are concentrated on the page and cache management
(e.g., cache initialization within kmem cache init, ob-
ject state maintenance within show slab objects).

We find that the mature memory allocation and deal-
location are still suffering from bugs. The allocation and
create functions have more bugs than free and destroy
functions, and these bugs are usually relevant to checking
and lock contentions. The cumbersome checks and lock

protections (due to complicated page states) not only in-
crease the possibility of bug occurrence, but also incur
increasing software overhead. To reduce such software
overhead, an increasing number of improved versions
of allocation functions with fast path are implemented.
For instance, a lockless allocation algorithm based on
the atomic operation this cpu compxchg double im-
proves the allocation performance significantly [83].

Summary: The mature memory allocators still
suffer from serious checking and lock issues due to
the complicated states maintained for memory pages
during their life cycles.

6.2 Memory Resource Controller
In memory resource controller, the majority (93.8%) of
its patches are committed to the memcontrol file. As
more resource is available on today’s machines, the OS-
level resource control named memory cgroup was pro-
posed to support resource management and isolation. It
is motivated to isolate the memory behavior of a group
of tasks from the rest of the system.

To control the usage of memory, charge/uncharge
functions are used to account the number of pages in-
volved along with the running tasks. We find that 26.2%
of the committed patches relate to concurrency issues,
because of the complicated intrinsic operations in these
functionalities. For instance, for a uncharging page, it
may involve actions of truncation, reclaim, swapout and
migration. Interestingly, many of these issues are caused
by missing locks. However, detecting missing locks is
more than a software engineering issue, as it requires
program semantics (e.g., page states) provided by the vir-
tual memory system. Such an observation may give us
the hint that the decoupled memory resource controller
should be integrated into the mm framework to avoid
redundant data structures and software overheads, e.g.,
memcontrol can rely on the existing LRU lists to obtain
page information and schedule pages dynamically.

Moreover, we find that fault handlers suffer from a sig-
nificant portion of bugs, the involved cases include out
of memory (OOM) and allocation failure. Similar trends
are seen in the exception handler component which has
two hot files: memory-failure and oom kill. Most of
them are caused by the inappropriate or wrong handling
of memory errors and exceptions (e.g., [8, 19]). We ex-
pect these findings would reveal the weakness aspect of
Linux mm and supply useful test cases to the memory
testing and debugging tools like mmtests [42, 53].

Summary: Concurrency issues (e.g., missing
lock) are the major concern for the memory resource
controller development. Our study discloses that the
fault handler is still a weak aspect in mm.
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Table 7: The heat map of patches for the hot functions in mm. Functions in each hot file are categorized into sub-types
(the 3rd column). The proportion of each functionality is illustrated in the 4th column. The distribution of bugs (BUG),
code maintenance (CODE), new feature (FTR) and optimization (OPT) is shown across 5-8th columns.

File Functionality % BUG CODE FTR OPT Representative Hot Functions

M
em

or
y

A
llo

ca
tio

n pa
ge

al
lo

c Allocation 24.6 8.1 6.8 2.2 7.4 alloc pages, alloc pages slowpath, rmqueue
Free 19.4 4.8 8.3 1.3 5.0 free one page, free pages bulk, free zone pagesets
Page management 56.0 14.1 22.0 4.4 15.5 build zonelists, zone init free lists, read page state

sl
ab

Create/destroy 11.6 4.1 4.9 1.5 1.2 kmem cache create, kmem cache destroy
Allocation/free 29.8 11.6 12.4 2.0 3.8 cache alloc, kmalloc, kmem cache free
Shrink/grow 6.9 1.7 3.2 0.6 1.4 cache grow, cache reap
Cache management 51.7 8.7 22.2 1.8 19.1 kmem cache init, kmem getpages

sl
ub

Create/destroy 14.9 5.4 4.5 0.4 4.5 kmem cache create, kmem cache destroy
Alloction/free 33.8 9.5 8.1 0.9 15.3 slab alloc, kmalloc large node, kfree, slab free
Slub management 51.4 22.1 9.5 4.1 15.8 kmem cache init, show slab objects

