
Computing and Informatics, Vol. 23, 2004, 461–486

AN EVOLVABLE COMBINATIONAL UNIT FOR FPGAS

Lukáš Sekanina, Štěpán Friedl

Faculty of Information Technology

Brno University of Technology

Božetěchova 2

612 66 Brno, Czech Republic

e-mail: sekanina@fit.vutbr.cz, friedl@liberouter.org

Manuscript received 22 December 2004

Abstract. A complete hardware implementation of an evolvable combinational unit
for FPGAs is presented. The proposed combinational unit consisting of a virtual
reconfigurable circuit and evolutionary algorithm was described in VHDL indepen-
dently of a target platform, i.e. as a soft IP core, and realized in the COMBO6
card. In many cases the unit is able to evolve (i.e. to design) the required function
automatically and autonomously, in a few seconds, only on the basis of interactions
with an environment. A number of circuits were successfully evolved directly in the
FPGA, in particular, 3-bit multipliers, adders, multiplexers and parity encoders.
The evolvable unit was also tested in a simulated dynamic environment and used
to design various circuits specified by randomly generated truth tables.

Keywords: Combinational circuit, evolutionary design, evolvable hardware, field
programmable gate array

1 INTRODUCTION

Digital reconfigurable systems typically implemented using field programmable gate
arrays (FPGA) are well suited for various industrial applications, including sig-
nal processing, implementation of encryption/decryption systems, embedded control
systems and network devices such as routers. Reconfigurable computing is performed
in order to effectively utilize available hardware resources and so to maximize the
efficiency of these systems [3, 5, 10]. Reconfigurable systems usually utilize a set of

462 L. Sekanina, Š. Friedl

pre-compiled configurations that are sequentially uploaded into a reconfigurable de-
vice during the running time. The sequence of reconfigurations is either determined
at the design time or emerges dynamically during the running time. However, it
is practically impossible to establish a totally new configuration of hardware that
was not considered at the design time, i.e. to adapt the system to a new environ-
ment.

The possibility of dynamic adaptation of hardware is intensively investigated in
the field of evolvable hardware [11], which uses bio-inspired techniques, in particular
evolutionary algorithms, to achieve the adaptation. By combining evolvable hard-
ware and reconfigurable computing we can accomplish the evolvable computing [32].

The objective of this paper is to propose a technique allowing designers to per-
form evolvable computing at the level of HDL (Hardware Description Language),
i.e. independently of a configuration mechanism of a given reconfigurable device. As
a case study illustrating the method, an evolvable combinational unit for FPGAs will
be introduced. Because the evolvable unit is described at the level of VHDL source
code, i.e. also as a configuration for the FPGA, it can be uploaded into the FPGA
when adaptation is needed. According to the concept of evolvable computing the
unit can be replaced by some other component(s) after the evolution completes its
task and, if needed, later uploaded to the FPGA again. The proposed method rep-
resents an alternative approach to evolvable hardware as the most applied scenario
utilizes a reconfigurable device connected to a personal computer (PC) in which the
evolutionary algorithm is carried out.

In order to demonstrate the concept, we decided to implement a relatively simple
evolvable combinational unit of six inputs and six outputs. The unit is able to evolve
(i.e. to design) the required function autonomously, in a few seconds, only on the
basis of interactions with an environment. It could be classified as a real-time
adaptation for some applications. In our case, and mainly for testing purposes,
a connected PC supplies a truth table specifying the required behavior. A number
of interesting circuits were evolved directly in the FPGA. The circuits are described
and analyzed in Section 5. Furthermore, the evolvable unit was tested in a simulated
dynamic environment.

We utilized the COMBO6 PCI card as an experimental platform. The COMBO6
developed in the Liberouter project is a PCI card primarily dedicated for a dual-
stack (IPv4 and IPv6) router hardware accelerator [18]. This card offers a very high
computational power (FPGA Virtex XC2V3000 by Xilinx, Inc. with more than
3mil. equivalent gates, up to 2GB DDR SDRAM, up to 9Mbit context addressable
memory, etc.) which is suitable for evolvable hardware.

The paper is organized as follows. Section 2 surveys the concept of evolvable
hardware and the role of FPGAs for evolvable hardware. The idea of the virtual
reconfigurable device and its implementation are introduced in Section 3. Section 4
describes the proposed evolvable combinational unit. Experimental results are sum-
marized in Section 5 and discussed in Section 6. Conclusions are given in Sec-
tion 7.

An Evolvable Combinational Unit for FPGAs 463

2 A SURVEY OF RELEVANT RESEARCH

2.1 Evolvable Hardware

Evolvable hardware is an approach in which a physical hardware is created using the
evolutionary algorithm [7, 11, 29, 42]. Typically, a configuration of a reconfigurable
device is encoded in the chromosome of the evolutionary algorithm. The evolution-
ary algorithm is used to find such a configuration, which satisfies the requirements
on the circuit behavior that are formulated in the fitness function. The fitness func-
tion can include behavioral as well as non-behavioral requirements (e.g. functionality
vs. circuit size). As the method is stochastic, the quality of resulting circuits is not
guaranteed. On the other hand, the evolutionary approach is sometimes able to
produce the results that are better than the best conventional solutions known so
far [15, 22, 37]. It is also able to produce a (suboptimal) solution in case that no
conventional solution exists, the reconfigurable circuit is partially damaged or only
a limited time or space is available for the design [14].

The hardware evolution is traditionally carried out on digital reconfigurable de-
vices (such as programmable logic arrays (PLA) [11] or FPGAs [37]) and analog
reconfigurable devices (such as field programmable analog arrays (FPAA) [6] and
field programmable transistor arrays (FPTA) [34, 16]). Nowadays any suitable re-
configurable platform is utilized; for example, a reconfigurable antenna array [19],
reconfigurable molecular array [39] or reconfigurable liquid crystals [9]. If the candi-
date circuits are evaluated directly in a reconfigurable device then the evolution can
exploit real physical properties of the given platform (e.g. features of a given piece
of silicon) or environment (e.g. temperature) and so surprising, novel and (usually)
non-understandable solutions can be provided [14, 38]. The approach is referred to
as the intrinsic evolution. In case of the extrinsic evolution, a circuit simulator is
utilized instead of a physical reconfigurable hardware during the evolutionary pro-
cess and only the best final solution is uploaded into the target device at the end of
the evolutionary design.

