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1. Introduction
Most combinatorial optimization problems that need to be
solved in practical applications turn out to be members of
the class of NP-hard problems. Algorithmic research for
several decades has provided strong evidence that for all of
these problems, it is highly unlikely that there is a polyno-
mial algorithm. Such an algorithm is guaranteed to find an
optimal solution in time that, even in the worst case, can be
bounded by a polynomial in the size of the input. If no such
bound can be guaranteed, the necessary time for solving
instances tends to grow very quickly as the instance size
increases. That is why NP-hard problems have also been
dubbed intractable. See the classical monograph by Garey
and Johnson (1979) for an overview.
When confronted with an NP-hard problem, there are

several ways to deal with its computational difficulty:
We can look for a different problem. While this way out

may be quite reasonable in a theoretical context, it tends to
work less well when a problem arises in practical applica-
tions that have to be solved somehow.
We can look for special properties of a problem instance

or relax unimportant constraints to get a polynomial algo-
rithm. Unfortunately, practical instances and their addi-
tional constraints tend to be more difficult at a second
glance, rather than simpler.
We can look for a good solution instead of an optimal

one. This approach has received an increasing amount of

attention in recent years. In particular, there has been a
tremendous amount of research dealing with polynomial
time approximation algorithms that are guaranteed to find
a solution within a fixed multiplicative constant of the opti-
mum. See Hochbaum (1996) for an overview.
We can look for an optimal solution without a bound on

the run time. While the time for finding an optimal solution
may be quite long in the worst case, a good understand-
ing of the underlying mathematical structure may allow
it to find an optimal solution (and prove it) in reason-
able time for a large number of instances. A good exam-
ple of this type can be found in Grötschel (1980), where
the exact solution of a 120-city instance of the traveling
salesman problem is described. In the meantime, bench-
mark instances of size up to 13,509 and 15,112 cities have
been solved to optimality (Applegate et al. 1998), showing
that the right mathematical tools and sufficient computing
power may combine to explore search spaces of tremen-
dous size. In this sense, intractable problems may turn out
to be quite tractable.
In this paper, we consider a class of problems that is

not only NP-hard, but also difficult in several other ways.
Packing rectangles into a container arises in many indus-
tries, where steel, glass, wood, or textile materials are cut,
but it also occurs in less obvious contexts, such as machine
scheduling or optimizing the layout of advertisements
in newspapers. The three-dimensional problem is impor-
tant for practical applications such as container loading
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or scheduling with partitionable resources. Other applica-
tions arise from allocating jobs to reconfigurable computer
chips—see Teich et al. (2001). For many of these problems,
objects must be positioned with a fixed orientation; this is
a requirement that we will assume throughout the paper.
The d-dimensional orthogonal knapsack problem (OKP-d)
requires selection of a most valuable subset S from a given
set of boxes, such that S can be packed into the container.
Being a generalization of the one-dimensional bin-packing
problem, the OKP-d is NP-complete in the strict sense.
Other NP-hard types of packing problems include the strip-
packing problem (SPP), where we need to minimize the
height of a container of given width, such that a given set
of boxes can be packed, and the orthogonal bin-packing
problem (OBPP), where we have a supply of containers of
a given size and need to minimize the number of containers
that are needed for packing a set of boxes. The decision
version of these problems is called the orthogonal packing
problem (OPP), where we have to decide whether a given
set of boxes fits into a container.
Relatively few authors have dealt with the exact solu-

tion of orthogonal knapsack problems. All of them focus
on the problem in two dimensions. One of the reasons is
the difficulty of giving a simple mathematical description
of the set of feasible packings: As soon as one box is
packed into the container, the remaining feasible space is no
longer convex, excluding the straightforward application of
integer programming methods. Biró and Boros (1984) give
a characterization of nonguillotine patterns using network
flows, but derived no algorithm. Dowsland (1987) proposes
an exact algorithm for the case that all boxes have equal
size. Arenales and Morabito (1995) extend an approach for
the guillotine problem to cover a certain type of nonguil-
lotine patterns. So far, only three exact algorithms have
been proposed and tested for the general case. Beasley
(1985) and Hadjiconstantinou and Christofides (1995) give
different 0-1 integer programming formulations of this
problem. Even for small-problem instances, they have to
consider very large 0-1 programs, because the number of
variables depends on the size of the container that is to
be packed. The largest instance that is solved in either
article has nine out of 22 boxes packed into a 30 × 30
container. After an initial reduction phase, Beasley gets
a 0-1 program with more than 8,000 variables and more
than 800 constraints; the program by Hadjiconstantinou
and Christofides still contains more than 1,400 0-1 vari-
ables and over 5,000 constraints. From Lagrangean relax-
ations, they derive upper bounds for a branch-and-bound
algorithm, which are improved using subgradient optimiza-
tion. The process of traversing the search tree corresponds
to the iterative generation of an optimal packing. More
recent work by Caprara and Monaci (2004) on the two-
dimensional knapsack problem uses our previous results
(cited as Fekete and Schepers 1997a, 1997d) as the most
relevant reference for comparison; we compare our results

and approaches later in this paper and discuss how a com-
bination of our methods may lead to even better results.
Other research on the related problem of two- and

three-dimensional bin packing has been presented: Martello
and Vigo (1998) consider the two-dimensional case, while
Martello et al. (2000) deal with three-dimensional bin pack-
ing. We discuss aspects of those papers in Fekete and Schep-
ers (2004b),whenconsideringbounds forhigher-dimensional
packing problems. Padberg (2000) gives a mixed-integer
programming formulation for three-dimensional packing
problems, similar to the one anticipated by the second
author in his thesis (Schepers 1997). Padberg expresses the
hope that using a number of techniques from branch and
cut will be useful; however, he does not provide any prac-
tical results to support this hope.
In our papers (Fekete and Schepers 2004a, b), we describe

a different approach to characterizing feasible packings and
constructing optimal solutions. We use a graph-theoretic
characterization of the relative position of the boxes in a
feasible packing (Fekete and Schepers 2004a). Combined
with good heuristics for dismissing infeasible subsets of
boxes, which are described in Fekete and Schepers (2004b),
this characterization can be used to develop a two-level
tree search. In this third paper of the series, we describe
how this exact algorithm can be implemented. Our com-
putational results show that our code outperforms previous
methods by a wide margin. It should be noted that our
approach has been used and extended in the practical con-
text of reconfigurable computing (Teich et al. 2001), which
can be interpreted as packing in three-dimensional space,
with two coordinates describing chip area and one coor-
dinate describing time. Order constraints for the temporal
order are of vital importance in this context; as it turns
out, our characterization of feasible packings is particu-
larly suited for taking these into account. See our follow-up
paper (Fekete et al. 2001) for a description of how to deal
with higher-dimensional packing with order constraints.
The rest of this paper is organized as follows: After

recalling some basics from our papers (Fekete and Schepers
1997b, c; 2004a, b) in §2, we give detailed account of our
approach for handling OPP instances in §3. This analy-
sis includes a description of how to apply graph-theoretic
characterizations of interval graphs to searching for opti-
mal packings. Section 4 provides details of our branch-and-
bound framework and the most important subroutines. In
§5, we discuss our computational results. Section 6 gives
a brief description of how our approach can be applied to
other types of packing problems.

2. Preliminaries
We are given a finite set V of d-dimensional rectangu-
lar boxes with “sizes” w�v� ∈ �+

0
d and “values” c�v� ∈

�+
0 for v ∈ V . As we are considering fixed orientations,

wi�v� describes the size of box v in the xi-direction. The
objective of the d-dimensional orthogonal knapsack prob-
lem �OKP-d� is to maximize the total value of a subset
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V ′ ⊆ V fitting into the container C and to find a complying
packing. Closely related is the d-dimensional orthogonal
packing problem �OPP-d�, which is to decide whether a
given set of boxes B fits into a unit-size container, and to
find a complying packing whenever possible.
For a d-dimensional packing, we consider the projections

of the boxes onto the d coordinate axes xi. Each of these
projections induces a graph Gi: Two boxes are adjacent
in Gi if and only if their xi projections overlap. A set of
boxes S ⊆ V is called xi-feasible if the boxes in S can be
lined up along the xi-axis without exceeding the xi-width
of the container.
As we show in Fekete and Schepers (1997b, 2004a), we

have the following characterization of feasible packings:

Theorem 1. A set of boxes V can be packed into a con-
tainer if and only if there is a set of d graphs Gi = �V �Ei��
i= 1� � � � � d, with the following properties:
P1: the graphs Gi �= �V �Ei� are interval graphs.
P2: each stable set S of Gi is xi-feasible.
P3:

⋂d
i=1Ei =�.

A set E = �E1� � � � �Ed� of edges is called a packing class
for �V �w� if and only if it satisfies the conditions P1, P2,
P3. Note that when constructing a packing from a packing
class, some edges may be added in case of a degenerate
packing; see Ferreira and Oliveira (2005) for such an exam-
ple. This does not impede the correctness of the theorem
or its applicability.

3. Solving Orthogonal Packing Problems
For showing feasibility of any solution to a packing prob-
lem, we have to prove that a particular set of boxes fits
into the container. This subproblem is called the orthogonal
packing problem �OPP�.
To get a fast positive answer, we can try to find a pack-

ing by means of a heuristic. A fast way to get a nega-
tive answer has been described in our paper (Fekete and
Schepers 2004b): Using a selection of bounds (conservative
scales), we can try to apply the volume criterion to show
that there cannot be a feasible packing.
In this section, we discuss the case in which both of these

easy approaches fail. Because the OPP is NP-hard in the
strong sense, it is reasonable to use enumerative methods.
As we showed in our paper (Fekete and Schepers 2004a)
the existence of a packing is equivalent to the existence of
a packing class. Furthermore, we have shown that a fea-
sible packing can be constructed from a packing class in
time that is linear in the number of edges. This allows us to
search for a packing class, instead of a packing. As we will
see in the following, the advantage of this approach lies not
only in exploiting the symmetries discussed in Fekete and
Schepers (1997b, 2004a), but also in the fact that the struc-
tural properties of packing classes give rise to very efficient
rules for identifying irrelevant portions of the search tree.