C
on

tr
ol

le
r

m
m

cn
tr Charge/uncharge 26.5 9.3 1.0 2.4 13.8 mem cgroup do charge, mem cgroup try charge,

mem kmem commit charge
Cgroup management 73.5 35.4 7.9 7.2 23.0 mem cgroup alloc, mem cgroup handle oom

E
xp

tH
nd

le
r

fa
ilu

re Fault handler 75.9 38.9 13.0 9.3 14.8 memory failure, collect procs file
Hwpoison 24.1 13.0 1.9 3.7 5.6 hwpoison user mappings, hwpoison filter task

O
O

M Candidate task 53.7 14.8 16.6 7.4 14.8 oom badness, select bad process, oom unkillable task
OOM handler 46.3 24.1 5.6 3.7 13.0 out of memory, oom kill process

V
ir

tu
al

M
em

or
y

M
an

ag
em

en
t

m
em

or
y

Page table 26.3 11.6 10.0 1.6 3.1 do set pte, pte alloc, copy one pte, zap pte range
Page fault 23.4 8.8 7.3 1.5 5.9 do fault, handle mm fault, do shared fault
Paging 25.5 7.3 9.5 5.1 3.6 vm normal page, do anonymous page, do swap page
NUMA support 18.2 6.3 2.1 1.4 8.4 do numa page, access remote vm, numa migrate prep
TLB 6.6 2.2 0.5 1.1 2.8 tlb flush mmu, tlb gather mmu

m
po

l Policy definition 47.7 17.5 15.1 4.7 10.5 mpol new, mpol dup, mpol shared policy lookup
Policy enforcement 52.3 17.4 19.8 9.3 5.8 do mbind, do set mempolicy, vma replace policy

hu
ge

m
m Page table support for

hugepage 68.5 33.7 19.1 2.3 13.5 change huge pmd, do huge pmd numa page,
copy huge pmd

Hugepage alloc 31.5 9.0 13.5 1.1 7.9 hugepage init, alloc hugepage, khugepaged alloc page

hu
ge

tlb Hugepage management 33.7 20.5 4.8 2.4 6.0 alloc huge page, free huge page, hugetlb cow
Hugepage fault 8.4 3.6 1.2 2.4 1.2 hugetlb fault
VM for hugepage 57.8 19.2 27.7 7.2 3.6 hugetlb change protection, vma has reserves

m
m

ap Mmap operations 31.7 13.3 10.0 5.0 3.3 do mmap pgoff, do munmap, exit mmap
VM for mmap 68.3 23.3 21.7 8.3 15.0 mmap pgoff, mmap region, vma adjust

al
lo

c Vmalloc 48.9 17.8 22.2 2.2 6.7 vmalloc node range, vmalloc area node, vmalloc open
Vmap 51.1 13.3 26.7 2.2 8.9 alloc vmap area, vunmap, free vmap area

G
C

vm
sc

an Kswapd 20.0 5.5 7.3 1.8 5.5 kswapd, wakeup kswapd
Shrinker 52.7 12.7 16.3 7.3 16.3 shrink inactive list, shrink page list, shrink zones
GC helper 27.3 7.3 3.6 1.8 14.6 get scan count, pageout, scan control

6.3 Virtual Memory Management

The virtual memory management is the largest com-
ponent in Linux mm, it has six hot files: memory,
memorypolicy, huge memory, hugetlb, mmap and
vmalloc. These hot files which contain the essential el-
ements in virtual memory (e.g., page table, page fault
handler, paging and TLB) has the largest number of
committed patches (see Figure 3). These essential func-
tions which have been developed for decades are still be-
ing updated to support new hardwares (e.g., NVDIMM
and persistent memory [61]), and new usage of memory
(e.g., huge page). And they are still buggy, e.g., even
in the well-developed do set pte function, missing set-

ting the soft dirty bit [79] could cause data inconsistency
if a user space program is tracking memory changes [17].

A core component of memory management is the de-
sign and implementation of memory policies. We gen-
erally categorize the functions for memory policies into
two categories: policy definition and policy enforcement.
We find that policy definition has more optimization
patches than policy enforcement, for instance, new policy
is defined for choosing preferred NUMA node based on
the number of private page faults; the kernel should avoid
immediate memory migrations after switching nodes. As
for bugs in memory policies, we find that 30% of the
patches were applied to address the issues caused by
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missing checks, since memory policies usually count on
many states (e.g., whether page is dirty) and statistics
(e.g., cache hit/miss rate, number of page fault), missing
one check would fail the policy enforcement.