In principle, evolvable hardware is beneficial and useful in two areas of engi-
neering interest: (1) for the automatic discovery of novel solutions and (2) for the
implementation of autonomous adaptive hardware devices. In case of the automatic
design of novel circuits, the evolutionary algorithm is used only during the design
phase. The main objective is to obtain novel implementations of electronic circuits
automatically. Many innovative area-efficient, delay-efficient and energy-efficient
circuits were evolved; see [15, 22, 35, 37, 29] for examples. In case of autonomous
adaptive hardware devices, the evolutionary algorithm is responsible for continual
adaptation of a device to the changing environment (e.g. in order to achieve a high-
performance computation) or for the automatic recovery of a device after damage.
The following applications represent typical examples: adaptive image compres-
sion [36], adaptive signal processing [13], functional recovery [14], online learning
of artificial neural networks and robot controllers [25]. In case of the image com-
pression only the evolvable hardware-based solution allowed high-performance and

464 L. Sekanina, Š. Friedl

high-quality printing for electrophotographic printers [12]. All the applications share
a common feature: a suboptimal solution (i.e. not necessarily a perfect solution) is
acceptable if the time constraints are met.

Conventional FPGA-based fault tolerant systems have been developed and uti-
lized for a long time, e.g. [26, 24]. However, these systems are not able to generate to-
tally new configurations after the damage in order to recover the functionality. Their
behavior must be pre-programmed at the design time. One of the pre-programmed
solutions is selected to replace the faulty configuration. On the other hand, it is
assumed that the evolutionary functional recovery can reestablish functionality of
the device for a much wider area of possible faults [14, 38].

2.2 The Role of FPGAs

Some (digital) evolvable systems have been implemented as application specific in-
tegrated circuits (ASICs). Typical examples are surveyed in [12]. However, these
solutions are relatively expensive and not modifiable. We will be interested in the
FPGA-based solutions in this paper. They represent a reasonable implementation
option mainly because of their cost and flexibility. The FPGA-based implementa-
tions of evolvable hardware can be divided into two groups:

(1) The FPGA serves in the fitness calculation only. The evolutionary algorithm
(which is executed on a personal computer or in a digital signal processor (DSP))
sends configuration bitstreams representing candidate circuits to the FPGA in
order to obtain their fitness values. Initial experiments were carried out by
Thompson who has evolved interesting novel circuits and discovered that the
evolution can exploit physical properties of the electronic platform to build a so-
lution [37].

(2) The entire evolvable system is implemented in an FPGA. As an example, we
can mention Tufte’s and Haddow’s research in which they introduced the Com-
plete Hardware Evolution approach where the evolutionary algorithm is imple-
mented on the same chip as the evolving designs [40]. Their very simple system
evolving a few register values is considered as a pipeline and demonstrated on
the adaptive 1D signal filtering task. Perkins et al. presented a self-contained
FPGA-based implementation of a spatially structured evolutionary algorithm
that provided significant speedup over conventional serial processing for non-
linear filtering [27]. Hardware implementations of a system for the evolutionary
design of image filters were proposed in [29, 43]. In another approach, Mar-
tin implemented a set of processors on the FPGA that evaluated the programs
generated on the same FPGA [20]. These implementations require a hardware
realization of the evolutionary algorithm—this area is relatively independent of
evolvable hardware. Various solutions have been proposed, for example, see [33].

In case of evolvable hardware, the chromosomes are transformed to the confi-
guration bitstreams and the configuration bitstreams are uploaded into the FPGA.

An Evolvable Combinational Unit for FPGAs 465

A partial reconfiguration allowing the reconfiguration of a selected area of the FPGA
is very useful here. In contrast to the FPGA design with CAD tools, a designer has
to know the format of the configuration data. Xilinx Inc. introduced Jbits to make
this work easier [17]. However, it is not comfortable to decode usually very complex
configuration bitstreams of FPGA vendors. Furthermore, most families of FPGAs
can be configured only externally (i.e. from an external device connected to the
configuration port). The internal reconfiguration means that a circuit placed inside

the FPGA can configure the programmable elements of the same FPGA (which is
important for evolvable hardware). Although the internal configuration access port
(ICAP) has been integrated into the newest Xilinx Virtex II family [2], it is still
too slow for our purposes. We will show in Section 4 that approximately 640 ns are
needed to evaluate a candidate circuit. As soon as the reconfiguration time should be
much shorter than the evaluation time (to make the approach reasonable), we need
to reconfigure the circuit in tens of nanoseconds—but it is not possible using the
existing configuration subsystems of FPGAs. In order to overcome the problem of
the internal reconfiguration, we introduced the concept of the virtual reconfigurable
circuit (VRC) [29], which will be utilized in this paper.

3 VRC AS A RECONFIGURABLE PLATFORM

3.1 The Concept

Virtual reconfigurable circuits were introduced for digital evolvable hardware as
a new kind of rapidly reconfigurable platforms utilizing conventional FPGAs [28, 29].
When the VRC is uploaded into the FPGA then its configuration bitstream has to
cause that the following units will be created in the FPGA: an array of programmable
elements (PE), programmable interconnection network, configuration memory and
configuration port. Figure 1 shows that the VRC is in fact a second reconfiguration
layer (consisting of 8 PEs in the example) developed on the top of an FPGA in order
to obtain fast reconfiguration and application-specific PEs.

A designer has an opportunity to design the VRC exactly according to require-
ments of a given application. In most cases the VRC takes a form of a regular
two-dimensional array of programmable elements. A very efficient and successful
approach—called Cartesian genetic programming (CGP)—has been developed for
the evolutionary design on this structure [21]. The VRC is, in fact, a hardware
implementation of the computational model used in CGP.

3.2 Cartesian Genetic Programming

In CGP, a reconfigurable circuit is modeled as an array of nc (columns)× nr (rows)
programmable nodes. The number of circuit inputs ni and outputs no is fixed.
A node’s input can be connected to the output of some element in the preceding
columns or to some of the circuit inputs. A node has up to nn inputs and a single

466 L. Sekanina, Š. Friedl

Fn1
Fn2

Fn4
Fn3

0
1

inputs
PE2

PE2PE0 PE1 PE3 PE6 PE7

configuration memory

PE0 PE1 PE2 PE7

configuration port of VRC

out1

virtual reconfigurable circuit configuration port of FPGAFPGA

VRC
Genetic
 Unit

CLB

Fig. 1. Example of the internal organization of the virtual reconfigurable circuit. The
programmable element PE2 is shown in detail

output. Every node is programmed to implement one of nf functions defined in
the F set. Finally, the circuit interconnectivity is defined by the levels back para-

meter L, which determines how many preceding columns of nodes may have their
outputs connected to a node in the current column (the primary circuit inputs are
treated in the same way as node outputs). For example, if L = 1, only neighboring
columns may be connected; if L = nc, the full connectivity is enabled. The nodes in
the same column are not allowed to be connected to each other, and any node may
be either connected or disconnected. In general, the circuit outputs can be taken
from any node output. In this paper, feedback is not allowed and thus only the
combinational circuits can be designed.