3.1. Basic Idea of the Enumeration Scheme

The enumeration of packings described by Beasley (1985)
emulates the intuitive idea of packing objects into a box:
Each branching corresponds to placing a box at a particu-
lar position in the container, or disallowing this placement.
Thus, each search node corresponds to a partial packing
that is to be augmented to a complete packing. Our enumer-
ation of packing classes is more abstract than that: At each
branching, we decide whether two boxes b and c overlap in
their projection onto the i-axis, so that the edge e �= bc is
contained in the ith component graph of the desired pack-
ing class E. Accordingly, in the first resulting subtree, we
only search for packing classes E with e ∈ Ei; in the sec-
ond, we only search for E with e 	Ei. Hence, the resulting
“incomplete packing classes” do not correspond to pack-
ing classes of subsets of boxes; instead, they are (almost)
arbitrary tuples of edges.
More precisely, we will store the necessary and excluded

edges for each node N of the search tree and each coordi-
nate direction i in two data structures �N

+� i and �N
−� i. There-

fore, the search space for N contains precisely the packing
classes that satisfy the condition

�N
+� i ⊆Ei ⊆ ��N

−� i� i ∈ �1� � � � � d�� (1)

where ��N
−� i is the complement of �N

−� i. Summarizing, we
write

�N
+ �= ��N

+�1� � � � ��
N
+�d�� �N

− �= ��N
−�1� � � � ��

N
−�d��

�N �= ��N
+ ��

N
−��

and denote by ���N � the search space for N ; by virtue
of (1), this search space is only determined by �N . �N is
called the search information of node N , because this tuple
of data structures represents the information that is cur-
rently known about the desired packing class.
An important part of the procedure consists of using

the characteristic properties P1, P2, P3 for increasing the
information on the desired packing class that is contained
in �N . For example, let the edge e be contained in �+� i for
all i �= k. Furthermore, let E ∈���N �. For i �= k, we have
e ∈ Ei because of �

N
+� i ⊆ Ei. Because of P3, the intersec-

tion of all Ei must be empty, implying e 	 Ek. Therefore,
�N

−� k can be augmented by e without changing the search
space. Similar augmentation rules can be described for P1
and P2.
Depending on whether the edge e is added to �N

+� i or
to �N

−� i, we describe augmentations of �N by the triples
�e�+� i� or �e�−� i�.
Because it suffices to find a single packing class, these

augmentations may reduce the search space, as long as it
is guaranteed that not all packing classes are removed from
it. This fact allows us to exploit certain symmetries. Thus,
we use feasible augmentations of �N in the sense that a
nonempty search space ���N � stays nonempty after the
augmentation.
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When augmenting �N we follow two objectives:
(1) obtain a packing class in �N

+ ,
(2) prove that every augmentation of �N

+ to a packing
class has to use excluded edges from �N

− .
In the first case, our tree search has been successful. In

the second case, the search on the current subtree may be
terminated because the search space is empty. Otherwise,
we have to continue branching until one of the two objec-
tives is reached.

3.2. Excluded Induced Subgraphs

For our algorithm, we need three components: a test “Is
�N

+ a packing class?,” a sufficient criterion that �N
+ has no

feasible augmentation, and a construction method for fea-
sible augmentations. As we describe in our paper (Fekete
and Schepers 1997b, 2004a), all three of these components
can be reduced to identifying or avoiding particular induced
subgraphs in the portions of E that are fixed by �N .
As we have already seen, it is easy to determine all edges

that are excluded by condition P3. By performing these
augmentations of �N

− immediately, we can guarantee that
P3 is satisfied. Thus, we will assume in the following that
P3 is satisfied. Furthermore, we will implicitly refer to the
current search node N and abbreviate �N by �.
P2 explicitly excludes certain induced subgraphs:

i-infeasible stable sets, i.e., i-infeasible cliques in the com-
plement of each component graph.
To formulate P1 in terms of excluded induced subgraphs,

we recall the following Theorems 3 and 4—see the book
by Golumbic (1980), as well as a resulting linear-time algo-
rithm by Korte and Möhring (1989). The following termi-
nology is used:

Definition 2. For a graph G �= �V �E�, a set F ⊆ V 2 of
directed edges is an orientation of G, iff

∀b�c∈V � bc∈E⇐⇒� �bc∈F ∧ �cb	F �∨� �cb∈F ∧ �bc	F �

holds. An orientation F of a graph �V �E� is called transi-
tive, if in addition,

∀b� c� z ∈ V � �bc ∈ F ∧ �cz ∈ F ⇒ �bz ∈ F

holds.
A graph is called a comparability graph, iff it has a tran-

sitive orientation.
For a cycle C �= �b0� � � � � bk−1� bk = b0� of length k, the

edges bibj , i� j ∈ �0� � � � � k−1� with ��i− j�modk� > 1 are
called chords; the chords bibj , i� j ∈ �0� � � � � k − 1� with
��i− j�modk�= 2 are called 2-chords of C. A cycle is (2-)
chordless, iff it does not have any (2-) chords.
A graph G= �V �E� is a cocomparability graph, if the

complement graph G= �V � �E� is a comparability graph.
Theorem 3 (Gilmore and Hoffman 1964). A cocompa-
rability graph is an interval graph, iff it does not contain
the chordless cycle C4 of length 4 as an induced subgraph.

Theorem 4 (Ghouilà-Houri 1962, Gilmore and Hoff-
man 1964). A graph is a comparability graph, iff it does
not contain a two-chordless cycle of odd length.

Thus, �+ is a packing class, if for all i ∈ �1� � � � � d� the
following holds (recall that P3 is assumed to be satisfied):
(1) �V ��+� i� does not contain a C4 as an induced sub-

graph.
(2) �V � ��+� i� does not contain an odd two-chordless

cycle.
(3) �V � ��+� i� does not contain an i-infeasible clique.
With the help of this characterization, we get a stop cri-

terion for subtrees. Because only those edges can be added
to �+� i that are not in �−� i, �+ cannot be augmented to
a packing class, if for i ∈ �1� � � � � d� one of the following
conditions holds:
(1) �V ��+� i� contains a C4 as an induced subgraph, with

both chords lying in �−� i.
(2) �V ��−� i� contains an odd two-chordless cycle, with

all its two-chords lying in �+� i.
(3) �V ��−� i� contains a i-infeasible clique.
Suppose that except for one edge e, one of these ex-

cluded configurations is contained in �. Because of con-
dition (1), the corresponding incomplete induced subgraph
is contained in the ith component graph of each packing
class E ∈ ����. Because completing the excluded sub-
graph would contradict condition P1 or P2, the member-
ship of e in Ei is determined. The resulting forced edges
can be added to �+� i or to �−� i without decreasing the
search space.

Example. If �V ��+� i� contains an induced C4, for which
one chord is contained in �−� i, for any packing class of the
search space, the other chord e must be contained in the
ith component graph. Thus, the augmentation �e�+� i� is
feasible, but not the augmentation �e�−� i�.
In this way, we can reduce the search for a feasible aug-

mentation to the search for incomplete excluded configura-
tions. In the next section, we will relax the condition that
only one edge is missing from a configuration, and only
require that the missing edges are equivalent in a particular
sense.

3.3. Isomorphic Packing Classes

When exchanging the position of two boxes with identical
sizes in a feasible packing, we obtain another feasible pack-
ing. Similarly, we can permute equal boxes in a packing
class:

Theorem 5. Let E be a packing class for �V �w� and
�� V → V be a permutation with

∀b ∈ V � w�b�=w���b��� (2)

Then, the d-tuple of edges in E� that is given by

∀b� c ∈ V ∀ i ∈ �1� � � � � d� bc ∈Ei ⇔��b���c� ∈E�
i

is a packing class.
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Proof. Because the structure of the component graphs does
not change, conditions P1 and P3 remain valid. Because
of (2), the weight of stable sets remains unchanged, so that
P2 remains valid as well. �

We get a notion of isomorphism that is similar to the
isomorphism of graphs:

Definition 6. Two packing classes E and E ′ are called
isomorphic, iff there is a permutation �� V → V satisfy-
ing (2), such that E ′ =E� .

Keeping only one packing class from each isomorphism
class in search space avoids unnecessary work. For this
purpose, we may assume that the ordering of equal boxes
in a packing class follows the lexicographic order of their
position vectors. As a result, in the two-dimensional case,
the left-most and bottom-most box of a box type will have
the lowest index. This corresponds to generating packings
according to “left-most downward placement” in Hadjicon-
stantinou and Christofides (1995). This approach cannot be
used for packing classes because there are no longer any
orientations (left/right, up/down, etc.).
Until now, no algorithm has been found that can decide

in polynomial time whether two graphs are isomorphic,
and it has been conjectured that no such algorithm exists
(see Papadimitriou 1994, p. 291). When deciding whether
two packing classes are isomorphic, this decision has to
be made repeatedly. In addition, packing classes may only
be known partially. This makes it unlikely that there is an
efficient method for achieving optimal reduction of isomor-
phism. Therefore, we are content with exploiting certain
cases that occur frequently.
In the initializing phase, we may conclude by The-

orem 16 from our paper (Fekete and Schepers 2004b)
(corresponding to Theorem 11 in Fekete and Schepers
1997c) that for a box type T , there is a component graph
�V �Ei��T � for which there is a clique of size k� 2. Then,
we can choose the numbering of T , such that the first k
boxes from T belong to the clique. Thus, the corresponding(
k

2

)
edges can be fixed in �+� i. This restriction of number-

ing T corresponds to excluding isomorphic packing classes.
In the following, we only consider isomorphic pack-

ing classes for which the permutation in Definition 6 ex-
changes precisely two boxes, while leaving all other boxes
unchanged. This restricted isomorphism can be checked
easily. We have to search for pairs of boxes that can be
exchanged in the following way:

Definition 7. Let �V �w� be an OPP instance with search
information �. Two boxes b� c ∈ V with w�b�= w�c� are
called indistinguishable �with respect to ��, iff all adjacen-
cies of b and c have identical search information, i.e.,

∀ i ∈ �1� � � � � d� ∀! ∈ �+�−� ∀ z ∈ V \�b� c��
bz ∈�!� i ⇔ cz ∈�!� i� (3)

Two edges e� e′ ∈ EV are called indistinguishable �with
respect to ��, if there are representations e = bc and

e′ = b′c′, such that the boxes b and b′, as well as c and c′,
are indistinguishable (with respect to �).