Summary: The well-developed virtual memory
management is still buggy. Specifically, a large por-
tion of issues in policy definition and enforcement
are caused by missing checks.

6.4 Garbage Collection
To preserve a certain amount of available memory pages
for future allocation, Linux mm will garbage collect
unused pages across memory zones. In vmscan, its
functions can be categorized into two major categories:
kswapd (the kernel swap daemon) and shrinker. For the
remaining functions, we define them as GC helper, as
they either provide the statistics of page usage, or han-
dle the page out for shrinker. The kswapd will try to
free pages if the number of free pages in the system
runs low, while shrinker-relevant functions will be called
to scan the corresponding components (e.g., slab cache,
zones), and locate the candidate pages to be freed. Most
interestingly, we find that more patches (52.7%) were
applied to shrinker functions, and 84.1% of them re-
late to memory policies, focusing on how to scan mem-
ory regions with low overhead, and which pages should
be reclaimed. However, the congestion events (22 re-
lated patches, e.g., [39, 51, 87]) during garbage collec-
tion make the memory performance unpredictable, it is
essential to scale the GC process (e.g., per-zone scan-
ning) and use page statistics to coordinate GC activities.

Summary: The shrinker is the hot spot in GC, it
causes unpredictability in memory performance. A
scalable and coordinated GC is desirable.

7 Related Work
The key components of virtual memory were studied
back to 70’s when DRAM first appeared [16]. Over the
past decades, the functionalities of the core components
have been enriched markedly, such as the buddy sys-
tem [33] was proposed in 90’s to remove the internal
fragmentation, and later, general OS support for huge
pages was proposed [21]. Today, the virtual memory
system is still actively improved to support new fea-
tures [3, 30, 72] and hardware [25, 32, 54, 71, 88]. There
is no doubt that the memory manager has become one
of the core subsystems in today’s OS kernel. But few
work has done any studies on the development of virtual
memory system recently (over the past decade). Gorman
et al. [22] analyzed the mm source code in Linux version
2.6.0-test4 (2003), while our work focuses on the study
of patches which were committed to the latest Linux ver-
sions (from 2.6.32, 2009 to 4.0-rc4, 2015).

Patch and bug studies provide us insights on issue pat-
terns in specific system software, and the experiences
along its development. A number of such studies in vari-
ous systems have been conducted recently. Lu et al. [37]
studied the Linux file system patches, Chou et al. [9] in-
vestigated the operating system errors in Linux kernels,
Kadav et al. [29] examined the code base of Linux de-
vice drivers, Palix et al. [60] studied the Linux kernel to
version 2.6.33. We share the same purposes with these
studies, but with a focus on Linux virtual memory sys-
tem. To the best of our knowledge, our work is the first
to conduct such a comprehensive study, which examines
4587 committed patches to Linux memory manager.

Memory issues can lead to serious problems, such as
system crash, data corruption, suboptimal performance,
etc. Many tools [2, 4, 7, 55] were built to address
memory-related errors such as buffer overflows, dangling
pointers, memory leaks in the programming and library
space. Few of the related work is targeting at addressing
the bugs in kernel space. Yang et al. [89] built checkers
to find the bugs in storage and file systems, Prabhakaran
et al. [63] developed a file system with better failure poli-
cies. Such efforts are also required as we build more re-
liable and efficient virtual memory systems. And also, a
specific formal verification [24, 31] for virtual memory
system is needed to verify its policies and implementa-
tion. The insights and bug patterns disclosed in this work
would facilitate the development of these tools.

8 Conclusion
In this paper, we present a comprehensive study of 4587
committed patches in the Linux memory manager over
the last five years. These patches reflect the development
of the virtual memory system. We expect our findings
to benefit the development of existing and future virtual
memory systems, and their associated bug-finding and
debugging tools. Our study would also shed light on
the development of memory manager in relevant OSes
as they share the same principles as Linux kernel.
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