Figure 2 shows a model of a reconfigurable circuit and its corresponding confi-
guration bitstream uploaded to establish the circuit connection. The configuration
of every programmable node is represented in the chromosome using three integer
values (input1, input2, function), which define the connection of two node inputs
and the function realized in the node. The length of the chromosome measured in
the genes is

Λ = nr.nc.(nn + 1) + no. (1)

The evolution is performed according to the following algorithm, which is a form
based on a 1 + λ evolutionary strategy, where λ = 4, i.e. one parent with four
offspring [1].

Algorithm 1:

(1) Randomly generate five-member initial population of circuits.
(2) Evaluate candidate circuits.
(3) Find the best circuit.
(4) Create λ mutants of the best circuit.
(5) Create a new five-member population using the mutants and the best circuit.

An Evolvable Combinational Unit for FPGAs 467

F0

F1

F1

F1 F0

F1 F0

F1

3

4

5

6

7

8

9

10

0

1

2

inputs outputs

0

6

1

1

3

3

3

2 3

1 4

4

0

7

4

2

Fig. 2. Example of a circuit and its configuration in Cartesian genetic programming with
the following parameters: F = {F0, F1}, nc = 4, nr = 2, ni = 3, no = 2, nn = 2,
nf = 2. The configuration information is: 1, 0, 0; 2, 1, 1; 3, 3, 1; 3, 4, 1; 4, 1, 1; 0, 6,
0; 3, 7, 0; 2, 4, 1; 9; 8. The last two integers determine the connection of the outputs

(6) Evaluate candidate circuits.
(7) If the termination criterion is not satisfied go to step (3).

3.3 Size of the Search Space

Because CGP will be implemented in hardware in Section 4.2, the following para-
graphs are devoted to the summary of theoretical aspects that determine the design
space. Consider that CGP, as defined in Section 3.2, is used to evolve combinational
circuits.

Let a set H contain all logical functions (behaviors) of the form given by the
mapping {0, 1}ni → {0, 1}no. The cardinality of H is

|H| = 2no2ni . (2)

Unfortunately, independently of F (e.g. for F = {AND, NAND, OR, NOR}
as proved in [8]), almost all Boolean functions {0, 1}ni → {0, 1} have a circuit
size complexity (the number of gates required for implementation of a particular
circuit) of at least 2nini

−1. This is known as Shannon’s effect [8]. However, logical
circuits for key computing problems exhibit acceptable size complexity (for instance,
an algorithm for multiplying two n-bit integers can be turned into a Boolean circuit
of quadratic size complexity).

Assume that the outputs are fixed to the last column of PEs and not modified
by evolution. In case that L-back is 1, then the number of chromosomes that form
different configurations of the reconfigurable circuit (i.e. different physical circuits)
is given by

|C| = nncnr

f (ni + nr)
nnnr(nc−1)

nnnnr

i (3)

where |C| is in fact the size of the search space [29].
Note that the so-called unconstrained intrinsic evolution is not considered in

the previous analysis. If it were, then the evolution is allowed to utilize physical
properties of the target platform and other properties of the environment (such as

468 L. Sekanina, Š. Friedl

changing temperature, radiation, etc.) in order to produce the required behavior.
Then the circuit has to be considered as analogue and might exhibit an additional
interesting functionality in comparison to a mere digital logical behavior [35, 37].

3.4 Implementation of the VRC in an FPGA

The implementation of the VRC is based on multiplexers. Figure 1 shows an exam-
ple. The “virtual” PE2 depicted in Figure 1 is controlled using 6 bits determining
the selection of its operands (2 + 2 bits) and its internal function (2 bits). The
routing circuits are created using 4-input multiplexers. The configuration memory
of the VRC is typically implemented as a register array. All bits of the configura-
tion memory are connected to multiplexers that control the routing and selection of
functions in PEs.

Because the array of PEs, routing circuits, configuration memory, style of recon-
figuration and granularity of the new VRC can be designed exactly according to the
requirements of a given application, designers can create an optimized application-
specific reconfigurable device. Furthermore, the VRC is described in HDL, i.e. inde-
pendently of a target platform. It is crucial from our perspective that the VRC can
directly be connected to a hardware implementation of the evolutionary algorithm
placed on the same FPGA. If the structure of the chromosome corresponds to the
configuration interface of the VRC then a very fast reconfiguration can be achieved
(e.g. consuming a few clock cycles only)—which is impossible by means of any other
technique.

4 THE PROPOSED EVOLVABLE UNIT

This section describes a realization of the evolvable combinational unit that was
completely described using VHDL and subsequently implemented on a single FPGA.
A current trend in the design for FPGAs is to compose the digital systems of reusable
IP cores. Since the evolvable unit is completely described in VHDL, it can be reused
as an evolvable IP core. Note that the requirement for evolvable hardware at the
level of IP core has been stressed by the evolvable hardware community [34, 30].

The proposed evolvable combinational unit is an application-specific system for
the evolution of combinational circuits, of 6 user inputs and 6 user outputs, in a few
seconds. Although these circuits are relatively small, they can be useful for the adap-
tive filtering [23], hashing [4] or robot controlling [25] in which large data streams
have to be processed. Note that these small circuits were successfully evolved in
software (extrinsically), e.g. in [22]. As seen from Figure 3, our evolvable system on
a single FPGA consists of the VRC, evolutionary algorithm, circuit evaluation unit
(fitness calculation) and interface to the PCI bus. The following sections descri-
be the design considerations we made, components used, target platform and the
results of synthesis.

An Evolvable Combinational Unit for FPGAs 469

population
memory
4x(8x110)b

fitness
memory
4x16b

random number
generator

mutation
unit

110b config. data

WR - write config.

NC - new config.

VF - fitness is valid

BC - get best config.

16b fitness value

controller

3b column addr registers

all input
combi-
nations
(counter)

required
outputs
(table)

compare

ADD

fitness value
register

controller

Virtual Reconfigurable Circuit

Genetic
Unit

user inputs user outputs

Fitness calculation

configuration
interface

Fig. 3. Evolvable combinational unit: genetic unit, fitness calculation unit and their com-
munication with the VRC

4.1 The Design Considerations

Based on our previous experiments [29, 31] the following CGP parameters were
chosen: nr = 10, nc = 8, ni = 6, no = 6, nn = 2, nf = 8, L = 1. These values
lead to the reasonable cost of hardware implementation of the VRC and reasonable
performance. It is useful that L = 1 because the circuit forms a natural pipeline.

It is assumed that a PE can be connected either to some of the primary inputs
(6 options) or to a PE in the previous column (10 options). In total there are
16 options, i.e. four bits are needed to select the configuration of a single input
of a PE. Because the PE has two inputs and other 3 bits are needed to select its
function, we will need 11 bits to configure a single PE. However, only 9 bits are
required for PEs in the first columns (see Figure 4).