The property of being indistinguishable is an equivalence
relation for boxes as well as for edges.
The following lemma allows it to exploit the connection

between indistinguishable edges and isomorphic packing
classes:

Lemma 8. Let �V �w� be an OPP instance with search
information �. Let A be set of indistinguishable edges
on V . Let e be an arbitrary e ∈ A. Then, for any pack-
ing class E ∈ ���� that satisfies A ∩ Ei �= �, there is an
isomorphic packing class E ′ ∈���� with e ∈E ′

i .

Proof. Let e′ be an edge from the set A∩Ei. Then, e and e
′

are indistinguishable. Hence, there is a representation e =
bc and e′ = b′c′, such that b�b′ and c� c′ are pairs of indis-
tinguishable boxes. Let � be the permutation of V that
swaps b and b′, and c and c′, and let E ′ �= E� . Applying
(3) twice, it follows from E ∈���� that E ′ ∈����. �

Lemma 8 can be useful in two situations:
(1) If we branch with e ∈ A with respect to the

i-direction, then we may assume for all e′ ∈ A in the sub-
tree given by e 	 Ei that e

′ 	 Ei: For each packing class
excluded in this way, there is an isomorphic packing class
that is contained in the search space of the subtree e ∈Ei.
(2) If during the course of our computations we get A∩

�+� i �= �, then for an arbitrary e ∈ A, the augmentation
�e�+� i� is feasible because only isomorphic duplicates are
lost.

3.4. Pruning by Conservative Scales

By Lemma 20 from our paper (Fekete and Schepers 2004b,
Lemma 15 in Fekete and Schepers 1997c), we can use
the information given by � to modify a given conservative
scale, such that the resulting total volume of V is increased.
(See our related paper (Fekete and Schepers 2001) for a
general technique based on dual-feasible functions.) Before
branching, we try to apply the lemma repeatedly, such that
the transformed volume exceeds the volume of the con-
tainer. In this case, the search can be stopped.
Because this reduction heuristic requires the computation

of several one-dimensional knapsack problems, it only pays
off to use it on nodes where it may be possible to cut off
large subtrees. Therefore, we have only used it on nodes of
depth of at most five.

4. Detailed Description of the OPP
Algorithm

In this section, we give a detailed description of our imple-
mentation of the OPP algorithm. We will omit the descrip-
tion of standard techniques like efficient storage of sets,
lists, graphs, or the implementation of graph algorithms.
The interested reader can find these in Mehlhorn (1984)
and Golumbic (1980).
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Figure 1. OPP tree search.

Call: Solve_OPP(P )
Input: An OPP-n instance P �= �V �w�.
Output: A packing class for �V �w�, if there is one,

and SUCCESS, otherwise NULL.

1. � �= �N0�.
2. initialize �N0 .
3. �e�!� i�N0 �= NULL.
4.
5. while (� �= �) do
6.
7. choose N ∈� .
8. � �=� \�N�.
9. �e�!� i� �= �e�!� i�N .
10.
11. repeat
12. if (Update_searchinfo(P� �e�!� i���N �= EXIT) then
13. result �= EXIT.
14. else
15. result �= Packingclass_test(P��N � �e�!� i�).
16. end if
17. until (result �= FIX)
18.
19. if (result= SUCCESS) then return �N

+ .
20.
21. if (result=BRANCH) then
22. Create two new nodes N ′�N ′′.
23. �N ′

�=�N � �e�!� i�N
′
�= �e�+� i�.

24. �N ′′
�=�N � �e�!� i�N

′′
�= �e�−� i�.

25. � �=� ∪ �N ′�N ′′�.
26. end if
27.
28. end while
29.
30. return NULL.

4.1. Controlling the Tree Search

The nodes of the search tree are maintained in a list � . For
each node N ∈� , there is the search information �N (see
above) and a triple �e�!� i�N with e ∈ (

V

2

)
, ! ∈ �+�−�, and

i ∈ �1� � � � � d�. This triple represents the new information
when branching at N , i.e., e ∈ Ei for ! =+, or e 	 Ei for
! =−.
Figure 1 shows the course of the tree search. Lines 1

through 3 initialize � with the root node N0. Initially, the
components of �N0 do not contain any edges. �e�!� i�N0 is
assigned a special value of NULL.
In the while loop of lines 5 through 28, individual nodes

are processed; if necessary, their children are added to � .
The particular branching strategy (breadth first or depth
first) can be specified by a selection mechanism in line 7. If
line 30 is reached, then the whole search tree was checked
without finding a packing pattern.
Each node N of the search tree is processed as follows:
In routine Update_searchinfo, the augmentation of �N

described by �e�!� i� is carried out, as long as there are
feasible augmentations. If it is detected that the search
on N can be stopped, Update_searchinfo outputs the value
EXIT. Otherwise, the routine terminates with OK.

If Update_searchinfo was terminated with OK, then the
routine Packingclass_test checks whether �N

+ already is a
packing class. In case of a positive answer, SUCCESS is
output, and the algorithm terminates in line 19. Otherwise,
there are three possibilities:
(1) FIX: The triple �e�!� i� was updated in Packing-

class_test to a new feasible augmentation that was returned
to Update_searchinfo.
(2) EXIT: �N

+ cannot be augmented to a packing class
without using edges from �N

− . The search on this subtree
is stopped.
(3) BRANCH: In lines 22 through 25, two children of N

are added to � . The triple �e�!� i� that was set in Packing-
class_test contains the branching edge e and the branching
direction i.

4.2. Testing for Packing Classes

Figure 2 shows routine Packingclass_test. As we have seen,
�+ is a packing class, iff no excluded configuration occurs
in any coordinate direction. In this case, in each iteration
of the i loop, we keep A = �, and the routine terminates

Figure 2. Routine Packingclass_test.

Call: Packingclass_test(P��� �e�!� i�out)
Input: An OPP-n instance P �= �V �w�, search information �.
Output: �e�!� i�out , and EXIT, FIX, BRANCH, or SUCCESS

1. for i ∈ �1� � � � � d� do
2.
3. A �=�.
4. if �V � ��+� i� is not a comparability graph then
5. A �= set of edges of the 2-chordless odd cycle.
6. else
7. if a maximal weighted clique in �V � ��+� i�

is i-infeasible then
8. A �= edge set of this clique.
9. else
10. if �V ��+� i� contains an induced C4 then
11. A �= set of chords of this C4.
12. end if
13. end if
14. end if
15.
16.
17. if (A �= �) then
18. if (A\�−� i =�) then
19. return EXIT.
20. else
21. Choose an edge e from A\�−� i.
22. �e�!� i�out �= �e�+� i�.
23. if (A\�−� i = �e�) then
24. return FIX.
25. else
26. return BRANCH.
27. end if
28. end if
29. end if
30.
31. end for i
32.
33. return SUCCESS.
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in line 33 with value SUCCESS. Otherwise, A contains a
set of edges, out of which at least one has to be added to
�+� i to remove the excluded configuration. This edge must
not be from �−� i. Thus, the search on the subtree can be
stopped for A\�−� i = �, and for �A\�−� i� = 1, the only
edge must be added to �+� i.
Otherwise, an arbitrary edge from A\�−� i, together with

a coordinate direction i, is returned in the triple �e�!� i�out

and used for branching.
In line 4 it is tested with the help of the decomposi-

tion algorithm from Golumbic (1980, p. 129f) to determine
whether we have a comparability graph. The run time is
O�(�E��, where ( is the maximal degree of a vertex, and
E is the edge set of the examined graph. It is simple to
modify the algorithm, such that it returns a two-chordless
cycle in case of a negative result.
With the help of the algorithm from Golumbic (1980,

p. 133f), we can determine a maximal weighted clique in
a comparability graph in time that is linear in the number
of edges. This algorithm is called in line 7, because graphs
at this stage have already passed the test for comparability
graphs.
The search for a C4 in line 10 can be realized by

two nested loops that enumerate possible pairs of opposite
edges in a potential C4.

4.3. Updating the Search Information

Figure 3 gives an overview of Routine Update_searchinfo.
In the following, we will always refer to the current search
node N and denote the search information �N by �.
The input triple �e�!� i�in either describes an augmen-

tation of the search information (e is fixed in �!� i), or it
contains the value NULL on the root node.
On the root node, the search information is initialized

as follows: First, the edges are fixed for which the vertices
form an infeasible stable set with two elements. For i ∈
�1� � � � � d�, this means that all edges e = bc with wi�b�+
wi�c� > 1 are added to �+� i. Furthermore, we use Theo-
rem 16 from our paper Fekete and Schepers (2004b) (corre-
sponding to Theorem 11 in Fekete and Schepers 1997c) to
fix cliques within the subgraphs induced by the individual
box types.
The augmentation �e�!� i�in has either been fixed in the

last branching step, or it was returned by the routine Pack-
ingclass_test together with the value FIX. In the latter case,
! =+ holds, so we know in case of ! =− that the aug-
mentation results from a branching step. In §3.3, we con-
cluded from Lemma 8 that in this case, all edges in �−� i

that are indistinguishable from e can be fixed. This is done
in lines 10 through 13.
In the main loop (lines 17 through 26), for each augmen-

tation of � it is checked whether it arises from a config-
uration that allows it to fix further edges, or the search is
stopped. This recursive process is controlled by the list L.
The crucial work is done by the subroutines Check_P3,

Avoid_C4, and Avoid_cliques.

Figure 3. Routine Update_searchinfo.

Call: Update_searchinfo(P� �e�!� i�in��)
Input: An OPP-n instance P �= �V �w�, an augmentation �e�!� i�in,

the search information �.
Output: The updated search information �, and EXIT or OK.