Let us analyze the size of the search space. The number of physically different
circuits is up to |C| (i.e. about 10256), while the number of different logical behaviors
is |H| = 2384 ≈ 10116. In order to make the hardware implementation easier, each
PE will be configured using 11 bits, although only 9 bits are needed for the first
column. Therefore, the length of the chromosome is 10 × 8 × 11 = 880 bits (which
corresponds to the real size of the search space ≈ 10264). It is evident that the
utilized reconfigurable circuit exhibits some redundancy because it is possible to
show that two (or more) different configurations implement the identical behavior.
However, that redundancy is beneficial for the evolutionary design [22].

The choice for 80 PEs roughly corresponds to the Shannon’s effect, which in-
dicates that about 64 PEs are needed to implement any circuit of 6 inputs and
6 outputs if no gates were shared. From the design perspective the only problem is
that only neighboring PEs can be interconnected and the position of the outputs is
fixed. On the other hand, the hardware implementation of the VRC is straightfor-

470 L. Sekanina, Š. Friedl

ward. This is a trade-off of the design since nothing is assumed about the behaviors
that will be realized by the unit.

4.2 Virtual Reconfigurable Circuit

The VRC depicted in Figure 4 consists of 80 PEs equipped with flip-flops allowing
pipelined processing. Each of PEs can be programmed to perform one of eight logic
functions that are evident from the same figure. We recognized these functions useful
during our previous research. The functions 0 (c = a) and 1 (c = b) realize a delay.
Any PE can be connected to some of circuit inputs or to some of the outputs of PEs
placed in the previous column. For instance, in case that the VRC is utilized for
the evolution of 3× 3-bit multipliers, the inputs 0-2 serve for the first operand and
the inputs 3-5 serve for the second operand of the multiplier. In all cases the 6-bit
output is directly connected to the middle PEs of the last column. The remaining
four PEs of the last column are not utilized; however, they are implemented because
the complete implementation is generated automatically (see Section 6) and their
cost is negligible.

Although we restricted the search space substantially by the mentioned strategy
and thus made the evolution of innovative designs probably impossible, we obtained
a relatively cheap implementation in hardware utilizing only relatively inexpensive
16-input multiplexers in the interconnection network.

FF

0: a
1: b
2: a and b
3: a or b
4: not a
5: not b
6: (not a) and b
7: a xor b

Inputs a and b can be
connected either to primary
inputs 0 - 5 or to a PE
in the previous column

configuration memory

WR column config. data3 110

8 x 110b

c

clk

outputs

0

1

2

3

4

5

inputs

0

1

2

3

4

5

a

b

Fig. 4. The virtual reconfigurable device for evolution of 6-input/6-output combinational

circuits

The 880-bit configuration bitstream is divided into eight banks of 110 bits. A sin-
gle bank contains the configuration bits for a single column of the VRC. The con-
figuration bits are stored in the 880-bit configuration register array realized using

An Evolvable Combinational Unit for FPGAs 471

flip-flops available in the FPGA. We need 8 clock cycles to completely change the
configuration information and thus the behavior of the VRC.

4.3 Genetic Engine

The genetic unit consists of 4 × 8 × 110-bit population memory, 4 × 16-bit fitness
memory, mutation unit, comparators, multiplexers, several registers and a controller.
As Figure 5 shows, it provides interface to the VRC and to the fitness calculation.
The pseudo-random numbers are generated using a linear feedback shift register
(LFSR), for simplicity seeded from software via the PCI bus. An analysis of LFSR
for hardware evolution was performed in [20]. The author has shown that the qua-
lity of the generated pseudo-random numbers is comparable to the pseudo-random
numbers generated by a cellular automaton.

population
memory
4x(8x110)b

din

addr

wen

dout

reg. random

reg. new
chromosome

fitness
memory
4x16b

addr

wen

dout
reg. best
fitness

cntr-column

cntr-base

cntr-best addr

din

wen

0

wen mutation
unit

men

generate/
mutate

generate/
mutate

110b
config.
data

WR -
write
config.
data

NC - new config.
VF - fitness is valid
BC - get best config.fitness value (16b)

control signals

controller
(finite
state
machine)

interface to environment (fitness calculation)

interface to VRC

3b column addr

Fig. 5. Internal structure of the genetic unit

The evolvable system works as follows: First, 1024 randomly created circuits are
evaluated and the four best of them are considered as the initial population. This
operation is completely implemented in the FPGA. In order to make the hardware
implementation easier, new populations are produced using a very simple strategy
derived from the algorithm described in Section 3.2. A mutated version of each
chromosome is evaluated. If the obtained fitness value is higher than the fitness value
of its “parent” chromosome, then the mutated chromosome replaces the parent in
the chromosome memory. This is repeated for all chromosomes in the memory until
a correct solution is found or the predefined number of generations is exhausted.

472 L. Sekanina, Š. Friedl

Based on results of experiments, we decided to invert two bits per chromosome on
average by the mutation unit. As no restrictions are applied an arbitrarily chosen
bit can be inverted. The hardware implementation of the mutation is shown in
Figure 6.

From the point of view of evolutionary algorithms the problem of the evolu-
tionary circuit design is hard because the fitness landscape is not usually smooth.
We are looking for a “needle in a haystack”. We performed software simulations
indicating that the standard crossover operators do not improve the quality of the
search. Similarly to [41] we assume that a crossover operator is not useful in this
case, and therefore, no crossover is implemented in hardware. We also verified that
the proposed population-based search outperforms the random search.

pseudo random
numbers

original chromosome

mutated chromosome bit 0

bit 0

Fig. 6. Hardware implementation of mutation

4.4 Fitness Calculation

As Figure 3 shows, a special pipelined unit was designed to evaluate the circuits
uploaded into the VRC. In our case, the unit generates 26 = 64 test vectors (all
possible input combinations are generated using a six bit counter), applies them at
the VRC input, reads the output vectors from the VRC and compares them against
the required vectors (that are stored in a table inside the FPGA). The fitness value
is incremented for every output bit calculated correctly. Therefore, the maximal
fitness value is 384. Unfortunately, the approach is not scalable because the truth
table doubles by adding a single input. In the current implementation the required
behavior (the truth table) is defined in software and can be changed dynamically to
simulate a dynamic environment.

Thanks to pipelining, one output vector is available per a clock cycle. In the
current version, the fitness value is available in 64 + 8 = 72 clock cycles where
the 8 clock cycles represent the configuration and communication overhead. Ne-
vertheless, the overhead can be reduced to one clock cycle in case of the pipelined
reconfiguration (which has not been implemented yet).

An Evolvable Combinational Unit for FPGAs 473

4.5 Synthesis for the COMBO6

We decided to use the COMBO6 card (see Figure 7) for our experiments, because
it offers us a sufficient performance and capacity of the FPGA. Nevertheless, the
primary advantage of the proposed approach is that any FPGA-based system of
sufficient capacity can be used.

Fig. 7. The COMBO6 PCI card with Xilinx FPGA Virtex XC2V3000

The evolvable system was modeled in VHDL using ModelSim. After sim-
ulations, the design was synthesized using LeonardoSpectrum to Virtex FPGA
XC2V3000bf957, which is available on the COMBO6 card. The entire evolvable
system requires 470 385 equivalent gates. Table 1 summarizes the results of synthe-
sis. For instance, while the genetic unit requires 1937 function generators and 1001
flip-flops (or latches), the VRC utilizes 2141 function generators and 940 flip-flops
(or latches).

Resource Used Avail Utilization

IOs 40 684 5.85%
CLB Slices 2761 14336 19.26%
Function Generators 5522 28672 19.26%
Dffs or Latches 2594 30724 8.44%
Block RAMs 5 96 5.21%
Block Multipliers 0 96 0.00%

Table 1. Results of synthesis

The population is stored in Block RAMs for this implementation. The design
can operate at 77.4MHz. The results that will be described in the next section
were obtained using 50MHz only because of easier synchronization with the PCI
interface. However, there is a potential to go beyond 120MHz by optimizing some
parts of the design.

474 L. Sekanina, Š. Friedl

5 EXPERIMENTAL RESULTS

This section summarizes the results we obtained during testing of the evolvable
combinational unit. First we tried to evolve conventional combinational circuits,
such as 3-bit multipliers, 3-bit adders, multiplexers and parity encoders. Then we
randomly generated various behaviors (truth tables) and were interested whether
a circuit can be evolved to satisfy the given requirement. Finally, we investigated
the time of adaptation.

5.1 Three-bit Multiplier

The evolutionary design of the 3-bit multiplier is a traditional “benchmark” prob-
lem in the evolvable hardware literature [22, 31]. Figure 8 shows an example of
the evolved 3 × 3-bit multiplier, which utilizes 57 PEs. This circuit was evolved
after 2 450 851 generations. We performed 100 runs and obtained the fully correct
solutions in all cases and in generation 4 975 829 on average. In total 125 million
generations were allowed. A typical process of evolution is shown in Figure 9. Con-
sidering the average number of generations, the time of evolution is

t =
g · p(v + c)

fm
=

4975829.4(64+ 8)

50 · 106
= 28.6 sec (4)

where g is the number of generations, p is the population size, v is the number of
test vectors and c denotes the overhead. Considering fm = 100MHz (which we will
reach with the optimized design) then we can obtain the design time 14.3 sec. on
average.

It is interesting that when we change some values in the required truth table
(e.g. we require 3 × 5 = 18, 3 × 6 = 21, 3 × 7 = 24) then the problem becomes
more complicated. Although the correct solution was discovered for this modified
“multiplier” in each run, the evolution required much more generations to find the
solution (20 million on average). An explanation is that the modified problem does
not show the symmetric truth table, while the original problem does. Section 5.5
illustrates how difficult is to evolve a circuit for a randomly generated specification
(i.e. for the irregular truth table).

Table 2 summarizes all results for conventional circuits measured on the evolv-
able unit running at 100MHz. These results were obtained after 100 independent
runs for each problem.

5.2 Three-bit Adder

The 3-bit adder uses the two 3-bit inputs and the 4-bit output. No input carry is
considered. The remaining two outputs are required to be at logic zero. We utilized
the same experimental setup as in the case of multiplier. As Table 2 indicates, this
problem is much easier than the design of a 3-bit multiplier. Figure 10 shows an
example of the evolved adder.

An Evolvable Combinational Unit for FPGAs 475

Fig. 8. A 3× 3-bit pipelined multiplier evolved in the FPGA. Some PEs were not utilized
and can be removed. The functions of PEs are numbered according to Figure 4

200

250

300

350

400

0 2000 4000 6000 8000 10000 12000 14000

fit
ne

ss
 v

al
ue

 (
10

0%
 =

 3
84

)

time [ms]

fitness
100%

Fig. 9. A typical process of evolution of the 3-bit multiplier (at 50MHz)

476 L. Sekanina, Š. Friedl

Fig. 10. A 3-bit pipelined adder evolved in the FPGA

5.3 Multiplexer

The proposed multiplexer uses four data inputs (D0–D3), two address inputs
(A0–A1) and a single output. The remaining five outputs are required to be at
logic zero. We utilized the same experimental setup as in the previous designs.
Figure 11 shows an example of the evolved multiplexer.

5.4 Parity Encoder

The 6-input parity encoder indicates the odd occurrence of logical ones applied at
the input. The remaining five outputs are required to be at logic zero. We utilized
the same experimental setup as in the previous designs. Table 2 illustrates that this
is the easiest problem we dealt with in the set of experiments. Figure 12 shows an
example of the evolved parity encoder.

An Evolvable Combinational Unit for FPGAs 477

Fig. 11. A six-input multiplexer evolved in the FPGA. Only utilized PEs are shown

Fig. 12. A parity encoder evolved in the FPGA. Only utilized PEs are shown

5.5 Randomly Generated Functions

The previous sections have shown that the evolutionary design of small conventional
circuits is not difficult and actually very fast. In order to explore the limits of the
evolvable unit, we tried to evolve combinational circuits of six inputs and k out-
puts (where k = 1, . . . , 6) whose behaviors were specified by randomly generated
truth tables. For each k we randomly generated 100 behaviors (truth tables) and
performed the evolutionary design of corresponding circuits, allowing 125 million
generations (i.e. 6 minutes) for each run. Table 3 shows that a correct solution (i.e.
the circuit with the fitness value 384) was found practically in all cases when k = 1

478 L. Sekanina, Š. Friedl

Circuit Required generation Fitness value Design time [sec]

3-bit multiplier average 4,975,829 384 14.330
std. dev. 3,112,608 0

min 1,375,846 384
max 16,489,055 384

3-bit adder average 86,144 384 0.248
std. dev. 55,037 0

min 13,186 384
max 334,053 384

multiplexor average 17,880 384 0.051
std. dev. 7,600 0

min 4,590 384
max 43,601 384

parity enc. average 3,176 384 0.009
std. dev. 1,775 0

min 555 384
max 9,689 384

Table 2. The results obtained for conventional circuits: the number of needed generations,
the obtained fitness values and the average design time (assuming fm = 100MHz)

or 2. No correct solution appeared for larger ks. We measured the average, minimal
and maximal fitness values and the standard deviation for each set of circuits for
a given k. As soon as the problem becomes harder (k increases), the average fitness
value decreases. However, in the worst case (k = 6), the average fitness value is
still 339, which corresponds to 88% of the required value.

5.6 The Adaptation Time

Although the unit is able to generate only simple combinational circuits, it could still
be suitable for various applications in which the adaptation time can take several
seconds and a possible non-perfect solution is acceptable.