1. �e�!� i� �= �e�!� i�in.
2.
3. if (�e�!� i�=NULL) then
4. initialize � and mark this augmentation in L

5. else
6. if (! =+) then
7. �+� i �=�+� i ∪ �e�.
8. L �= ��e�!� i��.
9. else
10. for f ∈EV cannot be distinguished from e do
11. �−� i �=�−� i ∪ �f �.
12. L �= ��f �−� i��.
13. end for f
14. end if
15. end if
16.
17. while (L �= �) do
18.
19. choose �e�!� i� ∈ L.
20. L �= L\��e�!� i��.
21.
22. if (Check_P3(P�e�!� i��L� �=OK) then return EXIT.
23. if (Avoid_C4(P�e�!� i��L� �=OK) then return EXIT.
24. if (Avoid_cliques(P�e�!� i��L� �=OK) then return EXIT.
25.
26. end while
27.
28. return OK.

Checking Condition P3. In subroutine Check_P3, for
an augmentation �e�+� i� the set of free coordinate direc-
tions

F �= �j ∈ �1� � � � � d� � e 	�+� j �

is computed. If this set only has one element k, then for
all E ∈ ���� the condition e 	 Ek must hold because of⋂d

i=1Ei = �. In this case, e can be fixed in �−� k, and
Check_P3 terminates with the value OK. If there is no free
coordinate direction left, then the search space is empty,
and the routine terminates with the value EXIT.

Avoiding Induced C4s. Routine Avoid_C4 tries to de-
tect edges that can be used for completing an induced C4

in �V ��+� i�, with chords lying in �−� i. Such an edge f
is then added to �+� i or to �−� i, such that this excluded
induced subgraph is avoided.
Because this configuration must have been caused by the

augmentation �e�!� i� that was given to Avoid_C4, e must
either be an edge of the cycle, or a chord. Because f can
occur as an edge of the cycle as well as a chord, we have
to check a total of four cases. Figure 4 shows the routine
in detail.

Avoiding Infeasible Cliques. The subroutine Avoid_
cliques (see Figure 5) checks whether an edge e= bc that
has been added to �−� i completes one of the following
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Figure 4. Routine Avoid_C4.

Call: Avoid_C4(P� �e�!� i�in���L)
Input: An OPP-n instance P �= �V �w�, an augmentation �e�!� i�in,

the search information �, the augmentation list L.
Output: The updated search information �, the updated augmentation

list L, and the value EXIT or OK.

1. �e�!� i� �= �e�!� i�in.
2.
3. if (! =+) then
4.
5. for f 	�−� i completes a C4 in �+� i

6. that contains e and has chords in �−� i. do
7. if (f ∈�+� i) then return EXIT.
8. �−� i �=�−� i ∪ �f �.
9. L �= L∪ ��f �−� i��.
10. end for f
11.
12. for f 	�+� i is chord of a C4 in �+� i

13. that contains e and has its other chord in �−� i. do
14. if (f ∈�−� i) then return EXIT.
15. �+� i �=�+� i ∪ �f �.
16. L �= L∪ ��f �+� i��.
17. end for f
18.
19. else (! =−)
20.
21. for f 	�−� i completes a C4 in �+� i that has e as a chord
22. and that has its other chord also in �−� i. do
23. if (f ∈�+� i) then return EXIT.
24. �−� i �=�−� i ∪ �f �.
25. L �= L∪ ��f �−� i��.
26. end for f
27.
28. for f 	�+� i is chord of a C4 in �+� i that has e as

its other chord. do
29. if (f ∈�−� i) then return EXIT.
30. �+� i �=�+� i ∪ �f �.
31. L �= L∪ ��f �+� i��.
32. end for f
33.
34. end if
35.
36. return OK.

configurations:
(1) an i-infeasible clique in �V ��−� i�,
(2) an i-infeasible clique in �V � ��+� i�, with edges not in

�−� i being indistinguishable.
As we have seen in §3.2, in the first case the search space
is empty. The routine terminates with value EXIT. In the
second case, we can find a feasible augmentation by virtue
of Lemma 8.

Computing S ′
0. We search for a clique in �V ��−� i� that

contains e= bc and has large weight. Trivially, the box set
of such a clique can only contain b, c, and boxes from

S0 �= �z ∈ V � bz ∈�−� i ∧ cz ∈�−� i��

Now our approach depends on whether �V ��−� i��S0� is a
comparability graph. In the positive case, we can use the
linear time algorithm from Golumbic (1980) (just like for

Figure 5. Routine Avoid_cliques.

Call: Avoid_cliques(P� �e�!� i�in���L)
Input: An OPP-n instance �V �w�, an augmentation �e�!� i�in,

the search information �, the augmentation list L.
Output: The updated search information �, the updated

augmentation L, and EXIT or OK.

1. �bc�!� i� �= �e�!� i�in.
2.
3. if (! =+) then return OK.
4.
5. compute S ′

0 as described.
6. if (wi�S

′
0 ∪ �b� c�� > 1) then return EXIT.

7.
8. if (b and c are indistinguishable) then
9. if ∃b′ ∈ V with bb′ ∈ ��+� i ∩ ��−� i then
10. compute B �= �b� c�∪ S ′ ∪X as described.
11. if (wi�B� > 1) then �+� i �=�+� i ∪ �bb′�,

L �= L∪ ��bb′�+� i��.
12. end if
13. end if
14.
15. for b′ ∈ V with bb′ ∈ ��+� i ∩ ��−� i and cb′ ∈�−� i do
16. compute B �= �b� c�∪ S ′ ∪X as described.
17. if (wi�B� > 1) then �+� i �=�+� i ∪ �bb′�,

L �= L∪ ��bb′�+� i��.
18. end for b′

19.
20. for b′ ∈ V with bb′ ∈�−� i and cb′ ∈ ��+� i ∩ ��−� i do
21. compute B �= �b� c�∪ S ′ ∪X as described.
22. if (wi�B� > 1) then �+� i �=�+� i ∪ �cb′�, L �= L∪ ��cb′�+� i��.
23. end for b′

24.
25. for b′ ∈ V with bb′ ∈�−� i and cb′ ∈�−� i do
26. for c′ ∈ V with bc′ ∈�−� i , cc

′ ∈�−� i and
b′c′ ∈ ��+� i ∩ ��−� i do

27. compute B �= �b� c�∪ S ′ ∪X as described.
28. if (wi�B� > 1) then �+� i �=�+� i ∪ �b′c′�,

L �= L∪ ��b′c′�+� i��.
29. end for c′

30. end for b′

31.
32. return OK.

the test of packing classes) to determine a set of boxes S ′
0

that induces a maximal weighted clique in �V ��−� i��S0�.
Then, �b� c� ∪ S ′

0 induces a clique in �V ��−� i� that has
maximal weight among all cliques containing e.
If, on the other hand, �V ��−� i��S0� is not a compara-

bility graph, then we skip the computation of a maximal
weighted clique. As a generalization of the CLIQUE prob-
lem (problem [GT19] in Garey and Johnson 1979), this
problem is NP-hard. Instead, we compute S ′

0 by using a
greedy strategy. Starting with S ′

0 =�, we keep augmenting
S ′
0 by the box with the largest weight wi, as long as the
property ES′0 ⊆ �−� i remains valid. The clique induced by
�b� c�∪ S ′

0 in �V ��−� i� may be suboptimal.
In both cases, the routine terminates in case of an

i-infeasible S ′
0 ∪ �b� c� with the value EXIT.

To determine whether �V ��−� i��S0� is a comparability
graph, we use the decomposition algorithm from Garey and
Johnson (1979) inPackingclass_test. In the implementation,
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it is worthwhile taking into account that in the case �S0�� 4,
the testing for a comparability graph can be omitted. The
corresponding induced subgraphs must be comparability
graphs because a two-chordless cycle must contain at least
five different vertices. In our numerical experiments, this
turned out to be a common situation.

Finding an Augmenting Edge by Computing B. We
test whether an edge e′ ∈ ��+� i ∩ ��−� i can be fixed. A suffi-
cient condition is the existence of a set B⊆ V that satisfies
the following conditions:
(1) B contains all vertices of e and e′.
(2) All edges in EB\�−� i are indistinguishable.
(3) B is i-infeasible.
Because of P2, an edge in EB must be in the ith com-

ponent graph of the desired packing class. Because this
edge must not be in �−� i, it must be indistinguishable from
e′ ∈ EB\�−� i by virtue of two. In other words, Lemma 8
means that augmentation with indistinguishable edges leads
to isomorphic packing classes. This implies the feasibility
of augmentation �e′�+� i�.
The requirement that the vertices of e lie in B results

from the fact that we only search for incomplete excluded
configurations that arise from adding e to �−� i.
When identifying edges that are candidates for e′, we get

four cases for the position of e′ relative to e = bc in EB,
as shown in Figure 6. Dotted lines represent the (unfixed)
edges in ��+� i ∩ ��−� i, while solid lines represent edges in
�−� i. The second requirement for B implies that b and c
are indistinguishable. Note that after the first resulting aug-
mentation, b and c are indistinguishable with respect to the
current search information. Thus, cases (1), (2), (3), and (4)
in the figure correspond to lines (8–13), (15–18), (20–23),
and (25–30).
Therefore, constructing the set B for a given edge e′ is

done as follows. Let S be the set of boxes that are adjacent
in �V ��−� i� to all vertices of e and e′. Similar to the above
construction of S ′

0 from S0, we construct a set of boxes S
′

from S that induces a clique in �V ��−� i�. The comparabil-
ity graph test is skipped if �V ��−� i��S0� has been recog-
nized as a comparability graph: If S ⊆ S0, then �V ��−� i��S�
is an induced subgraph and inherits its property of being a
comparability graph.
By adding the vertices of e and e′ to S ′, we get a set

that satisfies the first two conditions that B needs to satisfy.
e′ is the only set in the complete graph on this set that does

Figure 6. Relative position of e′ and e= bc.

e′ e′ e′

e′

cbcbcbcb

(2)(1) (3) (4)

not belong to �−� i. Now we add boxes that provide edges
indistinguishable from e′.
Let the set X contain the vertices of e′. The indistinguish-

able boxes for each vertex form a stable set in �V ��−� i�,
or they induce a clique in this graph. Only in the latter case
do we add these boxes to X. With the help of this construc-
tion, any edge in the complete graph on B �= �b� c�∪S ′ ∪X
is either in the set �−� i, or it is indistinguishable from e′.
If this set is i-infeasible, then we fix e′ in �+� i by virtue of
Lemma 8.

5. A Tree Search Algorithm for
Orthogonal Knapsack Problems

In this section, we elaborate on how the data structure intro-
duced in Fekete and Schepers (1997b, 2004a), the lower
bounds described in Fekete and Schepers (1997c, 2004b),
and the exact algorithm for the OPP from §3 can be used
as building blocks for new exact methods for orthogonal
packing problems.
We concentrate on the most difficult problem, the OKP.

After a detailed description of the new branch-and-bound
approach, the following §6 gives evidence that our algo-
rithm allows it to solve considerably larger instances than
previous methods. In particular, we present the first results
for three-dimensional instances.
Similar exact algorithms for the SPP and the OBPP are

sketched in §7.

5.1. The Framework

For solving the OKP, we have to determine a subset S ⊆ V
of boxes that has maximum value among all subsets of
boxes fitting into the container. Like Beasley (1985) and
Hadjiconstantinou and Christofides (1995), we will prove
feasibility of a particular set S by displaying a feasible
packing for �V �w�W�. For most practical applications, this
is of key importance.
In the branch-and-bound algorithms (Beasley 1985, Had-

jiconstantinou and Christofides 1995), the iterative choice
of a subset and the corresponding packing are treated
simultaneously: With each branching step, it is decided
whether a particular position in the container is occupied
by a particular box type.
In contrast to this, our approach works on two levels.

Only after the first level has determined the subset S ⊆ V
will the OPP algorithm from §3 try to find a feasible pack-
ing. This allows us to use the lower bounds described in
our paper (Fekete and Schepers 1997c, 2004b) for exclud-
ing most of the first-level search tree without having to
consider the particular structure of a packing. Our numeri-
cal results show that the second-level search has to be used
only in a small fraction of search nodes. Note that the main
innovation of our approach lies in this second level; it is
to be expected that tuning the outer level (as was done by
Caprara and Monaci 2004) yields even better results.
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5.2. Branch-and-Bound Methods

We assume that the reader is familiar with the general struc-
ture of a branch-and-bound algorithm. (A good description
can be found in Nemhauser and Wolsey 1988.) We start by
introducing some notation.
We remind the reader of the partitioning of the set V of

boxes into classes of boxes with identical size and value,
called box types:

V =
m⋃
t=1

Tt�

For box type t, we set nt �= �Tt� and denote the elements by
Tt =� �bt�1� � � � � bt�nt ��

For ease of notation, we write w�t� instead of w�bt�1�, and
v�t� instead of v�bt�1�.
In the test instances that we will be dealing with, all sizes

of boxes and containers are integers. We denote measures
of the container by W ∈�d; when discussing mathematical
arguments, we will assume without loss of generality that
the container is a unit cube.

5.3. Search Nodes at Level One

The first-level search tree enumerates the subsets S ⊆ V
that are candidates for a solution subset for the OKP. Each
node N of the search tree corresponds to an OKP instance
with the additional constraint that each box type Tt has
upper and lower bounds for the number of boxes that are
used. These bounds are denoted by �nN

t and nN
t .

For a search node N , we set

SN �=
m⋃
t=1

�bt�1� � � � � bt�nNt ��

and, similarly,

�SN �=
m⋃
t=1

�bt�1� � � � � bt� �nNt ��

For a partial search tree with root N , we will consider only
subsets S that satisfy

� �N � �= �S ⊆ V � SN ⊆ S ⊆ �SN ��

Thus, for a search node N , the corresponding restricted
OKP is given by

Maximize v�S��

such that there is a feasible packing for �S�w��

SN ⊆ S ⊆ �SN �

(4)

On the root node N0, we start with the original problem,
i.e., nN0

t = 0 and �nN0
t = nt for t ∈ �1� � � � �m�. Then, SN0 =�

and �SN0 = V .
Enumerating the first-level search tree is done by best

first search: Each node N is assigned a preliminary local
upper bound, given by the minimum of v� �SN � and the local
upper bound of its parent node. (A better upper bound will
be determined while evaluating the partial tree at N .) At
each stage, we choose a new node where this local upper
bound is maximal.

5.4. Branching

When a subset S has been uniquely determined by the con-
dition S ∈� �N �, we have reached a leaf of the first-level
search tree. In this case, we have

SN = S = �SN

and

∀ t ∈ �1� � � � �m�� nN
t = �nN

t �

Then, problem (4) is an OPP that is solved by the second-
level tree search.
Otherwise, we have box types Tt , with nN

t < �nN
t . We

choose the one with largest size max1�i�d w
�t�
i for an arbi-

trary coordinate direction. By our experience, boxes that
are “bulky” in this sense have the biggest influence on the
overall solution of the problem.
Now let Tt∗ be the box type chosen in this way. We

branch by splitting � �N � into subspaces, where the number
of boxes in Tt∗ is constant. For each / ∈ �nN

t∗� � � � � �nN
t∗�� we

determine a child node N/ . For this node, we set

n
N/
t �=



/� t = t∗�

nN
t � t �= t∗�

and

�nN/
t �=



/� t = t∗�

�nN
t � t �= t∗�

A different branching strategy builds a binary search
tree, where the two children of N each get one half of
�nN

t∗� � � � � �nN
t∗� as a range for the number of boxes in Tt∗ . For

technical reasons, we have used the first variant.

5.5. Lower Bounds

On each node N , the container is filled with boxes from �SN

by using the following greedy heuristic. The best objective
value of the OKP for any of these feasible solutions is
stored in vlb. Trivially, vlb is a lower bound for the optimal
value of the OKP.
In our heuristic, we build a sequence of packings, where

each lower coordinate of a box equals zero (i.e., the bound-
ary of the container), or the upper coordinate of a preceding
box. These positions are called placement points. Place-
ment points are maintained in a list that is initialized by
the container origin. At each step, a placement point is
removed from the list as we try to use it for placing another
box. Following a given ordering, we use the first box type
that fits at the chosen placement point without overlapping
any of the boxes that are already packed into the container.
In case of success, we compute the new placement points
and add them to the list. This step is repeated until the list
is empty, or all boxes have been packed.
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This construction of a packing is repeated for several
orderings of box types. In the first round, we use the order of
decreasing value. Following rounds use a random weight-
ing of values before sorting; weights are chosen from a
uniform distribution on �0�1�.
In our implementation, 50 iterations of this heuristic are

performed at the root, and 10 iterations at all other nodes.

5.6. Upper Bounds

The upper bound vNub refers to the set of boxes from � �N �.
As we showed in Fekete and Schepers (1997c, 2004b), for
any conservative scale w′ for � �SN �w�, a relaxation of (4)
is given by

Maximize v�S��

such that
∑
b∈S

⊗w′�b�� 1�

SN ⊆ S ⊆ �SN �

(5)

where ⊗w′�b� �= ∏d
i=1w

′
i�b� denotes the volume of the

modified box w′�b�. To avoid technical difficulties, we only
consider conservative scales that are constant for each box
type. For the benefit of later generalizations, we formu-
late problem (5) explicitly as a restricted one-dimensional
knapsack problem:

Maximize
m∑
t=1

v�bt�1�1t�

such that
m∑
t=1

⊗w′�bt�1�1t � 1�

n� 1 � �n�
1 integer�

(6)

A problem of this type can be solved by the routine MTB2
from Martello and Toth (1990, Appendix A.3.1). This trans-
forms the restricted knapsack problem into a 0-1 knapsack
problem to which the algorithm of Martello and Toth (1990,
pp. 61ff) is applied.
In our implementation, we use as an upper bound the

minimum of the optimal values of the relaxations (5) for
the conservative scales

w′ ∈��w1�����u
�k��wi�����wd� � i=1�����d�k=1�2�3�4�

from our paper (Fekete and Schepers 1997c, 2004b).

5.7. Removal of Partial Search Trees

We can stop the search on the current search tree if one of
the following conditions is satisfied:
(1) vNub � vlb.
(2) �SN fits into the container.
(3) SN does not fit into the container.

The first stop criterion is used in any branch-and-bound
procedure. In this case, the currently best solution cannot
be improved on the current search tree.
In the second case, �SN ∈ � �N � is a best feasible solu-

tion in � �N �. Because we are always trying to pack all
of �SN when updating the lower bound vlb, this condition is
checked when performing the update.
In the third case, SN ⊆ S implies that no set S ∈� �N �

can be packed into the container, so � �N � cannot con-
tain a feasible solution. This means that we have to solve
another OPP.

5.8. Solving Orthogonal Packing Problems

To solve the OPPs that occur on the leaves of the search
tree and when checking the stop criterion “SN does not fit
into the container,” we use the following strategy:
First, we try to use the volume criterion for a selection

of conservative scales. Other than the original weight func-
tion w, we use the conservative scales

w′ ∈��w1�����u
�k��wi�����wd� � i=1�����d� k=1�����Wi/2��

If this does not produce a (negative) result, we try to find a
packing pattern by 10 iterations of our search heuristic. If
this fails as well, we use our algorithm from §3 to decide
the OPP.