It is assumed in these applications that the requirements on behavior of the
device are changed dynamically. In our case it will be simulated by injecting some
changes into the specification (i.e. the truth table will be changed dynamically). As
a typical application, we can mention a robot controller in which the evolvable unit
realizes a mapping of the input sensor signals to the control of motors of wheels. The
mapping is changed dynamically as the robot moves in an unknown environment
during the learning phase. Therefore, it is much more important to obtain a solution
(perhaps suboptimal) in a reasonable time than to wait for the optimal solution for
a long time. Note that the adaptation is also required in applications in which
the problem specification remains unchanged, but the physical platform is changed
because of damage or malfunctions. However, that is not a primary focus of this
work.

An Evolvable Combinational Unit for FPGAs 479

Circuit Generation Fitness Design time [sec]

6inp1out average 876,334 384.00 2.524
std. dev. 636,457 0

min 101,353 384.00
max 3,769,178 (100x) 384.00

6inp2out average 33,206,207 383.97 95.634
std. dev. 24,640,136 0.17

min 1,688,659 383.00
max 116,978,551 (97x) 384.00

6inp3out average 75,257,854 379.44 216.743
std. dev. 30,099,855 1.71

min 10,467,567 375.00
max 124,955,462 (1x) 383.00

6inp4out average 79,666,503 368.57 229.440
std. dev. 29,168,135 2.51

min 14,488,953 361.00
max 124,523,767 (2x) 374.00

6inp5out average 74,457,446 354.18 214.437
std. dev. 28,600,970 3.07

min 13,424,232 348.00
max 122,953,216 (3x) 360.00

6inp6out average 68,708,267 338.92 197.880
std. dev. 30,050,336 4.14

min 8,579,893 330.00
max 124,429,008 (1x) 351.00

Table 3. The results obtained for 100 randomly generated circuits in each set of 1–6 out-
puts: the number of needed generations, the obtained fitness value and the average
design time (assuming fm = 100MHz, max. 125 million generations)

First, we will assume that the changes in the specification are significant. Hence
the evolutionary design process will be restarted for every newly coming requirement
on the circuit behavior. On the other hand, in case of the minor changes, it could
be sufficient to improve only the best solution evolved so far. Therefore, in our case,
the time of adaptation is given by the time of evolution starting from the completely
random chromosomes.

We repeated the experiments from Section 5.5; however, the time of evolu-
tion was restricted to 0.125, 1.25, 12.5, and 125 million generations (corresponding
to 0.36 sec., 3.6 sec., 36 sec. and 360 sec.) in order to investigate the time of adapta-
tion of the evolvable unit with various k and under the time constraints. The results
plotted in Figure 13 show how good circuits can be expected after the given time that
is available for evolution. These values represent the averages of 100 independent
runs. The corresponding standard deviations lie in the range 0–4.55.

Figure 14 shows a typical adaptation a 6 input/2 output circuit in case that only
the minor changes are injected into the specification (truth table). The five bits were

480 L. Sekanina, Š. Friedl

300

320

340

360

380

400

0.1 1 10 100 1000

av
er

ag
e

fit
ne

ss
 v

al
ue

 (
10

0%
 =

 3
84

)

generation [x 10^6], (1 million generations ~ 3 sec. in HW at 100 MHz)

out1
out2
out3
out4
out5
out6
90%

100%

Fig. 13. The average fitness values obtained after a given time of evolution for circuits of
6 inputs and 1–6 outputs

inverted in the truth table after reaching the maximal value (384) for the previous
specification. In this example, a perfect circuit was obtained after 46 seconds (on
average for the unit running at 100 MHz) in all 20 cases. We can observe that very
good suboptimal values are reached in less than one second.

6 DISCUSSION

All conventional circuits were evolved successfully in all runs that we performed. As
the number of outputs increases it becomes harder to evolve a perfectly operating
circuit in case that its behavior is described by means of a randomly generated truth
table. We were not able to evolve any perfect circuit with three or more outputs
although a lot of time was available for the evolution. It seems that the proposed
unit is not able to do it at all. We think that the reason is twofold. First, the unit
does not have sufficient resources (PEs, interconnection options, etc.). Second, the
evolutionary algorithm is not efficient. However, these reasons represent the trade-
off mentioned in Section 4.1. A small improvement in the performance will probably
lead to more expensive hardware implementations. On the other hand, Figure 13
shows that the unit is able to produce close to perfect circuits in a few seconds (with
the fitness value better than 90%) for almost all specifications expressed by means
of truth tables.

We have also to mention that it was not our goal to minimize the number
of gates used in the evolved circuits. Considering evolvable adaptive systems (in

An Evolvable Combinational Unit for FPGAs 481

350

355

360

365

370

375

380

385

390

395

400

0 200 400 600 800 1000

fit
ne

ss
 v

al
ue

 (
10

0%
 =

 3
84

)

time [sec]

fitness value

Fig. 14. A typical adaptation of a 6 input/2 output circuit in case that five bits are in-
verted in the specification (truth table) after reaching the maximal value (384) for
the previous specification. These results are given for 100MHz

which the evolutionary algorithm is a part of the target system), there is usually
no requirement to minimize the number of elements utilized in evolved circuits.
All the PEs physically exist in the system and they are available for free for the
evolutionary purposes; as opposed to the strategy used in the evolutionary design of
a single circuit [29]. The advantage of the evolved circuits is that they are inherently
pipelined, which is useful for processing large data sets.

A software tool for the evolutionary design of combinational circuits has been
developed allowing 1 million generations to be processed in 18 seconds on Pentium4
at 2.6GHz. The proposed unit operating at 100MHz is able to process 1 million
generations in 3 seconds, i.e. the evolution is six times faster. However, the software
simulator operates with 32-bit gates, so it can evaluate 32 test vectors in parallel.
Considering this, the FPGA implementation is in fact 192 times faster. Note that the
hardware implementation of the 32-bit reconfigurable PEs is very area-consuming in
the VRC. In contrast to the evolutionary design of analog circuits using essentially
slow simulators of analog circuits, the software simulator of digital CGP is very fast,
so the obtained speedup is not impressive.

As far as the complete evolvable system is implemented on a part of the FPGA,
this design solution is potentially suitable for adaptive embedded systems in which
a common approach to evolvable hardware (i.e. the FPGA configured by a PC
executing the evolutionary algorithm) can not be used or an ASIC-based approach
is not an option because of higher cost.

482 L. Sekanina, Š. Friedl

The design of evolvable systems on FPGAs can be made easier by using CAD
tools. A suite of design tools has been proposed in [31]. The basic idea behind the
design system is that the user specifies the target application at a higher level of
abstraction. The design system is able to automatically generate VHDL code of
the application that can subsequently be synthesized for various target platforms.
Hence the proposed evolvable unit can quickly be re-designed according the needs
of a given application.

The proposed unit can easily be uploaded into an FPGA and so to make the
FPGA evolvable. When the adaptive behavior is not required, the FPGA can be
reconfigured to perform another task. The implementation cost of the unit is re-
latively high if compared to the size of evolved circuits. On the other hand, the
approach is not suitable only for the evolution of small combinational circuits but
also for the evolution of more complicated circuits at the functional level as it was
shown in the area of image filtering [29]. The image filtering is a typical problem
in which only a subset of all possible input combinations is tested in the fitness
function.

7 CONCLUSIONS

An evolvable combinational unit was designed and implemented in the COMBO6
card. The unit is able to synthesize 6-input/6-output pipelined combinational cir-
cuits, in a few seconds, only on the basis of interactions with an environment. In
particular we evolved the following circuits directly in hardware: 3-bit multipliers,
3-bit adders, multiplexers, parity encoders and a few hundreds of circuits whose
behaviors were specified by randomly generated truth tables.

We have proposed a new approach to the implementation of evolvable hardware
on common FPGAs and demonstrated its advantages and disadvantages on a non-
trivial problem. We do believe that the method represents a step towards routine
designing of evolvable systems. In fact, the problem of digital evolvable hardware
design was completely transformed to the software domain by means of the proposed
method since the complete design process becomes independent of a target device.

Acknowledgment

The research was performed with the Grant Agency of the Czech Republic un-
der No. 102/03/P004 Evolvable hardware based application design methods and No.
102/04/0737 Modern methods of digital system synthesis. Štěpán Friedl was sup-
ported by 6NET project (IST-2001-32603) and the CESNET’s Programmable hard-

ware project.

An Evolvable Combinational Unit for FPGAs 483

REFERENCES

[1] Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press,
New York Oxford 1996.

[2] Blodget, B.—Roxby, J.—Keller E.—McMillan, S.—Sundararajan, P.:
A Self-Reconfiguring Platform. In: Proc. of the 13th Conference on Field Pro-
grammable Logic and Applications FPL ’03, Lisbon, Portugal, LNCS 2778, Springer-

Verlag, 2003, pp. 565–574.

[3] Bondalapati, K.—Prasanna, V. K.: Reconfigurable Computing Systems. Proc.
of the IEEE, Vol. 90, 2002, No. 7, pp. 1201–1217.

[4] Damiani, E.—Liberali, V.—Tettamanzi, A.: Evolutionary Design of Hashing
Function Circuits Using an FPGA. In: Proc. of the 2nd Conference on Evolvable
Systems: From Biology to Hardware, ICES ’98, Lausanne, Switzerland, LNCS 1478,
Springer Verlag, Berlin, 1998, pp. 36–46.

[5] Daněk, M.—Honźık, P.—Kadlec, J.—Matoušek, R.—Pohl, Z.: Reconfigu-
rable System-on-a-Programmable-Chip Platform. In: Proc. of the 7th IEEE Design
and Diagnostics of Electronic Circuits and Systems Conference, Stará Lesná, Slovakia,
Institute of Informatics, Bratislava, 2004, pp. 21–28.

[6] Flockton, S. J.—Sheehan, K.: Intrinsic Circuit Evolution Using Programmable
Analogue Arrays. In: Proc. of the 2nd Conf. on Evolvable Systems: From Biology
to Hardware ICES98, Lausanne, Switzerland, LNCS 1478, Springer Verlag, Berlin,
1998, pp. 144–153.

[7] Gordon, T.—Bentley, P.: On Evolvable Hardware. Soft Computing in Indus-

trial Electronics, ed by Ovaska, S., Sztandera, L. Physica-Verlag, Heidelberg 2001,
pp. 279–323.

[8] Gruska, J.: Foundations of Computing. Int. Thomson Publishing Computer Press
1997.

[9] Harding, S.—Miller, J.: Evolution in Materio: Initial Experiments with Liquid
Crystal. In Proc. of the 2004 NASA/DoD Conference on Evolvable Hardware, Seattle,
USA, IEEE Computer Society Press, 2004, pp. 298–305.

[10] Hartenstein, R.: Configware/Software Co-Design: Be Prepared for the Next Re-
volution. In: Proc. of the 5th IEEE Design and Diagnostics of Electronic Circuits
and Systems Workshop, Brno, Czech Republic, 2002 Brno University of Technology,
Brno 2002, pp. 19–34.

[11] Higuchi, T. et al.: Evolving Hardware with Genetic Learning: A First Step To-
wards Building a Darwin Machine. In: Proc. of the 2nd International Conference on
Simulated Adaptive Behaviour, MIT Press, Cambridge MA 1993, pp. 417–424.

[12] Higuchi, T. et al.: Real-World Applications of Analog and Digital Evolvable Hard-
ware. IEEE Trans. on Evolutionary Computation. Vol. 3, 1999, No. 3, pp. 220–235.

[13] Kajitani, I. et al.: A Gate-Level EHW Chip: Implementing GA Operations and
Reconfigurable Hardware on a Single LSI. In: Proc. of the 2nd Conference on Evolv-
able Systems: From Biology to Hardware, ICES ’98, Lausanne, Switzerland, LNCS
1478, Springer Verlag, Berlin, 1998, pp. 1–12.

484 L. Sekanina, Š. Friedl

[14] Keymeulen, D.—Zebulum, R. S.—Duong, V.—Guo, X.—Ferguson, I.—

Stoica, A.: High Temperature Experiments for Circuit Self-Recovery. In Proc.
of Genetic and Evolutionary Computation Conference, GECCO2004, Seattle, USA,
LNCS 3102, Springer Verlag, Berlin, pp. 792–803.

[15] Koza, J. R.—Keane, M. A.—Streeter, M. J.: What’s AI Done for Me Late-
ly? Genetic Programming’s Human-Competitive Results. IEEE Intelligent Systems,
May/June 2003, pp. 25–31.

[16] Langeheine, J.—Becker, J.—Foilling, S.—Meire, K.—Schemmel, J.:
A CMOS FPTA Chip for Intrinsic Hardware Evolution of Analong Electronic Cir-
cuits. In Proc. of the Third NASA/DoD workshop on Evolvable Hardware. Long
Beach, CA, IEEE Computer Society, 2001, pp. 172–175.

[17] Levi, D.—Guccione, S. A.: GeneticFPGA: A Java-based Tool for Evolving Stable
Circuits. In: Reconfigurable Technology: FPGAs for Computing and Applications,
Proc. SPIE 3844, Bellingham, WA, 1999, pp. 114–121.

[18] Liberouter web site: www.liberouter.org.

[19] Linden, D. S.: Optimizing Signal Strength In-Situ Using an Evolvable Antenna Sys-
tem. In: Proc. of the 4th NASA/DoD Conference on Evolvable Hardware, Alexandria,
Virginia, USA, 2002, IEEE Computer Society, 2002, pp. 147–151.