5.9. Problem Reduction

There are several ways to decrease the gap between the
bounds nN

t and �nN
t on a search node. These rules are based

on corresponding reduction tests of Beasley (1985). If the
areas of boxes and container are used, we generalize the
tests from two to d dimensions. By using conservative
scales, we get a generalization of these tests, with markedly
increased efficiency.
We start with the rule Free Value, which remains un-

changed. An optimal solution S can have at most value vNub.
Because S ⊆ S, further boxes from Tt in S can contribute
at most a value of vNub −v�S�. Because each of these boxes
has value v�t�, we set

�nt �=min
{
�nt� nt +

⌊
vNub − v�S�

v�t�

⌋}
� (7)

A similar argument, used on volumes, is the basis for
Beasley’s reduction test Free Area. The volume used by S
is at least as big as the sum of the volumes of the individual
boxes in S. Further boxes from Tt can use at most the
volume of the container, reduced by this amount. Because
each of these boxes uses a volume of ⊗w�t�, we can use
the following update for t ∈ �1� � � � �m�:

�nt �=min
{
�nt� nt +

⌊
1−⊗w�S�

⊗w�t�

⌋}
� (8)

With the help of Corollary 8 from our paper (Fekete and
Schepers 2004b), we can generalize Free Area by replac-
ing w in (8) by an arbitrary conservative scale w′ for �V �w�
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that is constant on Tt . In our implementation, we use w and
the conservative scales

w′ ∈��w1�����u
�k��wi�����wd� � i=1�����d� k=1�����Wi/2��

To allow for further possible improvement of a bound
nN
t∗ , t

∗ ∈ �1� � � � �m�, we expand the relaxation (6) by the
additional constraint 1t∗ = nt∗ . The optimal values of the
resulting knapsack problems are upper bounds for the value
of those solutions S ∈ � �N � that contain precisely nt∗
boxes from Tt∗ . If the minimum of these bounds does not
exceed vlb, a solution S ∈ � �N � with a better value than
the current best must contain more than nN

t∗ boxes from Tt∗ .
In this case, we can increment nN

t∗ . This test is repeated
for each box type t until no bound can be improved. If in
this process we get nN

t > �nN
t , then the search on the par-

tial search tree with root N can be stopped. Thus, we have
derived a generalization of the reduction test Area Program
with the help of conservative scales.

6. Computational Results
The above OKP procedure has been implemented in C++
and was tested on a Sun workstation with Ultra SPARC
processors (175 MHz), using the compiler gcc. To allow for
a wider range of comparisons with other two-dimensional
efforts, we also tested an implementation on a PC with a
Pentium IV processor (2.8 GHz) with 1 GB memory using
g++3.2.

6.1. Results for Benchmark Instances from
the Literature

The only benchmark instances for the OKP that have been
documented in the literature can be found in the articles
by Beasley (1985) and Hadjiconstantinou and Christofides
(1995). These are restricted to the two-dimensional case.
We ran our algorithm on all of these instances that were
available. Like Caprara and Monaci (2004), we also use a
number of other instances that were originally designed for
guillotine-cut instances.
The 12 instances beasley1 through beasley12 are taken

from Beasley’s OR library (see Beasley 1990). They can
be found on the Internet at http://mscmga.ms.ic.ac.uk/jeb/
orlib/ngcutinfo.html. The data for hadchr3 and hadchr11
are given in Hadjiconstantinou and Christofides (1995).
Tables 1 and 2 show our results for these OKP-2 in-

stances. For all instances, we found an optimal solution in
at most 0.02 seconds. The small number of OKP search
nodes (at most 65) as well as OPP search nodes (at most
294) shows the high efficiency of the rules for reducing the
search tree. It is also remarkable that on less than a quarter
of the search nodes, the enumeration procedure for the OPP
had to be used. The majority of reductions resulted from
transformed volumes.
Instances wang20 and chrwhi62 are considerably larger.

They were taken from Wang (1983) and Christofides and

Whitlock (1977) and were originally designed for test-
ing the efficiency of guillotine-cut algorithms, as were the
next three sets: Instances 3 through CHL5 are taken from
the benchmark sets by Hifi, which can be found at ftp://
panoramix.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/.
The sets cgcut and gcut are also guillotine-cut type

instances and can be found at the OR library. Finally, we
created five new OKP instances okp that are listed in detail
in Table 3. They are random instances generated in the
same way as beasley 1–12 after applying initial reduction.
A detailed listing of our results for these OKP-2

instances can be found in Table 1. The first column lists the
names of the instances; the second shows the size of the
container, followed by the number of different box types
and the total number of boxes. The fifth column shows the
number of nodes in the outer search tree, followed by the
total number of calls to the inner search tree, i.e., the times
an OPP had to be re-solved. The last two columns show the
number of boxes in an optimal solution, and the optimal
value. (Instance gcut13 is still unsolved; our lower bound
corresponds to the best solution found so far.) Results are
shown in Table 2, where the first column lists the instance
names and the second column shows the run time on a PC
with a Pentium IV processor. Columns 3 and 4 give the run
times as reported by Beasley (1985) on a CYBER 855 and
by Hadjiconstantinou and Christofides (1995) on a CDC
7600. In 2004, Caprara and Monaci give run times for four
different algorithms. None of these algorithms dominates
all the others; the best of them (called A3) uses a clever
hybrid strategy for checking feasibility during branching.
The comparison in Table 2 should be considered with

some care because different computers with different com-
pilers were used for the tests. Some indication for the rel-
ative performance of the different machines can be found
at http://www.netlib.org/benchmark/performance.ps, where
the results of the Linpack100 benchmark are presented (see
Dongarra 2004). According to these results, a CDC 7600
manages 120 Mflop/s, a CYBER 875 (Cyber 855 does not
appear on the list) gets 480 Mflop/s, a Sun Ultra SPARC
achieves 7,000 Mflop/s, an Intel Pentium III (750 MHz)
13,800 Mflop/s, while an Intel Pentium IV (2.8 GHz) man-
ages 131,700 Mflop/s. Note that these speeds may not
be the same for other applications. Furthermore, there is
always a certain amount of chance involved when compar-
ing branch-and-bound procedures on individual instances.
Despite these difficulties in comparison, it is clear that

our new method constitutes significant progress. One indi-
cation is the fact that the ratio of running times between
large and small instances is smaller by several orders of
magnitude: As opposed to our two-level algorithm, the
search trees in the procedures by Beasley (1985) and by
Hadjiconstantinou and Christofides (1995) appear to be
reaching the threshold of exponential growth for some of
the bigger instances. After 800 seconds, the procedure by
Hadjiconstantinou and Christofides timed out on instances
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Table 1. Two-dimensional benchmark instances from previous literature.

Box No. of OKP OPP OPP Opt. Opt.
Problem Container size types boxes nodes calls nodes boxes solution

beasley1 �10�10� 5 10 19 1 1 5 164
beasley2 �10�10� 7 17 5 0 0 5 230
beasley3 �10�10� 10 21 25 6 36 7 247
beasley4 �15�10� 5 7 1 0 0 6 268
beasley5 �15�10� 7 14 1 0 0 6 358
beasley6 �15�10� 10 15 15 5 5 7 289
beasley7 �20�20� 5 8 0 0 0 8 430
beasley8 �20�20� 7 13 53 23 301 8 834
beasley9 �20�20� 10 18 3 0 0 11 924
beasley10 �30�30� 5 13 1 0 0 6 1�452
beasley11 �30�30� 7 15 36 10 16 9 1�688
beasley12 �30�30� 10 22 48 14 105 9 1�865

hadchr3 �30�30� 7 7 1 0 0 5 1�178
hadchr7 �30�30� 10 22 48 14 105 9 1�865
hadchr8 �40�40� 10 10 7 0 0 6 2�517
hadchr11 �30�30� 15 15 30 1 1 5 1�270
hadchr12 �40�40� 15 15 5 0 0 7 2�949

wang20 �70�40� 20 42 794 176 1�003 8 2�726
chrwhi62 �40�70� 20 62 356 102 7�991 10 1�860

3 �40�70� 20 62 356 102 7�991 10 1�860
3s �40�70� 20 62 757 166 3�050 8 2�726
A1 �50�60� 20 62 935 254 19�283 11 2�020
A1s �50�60� 20 62 4�291 504 8�156 7 2�956
A2 �60�60� 20 53 267 70 35�747 11 2�615
A2s �60�60� 20 53 8�598 2�365 143�002 8 3�535
CHL2 �62�55� 10 19 688 317 225�011 9 2�326
CHL2s �62�55� 10 19 1�419 557 158�450 10 3�336
CHL3 �157�121� 15 35 0 0 0 35 5�283
CHL3s �157�121� 15 35 0 0 0 35 7�402
CHL4 �207�231� 15 27 0 0 0 27 8�998
CHL4s �207�231� 15 27 0 0 0 27 13�932
CHL5 �30�20� 10 18 363 194 57�115 11 589

cgcut1 �15�10� 7 16 14 1 1 8 244
cgcut2 �40�70� 10 23 12 2�892
cgcut3 �40�70� 20 62 356 102 7�991 10 1�860

gcut01 �250�250� 10 10 33 0 0 3 48�368
gcut02 �250�250� 20 20 519 51 78 6 59�798
gcut03 �250�250� 30 30 2�234 235 742 6 61�275
gcut04 �250�250� 50 50 72�159 18�316 145�057 4 61�380
gcut05 �500�500� 10 10 52 13 13 5 195�582
gcut06 �500�500� 20 20 278 22 22 4 236�305
gcut07 �500�500� 30 30 852 124 152 4 240�143
gcut08 �500�500� 50 50 55�485 9�037 15�970 4 245�758
gcut09 �1�000�1�000� 10 10 12 2 8 5 939�600
gcut10 �1�000�1�000� 20 20 335 31 40 5 937�349
gcut11 �1�000�1�000� 30 30 1�616 212 463 6 969�709
gcut12 �1�000�1�000� 50 50 8�178 593 1�236 5 979�521
gcut13 �3�000�3�000� 32 32 �8�622�498

�9�000�000

okp1 �100�100� 15 50 3�244 661 35�523 11 27�718
okp2 �100�100� 30 30 23�626 7�310 8�721 11 22�502
okp3 �100�100� 30 30 8�233 816 921 11 24�019
okp4 �100�100� 33 61 1�458 15 50 10 32�893
okp5 �100�100� 29 97 5�733 643 13�600 8 27�923

beasley12, hadchr8, and hadchr11 without finding a solu-
tion. The comparison with Caprara and Monaci (2004) is
less conclusive: Both implementations fare pretty well on
medium-sized instances, with different behavior for large

instances. (Comparing a previous implementation of our
algorithm with A3, Caprara and Monaci (2004, p. 7) con-
cluded that “� � � the algorithm of [Fekete and Schepers]
appears to be more stable � � � �”) This behavior may also be



Fekete, Schepers, and van der Veen: Exact Algorithm for Higher-Dimensional Orthogonal Packing
582 Operations Research 55(3), pp. 569–587, © 2007 INFORMS

Table 2. Run times of our implementation, compared to other methods.

CM04

Problem Time/s B85 HC95 A0 A1 A2 A3

beasley1 <0�01 0�9
beasley2 <0�01 4�0
beasley3 <0�01 10�5
beasley4 <0�01 0�1 0�04
beasley5 <0�01 0�4
beasley6 <0�01 55�2 45�20
beasley7 <0�01 0�5 0�04
beasley8 0�02 218�6
beasley9 <0�01 18�3 5�20
beasley10 <0�01 0�9
beasley11 <0�01 79�1
beasley12 0�02 229�0 >800

hadchr3 <0�01 532
hadchr7 0�01 >800
hadchr8 <0�01 >800
hadchr11 <0�01 >800
hadchr12 <0�01 65�2

wang20 0�67 6�75 6�31 17�84 2�72
chrwhi62 0�54

3 0�54
3s 0�46
A1 1�12
A1s 1�51
A2 1�62
A2s 8�35
CHL2 10�36
CHL2s 6�84
CHL3 <0�01
CHL3s <0�01
CHL4 <0�01
CHL4s <0�01
CHL5 4�66

cgcut1 <0�01 0�30 1�47 1�46 1�46
cgcut2 >1�800 >1�800 >1�800 533�45 531�93
cgcut3 0�54 23�76 23�68 4�59 4�58

gcut1 0�01 0�00 0�00 0�01 0�01
gcut2 0�47 0�52 0�19 25�75 0�22
gcut3 4�34 >1�800 2�16 276�37 3�24
gcut4 195�62 >1�800 346�99 >1�800 376�52
gcut5 0�02 0�00 0�50 0�03 0�50
gcut6 0�38 0�06 0�09 9�71 0�12
gcut7 2�24 1�31 0�63 354�50 1�07
gcut8 253�54 1,202.09 136�71 >1�800 168�50
gcut9 0�01 0�01 0�09 0�05 0�08
gcut10 0�67 0�01 0�13 6�49 0�14
gcut11 8�82 16�72 14�76 >1�800 16�30
gcut12 109�81 63�45 16�85 >1�800 25�39
gcut13 >1�800 >1�800 >1�800 >1�800 >1�800

okp1 10�82 24�06 25�46 72�20 35�84
okp2 20�25 >1�800 >1�800 1,535.95 1,559.00
okp3 5�98 21�36 1�91 465�57 10�63
okp4 2�87 40�40 2�13 0�85 4�05
okp5 11�78 40�14 >1�800 513�06 488�27

Note. The columns B85, HC95, and CM04 show the run times as reported in Beasley (1985), Hadjiconstantinou and Christofides (1995), and
Caprara and Monaci (2004).
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Table 3. The new problem instances okp1–okp5.

Problem okp1: container= �100�100�, 15 box types (50 boxes)
size= ��4�90�� �22�21�� �22�80�� �1�88�� �6�40�� �100�9�,

�46�14�� �10�96�� �70�27�� �57�18�� �10�84�� �100�1�,
�2�41�� �36�63�� �51�24��

value= �838�521�4�735�181�706�2�538�1�349�1�685�5�336,
1�775�1�131�129�179�6�668�3�551�

n= �5�2�3�5�5�5�3�1�3�1�1�5�5�2�4�

Problem okp2: container= (100,100), 30 box types (30 boxes)
size= ��8�81�� �5�76�� �42�19�� �6�80�� �41�48�� �6�86�,

�58�20�� �99�3�� �9�52�� �100�14�� �7�53�� �24�54�,
�23�77�� �42�32�� �17�30�� �11�90�� �26�65�� �11�84�,
�100�11�� �29�81�� �10�64�� �25�48�� �17�93�� �77�31�,
�3�71�� �89�9�� �1�6�� �12�99�� �33�72�� �21�26��

value= �953�389�1�668�676�3�580�1�416�3�166�537�1�176,
3�434�676�1�408�2�362�4�031�1�152�2�255�3�570�
1�913�1�552�4�559�713�1�279�3�989�4�850�299,
1�577�12�2�116�2�932�1�214�

nj = 1� j ∈ �1� � � � �30�

Problem okp3: container= �100�100�, 30 box types (30 boxes)
size= ��3�98�� �34�36�� �100�6�� �49�26�� �14�56�� �100�3�,

�10�90�� �23�95�� �10�97�� �50�47�� �41�45�� �13�12�,
�19�68�� �50�46�� �23�70�� �28�82�� �12�65�� �9�86�,
�21�96�� �19�64�� �21�75�� �45�26�� �19�77�� �5�84�,
�16�21�� �23�69�� �5�89�� �22�63�� �41�6�� �76�30��

value= �756�2�712�1�633�2�332�2�187�470�1�569�4�947,
2�757�4�274�4�347�396�3�866�5�447�2�904�6�032,
1�799�929�5�186�2�120�1�629�2�059�2�583�953,
1�000�2�900�1�102�2�234�458�5�458�

nj = 1� j ∈ �1� � � � �30�

Problem okp4: container= �100�100�, 33 box types (61 boxes)
size= ��48�48�� �6�85�� �100�14�� �17�85�� �69�20�� �12�72�,

�5�48�� �1�97�� �66�36�� �15�53�� �29�80�� �19�77�,
�97�7�� �7�57�� �63�37�� �71�14�� �3�76�� �34�54�,
�5�91�� �14�87�� �62�28�� �6�7�� �20�71�� �92�7�,
�10�77�� �99�4�� �14�44�� �100�2�� �56�40�� �86�14�,
�22�93�� �13�99�� �7�76��

value= �5�145�874�2�924�3�182�2�862�1�224�531�249,
6�601�1�005�6�228�3�362�907�473�6�137�1�556,
313�4�123�581�1�999�5�004�2�040�3�143�795,
1�460�841�1�107�280�5�898�2�096�4�411�3�456,
1,406]

n= �1�2�1�1�1�1�3�3�2�1�3�1�1�2�2�1�3�1�2�1�3�3�1�1,
2�3�2�3�2�1�1�3�3�

Problem okp5: container= �100�100�, 29 box types (97 boxes)
size= ��8�81�� �5�76�� �42�19�� �6�80�� �41�48�� �6�86�,

�58�20�� �99�3�� �9�52�� �100�14�� �7�53�� �24�54�,
�23�77�� �42�32�� �17�30�� �11�90�� �26�65�� �11�84�,
�100�11�� �29�81�� �10�64�� �25�48�� �17�93�� �77�31�,
�3�71�� �89�9�� �1�6�� �12�99�� �21�26��

value= �953�389�1�668�676�3�580�1�416�3�166�537�1�176,
3�434�676�1�408�2�362�4�031�1�152�2�255�3�570,
1�913�1�552�4�559�713�1�279�3�989�4�850�299,
1�577�12�2�116�1�214�

n= �3�4�4�4�1�5�5�5�5�4�5�1�1�5�5�4�2�3�1�1�2�1�4�1,
5�4�5�2�5�

the result of some differences in branching strategies, which
can always turn out differently on individual instances. It
should be noted that the main basis for the success of
our method is the underlying mathematical characteriza-
tion, and tuning of branching strategies and bounds can be
expected to provide further progress. Promising may also

Table 4. Random generation of OKP-2
test instances.

Class of w1�x� evenly w2�x� evenly
box types distributed on distributed on

1 (bulky in 2) �1�50� �75�100�
2 (bulky in 1) �75�100� �1�50�
3 (large) �50�100� �50�100�
4 (small) �1�50� �1�50�

Classes of box types (%)

Instance type 1 2 3 4

I 20 20 20 40
II 15 15 15 55
III 10 10 10 70

be a combination of the first-level strategy of Caprara and
Monaci (2004) with our second-level strategy.
At this stage, an instance like cgcut13 is still out of reach,

even though we were able to improve the best-known solu-
tion to 8,622,498, from 8,408,316 in Caprara and Monaci
(2004) with an upper bound of 9,000,000, leaving a gap of
about 4%. It should be interesting to develop long-running,
special-purpose exact algorithms, just like Applegate et al.
(1998) did for the traveling salesman problem.

6.2. Generating New Test Instances for 2D and 3D

To get a broader test basis, and also include the three-
dimensional case, we generated 300 new test instances. We
followed the method described in Martello and Vigo (1998)
and Martello et al. (2000).
Our test instances are characterized by three parameters:
(1) type of the instance (I, II, III) (see Tables 4 and 5),
(2) number m of box types, and
(3) number / of boxes for each box type.
Each of the instances consists of a container of size 100

in each coordinate direction, and m box types, which are
obtained as follows:
There are four (OKP-2) or five (OKP-3) classes of box

types. The type of the instance determines the probability

Table 5. Random generation of OKP-3 test instances.

Class of w1�x� evenly w2�x� evenly w3�x� evenly
box types distributed on distributed on distributed on

1 (bulky in 2�3) �1�50� �75�100� �75�100�
2 (bulky in 1�3) �75�100� �1�50� �75�100�
3 (bulky in 1�2) �75�100� �75�100� �1�50�
4 (large) �50�100� �50�100� �50�100�
5 (small) �1�50� �1�50� �1�50�

Class of box types (%)

Instance type 1 2 3 4 5

I 20 20 20 20 20
II 15 15 15 15 40
III 10 10 10 10 60
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Table 6. Results for randomly generated OKP-2 instances.