[20] Martin, P.: Genetic Programming in Hardware. PhD thesis, University of Essex,
UK, 2003, 202 pp.

[21] Miller, J.—Thomson, P.: Cartesian Genetic Programming. In: Proc. of
the 3rd European Conference on Genetic Programming, LNCS 1802, Springer Verlag,
Berlin, 2000, pp. 121–132.

[22] Miller, J.—Job, D.—Vassilev, V.: Principles in the Evolutionary Design of
Digital Circuits – Part I. Genetic Programming and Evolvable Machines, Vol. 1,
2000, No. 1, pp. 8–35.

[23] Miller, J.: Evolution of Digital Filters Using a Gate Array Model. In: Proc. of the
Evolutionary Image Analysis, Signal Processing and Telecommunications Workshop.
LNCS 1596, Springer Verlag, Berlin, 1999, pp. 121–132.

[24] Mitra, S. et al.: Reconfigurable Architecture for Autonomous Self-Repair. IEEE
Design and Test of Computers. May-June 2004, pp. 228–240.

[25] Nolfi, S.—Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines, MIT Press, Cambridge MA 2000.

[26] Pradhan, D. K.: Fault-Tolerant Computer System Design. Prentice Hall 1996.

[27] Perkins, S.—Porter, R.—Harvey, N.: Everything on the Chip: A Hardware-

Based Self-Contained Spatially-Structured Genetic Algorithm for Signal Processing.
In: Proc. of the 3rd Int. Conf. on Evolvable Systems: From Biology to Hardware,
Edinburgh, Scotland, LNCS 1801, Springer-Verlag, 2000, pp. 165–174.

[28] Sekanina, L.—Růžička, R.: Design of the Special Fast Reconfigurable Chip Using
Common FPGA. In: Proc. of the 3rd IEEE Design and Diagnostics of Electro-
nic Circuits and Systems, DDECS ’00, Polygrafia SAF Bratislava, Slovakia 2000,
pp. 161–168.

[29] Sekanina, L.: Evolvable Components: From Theory to Hardware Implementations.
Natural Computing Series, Springer Verlag, Berlin 2003.

An Evolvable Combinational Unit for FPGAs 485

[30] Sekanina, L.: Towards Evolvable IP Cores for FPGAs. In: Proc. of the 2003

NASA/DoD Conference on Evolvable Hardware, Chicago, USA, IEEE Computer
Society Press, 2003, pp. 145–154.

[31] Sekanina, L.—Friedl, S.: On Routine Implementation of Virtual Evolvable De-

vices Using COMBO6. In Proc. of the 2004 NASA/DoD Conference on Evolvable
Hardware, Seattle, USA, IEEE Computer Society Press, 2004, pp. 63–70.

[32] Sekanina, L.: Evolvable Computing by Means of Evolvable Components. Natural

Computing. Vol. 3, 2004, No. 3, pp. 323–355.

[33] Shackleford, B. et al.: A High-performance, Pipelined, FPGA-based Genetic Al-
gorithm Machine. Genetic Programming and Evolvable Machines. Vol. 2, 2001, No. 1,
pp. 33–60.

[34] Stoica, A. et al.: Evolution of Analog Circuits on Field Programmable Transistor
Arrays. In: Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, Palo
Alto, CA, USA, 2000, IEEE Computer Society, 2000, pp. 99–108.

[35] Stoica, A.—Zebulum, R. S.—Guo, X.—Keymeulen, D.—Ferguson, M. I.—

Duong, V.: Taking Evolutionary Circuit Design from Experimentation to Imple-
mentation: Some Useful Techniques and Silicon Demonstration. IEE Proceedings on

Computers and Digital Techniques – Special Issue on Evolvable Hardware, Vol. 151,
2004, No. 4, pp. 295–300.

[36] Tanaka, M. et al.: Data Compression for a Digital Color Electrophotographic

Printer with Evolvable Hardware. In: Proc. of the 2nd Conference on Evolvable Sys-
tems: From Biology to Hardware, ICES ’98, Lausanne, Switzerland, LNCS 1478,
Springer Verlag, Berlin, 1998, pp. 106–114.

[37] Thompson, A.: Hardware Evolution: Automatic Design of Electronic Circuits in
Reconfigurable Hardware by Artificial Evolution. Distinguished Dissertation Series,
Springer, London 1998.

[38] Thompson, A.—Layzell, P.—Zebulum, R. S.: Explorations in Design Space:
Unconventional Electronics Design Through Artificial Evolution. IEEE Trans. on
Evolutionary Computation. Vol. 3, 1999, No. 3, pp. 167–196.

[39] Tour, J. M.: Molecular Electronics. World Scientific, 2003.

[40] Tufte, G.—Haddow, P.: Prototyping a GA Pipeline for Complete Hardware Evo-
lution. In: Proc. of the 1st NASA/DoD Workshop on Evolvable Hardware, Pasadena,

CA, IEEE Computer Society, Los Alamitos, 1999, pp. 143–150.

[41] Vassilev, V.—Miller, J.—Fogarty, T.: On the Nature of Two-Bit Multiplier
Landscapes. In: Proc. of the 1st NASA/DoD Workshop on Evolvable Hardware,
Pasadena, CA, IEEE Computer Society, Los Alamitos, 1999, pp. 36–45.

[42] Yao, X.—Higuchi, T.: Promises and Challenges of Evolvable Hardware. IEEE
Transactions on Systems, Man, and Cybernetics. Vol. 29, 1999, No. 1, pp. 87–97.

[43] Zhang, Y.—Smith, S.—Tyrrell, A.: Digital Circuit Design Using Intrinsic
Evolvable Hardware. In Proc. of the 2004 NASA/DoD Conference on Evolvable Hard-
ware, Seattle, USA, IEEE Computer Society Press, 2004, pp. 55–62.

486 L. Sekanina, Š. Friedl

Lukáš Sekanina, Ph.D. received all his degrees from Brno

University of Technology, Czech Republic. Currently he is an
assistant professor at the Faculty of Information Technology,
Brno University of Technology. He was a Fulbright scholar with
NASA Jet Propulsion Laboratory, Pasadena (2004), a visiting
lecturer with Pennsylvania State University (2001) and a vis-
iting researcher with Department of Informatics, University of
Oslo, Norway (2001). He is the author of monograph Evolv-
able Components (Springer Verlag, 2003) and (co)author of more
than 30 refereed conference/journal papers mainly on evolvable

hardware. His research interests are focused on the theory, design and hardware imple-
mentations of bio-inspired computational systems.

Štěpán Friedl received MSc degree in the electrical engineer-
ing and computer science from the Faculty of Information Tech-
nology, Brno University of Technology in 2003. Currently he is
a hardware designer with the CESNET’s Programmable Hard-
ware project. His research interests are focused on the FPGA

design, networking and evolvable hardware.