No. of OKP nodes No. of OPP nodes
Solved

Class m �V � (out of 10) Min Avg Max Min Avg Max

I 20 20 10 5 57 174 0 8 23
30 30 10 19 307 914 0 158 969
40 40 9 40 933 3�826 0 431 2�411
20 60 9 31 231 677 1 287 1�018
20 80 8 82 336 943 234 147�864 727�719

II 20 20 10 6 139 1�038 0 305 2�699
30 30 10 28 548 1�568 0 2�873 26�866
40 40 8 32 5�062 28�754 2 14�910 84�975
20 60 7 36 297 571 5 237�144 1�633�573
20 80 6 62 536 1�110 83 168�530 280�688

III 20 20 10 3 117 516 0 299 1�169
30 30 10 82 737 1�860 3 10�588 53�510
40 40 9 342 3�865 10�655 745 62�065 416�200
20 60 8 31 1�006 4�064 3 345�130 1�174�938
20 80 2 96 196 296 241 85�729 171�218

of each new box type Tt to belong to one of these classes.
We use the distributions shown in Tables 4 and 5.
Depending on its class, the sizes of a box type are gen-

erated randomly, according to the distributions in Tables 4
and 5. We round up to integer values. To get the value of a
box type, the volume is multiplied with a random number
from �1�2�3�. The number of boxes in a new box type is
determined by the parameter /, independent of t.
In this manner, we generated (for two as well as for

three dimensions) 10 OKP instances for each of the three
instance types and each of the five parameter combinations:

�m�/� ∈ ��20�1�� �30�1�� �40�1�� �20�3�� �20�4���

6.3. Results for New Test Instances

Tables 6, 7, 8, and 9 show the results for test runs on
two- and three-dimensional instances. For 10 test instances
of any combination of parameters, we show how many of
these instances we could solve within a time limit of 1,000
seconds on a Sun Ultra SPARC with 175 MHz. From the
solved instances, we show the minimum (Min), the average
(Avg), and the maximum (Max) of the number of OKP and
OPP nodes, as well as the resulting run times.
It is evident that the difficulty grows with the percent-

age of “small” boxes. This is not very surprising because
these boxes do not restrict the possibilities for the rest of a
selected subset as much as large or bulky boxes do.
The large difference in difficulty for instances with iden-

tical parameterization does not arise from our method of
generation instances, but is characteristic for instances of
hard combinatorial optimization problems. This effect has
been known even for one-dimensional packing problems,
which have a much simpler structure. Because of this
spread, the number of nodes and run times are only signif-
icant for combinations of parameters where most instances
could be solved.

For the OKP-2 with m � 40 and �V � � 40, we could
find an optimal solution in tolerable run time for almost
all instances. For 60 and more boxes, Classes II and III
started to have higher numbers of instances that could not
be solved within the time limit. Only for instances with 80
boxes and about 70% of small boxes, our algorithm seemed
to reach its limits for the current implementation.
Even when taking into account that classes of three-

dimensional instances vary more with respect to the per-
centage of small boxes than those for two dimensions, it
is remarkable that this percentage makes a huge difference
with respect to the difficulty of the resulting instances. For
an average of 20% of small boxes (Class I), all instances
(with the exception of a single one with �V � = 80) could be
solved. For an average of 40% of small boxes (Class II),

Table 7. Run times for randomly generated OKP-2 in-
stances using a Sun Ultra SPARC with 175
MHz.

Run time/s
Solved

Class m �V � (out of 10) Min Avg Max

I 20 20 10 0�06 0�56 1�26
30 30 10 0�29 4�48 13�59
40 40 9 1�31 22�02 76�30
20 60 9 0�43 2�35 5�95
20 80 8 0�99 62�46 243�41

II 20 20 10 0�06 2�18 17�69
30 30 10 0�36 10�64 39�59
40 40 8 0�55 51�12 152�46
20 60 7 0�45 95�44 640�47
20 80 6 1�86 112�89 267�90

III 20 20 10 0�08 1�48 5�77
30 30 10 1�07 17�67 53�00
40 40 9 6�66 103�10 313�91
20 60 8 0�36 191�98 719�67
20 80 2 2�18 34�52 66�86
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Table 8. Results for randomly generated OKP-3 instances.

No. of OKP nodes No. of OPP nodes
Solved

Class m �V � (out of 10) Min Avg Max Min Avg Max

I 20 20 10 1 73 352 0 22 82
30 30 10 11 276 1�190 1 59 291
40 40 10 73 953 2�848 5 2�684 20�975
20 60 10 20 541 2�961 3 19�896 198�091
20 80 9 42 414 1�511 14 145 399

II 20 20 10 11 75 328 1 35 166
30 30 10 5 327 972 0 6�579 62�827
40 40 8 59 2�197 13�064 20 85�465 671�934
20 60 5 1 292 719 0 232 912
20 80 3 142 149 161 23 46 65

III 20 20 10 5 57 138 0 4�433 36�747
30 30 6 1 859 2�250 1 3�794 10�063
40 40 3 17 652 1�715 7 1�326 3�885
20 60 3 51 3�728 10�842 27 55�164 165�276
20 80 1 73 73 73 38 38 38

our method works well, at least for instances with m� 40,
�V � � 40. If the percentage of small boxes rises to 60%
in Class III, then even for m= 30� �V � = 30, our program
does not find an optimal solution for a large number of
instances.
Summarizing, we can say that our new method has

greatly increased the size of instances that are practically
solvable. In particular, the size of the container is no
longer a limiting factor. It should be noted that even for
three-dimensional instances with m= 20, the 0-1 programs
following the approach by Beasley (1985) and Hadjicon-
stantinou and Christofides (1995) contain several 100,000

Table 9. Run times for randomly generated OKP-3
instances on a Sun Ultra SPARC with 175
MHz, timeout after 1,000s.

Run time/s
Solved

Class m �V � (out of 10) Min Avg Max

I 20 20 10 0�06 1�63 7�76
30 30 10 0�36 9�15 43�58
40 40 10 2�66 44�99 121�96
20 60 10 0�50 18�33 125�76
20 80 9 0�67 10�76 37�04

II 20 20 10 0�26 1�76 6�92
30 30 10 0�37 18�94 81�69
40 40 8 2�26 133�48 845�70
20 60 5 0�28 12�00 38�94
20 80 3 4�13 5�43 6�95

III 20 20 10 0�29 4�73 21�69
30 30 6 0�26 35�69 101�61
40 40 3 2�01 29�66 78�53
20 60 3 1�21 211�63 607�83
20 80 1 2�06 2�06 2�06

variables, even making the generous assumption of a grid
reduction to 10%.

6.4. A New Library of Benchmark Instances

We are in the process of setting up a new library for mul-
tidimensional packing problems, called PackLib2 (Fekete
and van der Veen 2007). The idea is to have one place
where benchmark instances, results, and solution history
can be found. For this purpose, we are using a universal
XML-format that allows inclusion of all this information.
We provide parsers for conversion directly into C formats,
and converters for all standard data formats. Results include
visualization of solutions by drawings of the feasible pack-
ings. Finally, we hope to provide a number of algorithms at
the website. Interested researchers are encouraged to con-
tact the first author.

7. Solving Other Types of Packing
Problems

7.1. Strip-Packing Problems

In an exact SPP procedure, we start with a heuristic for
generating a packing; its “height” is used as an upper
bound. A lower bound h can be obtained with the help
of the methods described in our paper (Fekete and Schep-
ers 1997c, 2004b). If there is a gap between these bounds,
we have to use enumeration. Because the OPP is the deci-
sion version of the SPP for a fixed objective value, an obvi-
ous approach would be binary search in combination with
the OPP algorithm from §3.
A more efficient method can be obtained by observing

that any OPP node that did not find a solution for height h
cannot possibly find a solution for height h′ <h. Thus, we
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can solve the SPP with the help of a modified version of
our OPP routine.
For finitely many boxes, there are only finitely many pos-

sibilities for the minimal height of a packing. The set H of
these values can be determined by using the method from
Christofides and Whitlock (1977) for computing normal-
ized coordinates.
The height of the packing obtained by the heuristic is

stored under h. The variable h′ is initialized with the largest
value from H below h. We start the OPP tree search for the
container with height h′. If the algorithm finds a feasible
packing, then h is updated to the value h′, and h′ is replaced
by the next smaller value of H . Now the OPP search is
done for container height h′. As noted above, no search
node that was dismissed before has to be considered again.
The search is performed until all search nodes have been
checked, or h reaches the value h of the lower bound.

7.2. Orthogonal Bin-Packing Problems

The basic scheme of our exact method follows the outline
by Martello and Vigo (1998) and Martello et al. (2000):
Within a branch-and-bound framework, a packing (for

a number of containers) is produced iteratively. A list L
maintains all containers that are used. In the beginning, L is
empty. At each branching step, a box b is either assigned
to a container C in L, or a new container is generated for b
and added to L. The crucial step is to check whether a
container C can hold all boxes that are assigned to it.
We get upper bounds by packing the unassigned boxes

heuristically. Our new suggestions concern the other steps
of the approach, which cause the largest computational
effort:
(1) computing lower bounds, and
(2) solving the resulting OPPs.

The improvement of the lower bounds from Martello and
Vigo (1998) and Martello et al. (2000) have already been
discussed in our paper (Fekete and Schepers 1997c).
In Martello and Vigo (1998), the resulting OPPs are

enumerated by using the method of Hadjiconstantinou
and Christofides (1995). For solving the three-dimensional
OPPs in Martello et al. (2000), there is a special enu-
meration scheme using the principle of placement points
described in §5.1. As discussed in our paper Fekete and
Schepers (1997b, 2004a), we get a drastic improvement
by using our method from §3, which is based on packing
classes.

8. Conclusion
In this paper, we have shown that higher-dimensional pack-
ing problems of considerable size can be solved to opti-
mality in reasonable time by making use of a structural
characterization of feasible packings. Further progress may
be achieved by refined lower bounds and by using a more
sophisticated outer tree search, as in the recent paper by
Caprara and Monaci (2004). Currently, we are working on
a more advanced implementation, motivated by ongoing

research on reconfigurable computing. We expect this work
to lead to progress for other problem variants.
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