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ABSTRACT: We develop an exact algorithm for selecting flip-flops
in partial scan designs to break all feedback cycles. The main ideas that
allow us to solve this hard problem exactly for large, practical instances
are - graph transformations, a partitioning scheme used in the branch
and bound procedure, and pruning techniques based on an integer
linear programming formulation of the minimum feedback vertex set
(MFVS) problem. We have obtained optimum solutions for the ISCAS
’89 benchmark circuits and several production VLSI circuits within
reasonable computation time. For example, the optimal number of
scan flip-flops required to eliminate all cycles except self-loops in the
circuit s38417 is 374. This optimal solution was obtained in 32 CPU
seconds on a SUN Sparc 2 workstation.

1. INTRODUCTION
Scan design is a widely used design for testability technique. In

this technique, memory elements (flip-flops) are chained into a shift
register (scan chain) during the test mode and hence, can be directly
controlled and observed. In the full scan design, all flip-flops are
included in the scan chain and so combinational test generation
methods are sufficient. However, the full scan design often entails
unacceptable penalties of area overhead and performance degrada-
tion. A practical alternative is to select a subset of the flip-flops for
inclusion in the scan chain (partial scan). Thus, both area overhead
and performance degradation can be significantly reduced, but the
partial scan circuit requires the use of sequential test generation
methods.

Existing approaches for selecting flip-flops for partial scan can
be classified as testability analysis based [1, 2], test generation
based [3, 4, 5, 6] and structural analysis based [7]. Cheng and
Agrawal [7] observed that the feedback cycles among flip-flops are
mainly responsible for test generation complexity. Further, they
empirically observed that partial scan circuits with self-loops but
no longer feedback cycles are easier to test than circuits that have
the longer feedback cycles. A self-loop here refers to a situation
where the output of a flip-flop, after passing through combinational
logic, feeds back into the same flip-flop. Allowing self-loops in the
partial scan circuit is particularly attractive since a large number
of flip-flops in real designs have self-loops. Therefore, the scan
overhead will be high if we had to break all feedbacks.

The approach proposed by Cheng and Agrawal [7] translates to a
graph problem. Let v1; . . . ; vn be the set of flip-flops in the circuit.
The structural dependencies among flip-flops can be represented
by a directed graph, called the S-graph. This graph has as many
vertices as the number of flip-flops in the circuit. There exists an
arc from vertex vi to vertex vj if there is a combinational path from
flip-flop vi to flip-flop vj . Also, there is an arc from vertex vi to
itself (self-loop) if there is a combinational path from flip-flop vi
to itself. The problem of selecting flip-flops to break all feedback
cycles is now equivalent to the problem of finding a set of vertices
whose removal makes the S-graph acyclic. This is referred to as
the minimum feedback vertex set (MFVS) problem. If we wish to
allow self-loops in the partial scan circuit, then we must remove
the self-loop arcs in the S-graph before computing the MFVS.

The MFVS problem belongs to the class of NP-hard problems.
Several exact and heuristic methods have been proposed for this
problem [8, 9, 10, 11, 12, 13, 14]. In this paper, we present a
new exact algorithm. Experimental results in Section 6 show that
our algorithm can compute the MFVS for S-graphs obtained from
large sequential circuits in the ISCAS ’89 benchmark set and several
production VLSI circuits. This is the first time that optimal results
are being reported for these circuits. Moreover, our algorithm uses
less or comparable computing resources than the available heuristic
methods.

This work involves several new ideas. We develop an MFVS-
preserving graph transformation that defines a new class of graphs
for which the MFVS problem can be solved in polynomial time
complexity. Then, we propose a partitioning scheme in the branch
and bound search procedure. This is essentially a new branching
strategy. Finally, we propose a novel integer linear programming
formulation for the MFVS problem. Such a formulation can be
used directly to solve the MFVS problem or to find lower bounds
on the cardinality of the MFVS. These lower bounds are useful in
pruning the branch and bound search tree.

2. GRAPH TRANSFORMATIONS
Let V and A be the vertex and arc sets, respectively, of the S-

graph. Also, let n = jV j and m = jAj. For any arc (vi ! vj), vi
is a predecessor of vj and vj is a successor of vi. Let remove(vi)

denote the process of removing all incoming and outgoing arcs of
vertex vi. Let ignore(vi) denote the following process: connect
each predecessor of vi to all its successors, remove(vi) and col-
lapse multiple arcs (if any) into a single arc. Ifvj is both a predeces-
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sor and successorto vi then a self-loop arc is created. The following
three transformations are known to be MFVS-preserving [15]:

� T1: If vi has a self-loop then remove(vi) and return vi. A
MFVS for the S-graph is obtained by adding vi to any MFVS
of the modified graph.

� T2: If vi has either indegree or outdegree equal to 0 then
remove(vi). The MFVS’s of the S-graph and the modified
graph are identical.

� T3: If vi has either indegree or outdegree equal to 1 but no
self-loop then ignore(vi). Any MFVS of the modified graph
is a MFVS for the S-graph.

Each of the above transformations yields a modified graph with
one less vertex. Starting from the S-graph, we can repeatedly apply
transformations T1, T2 and T3 until no more transformations are
applicable. The vertices returned by transformation T1 during this
process must be added to the MFVS of the final graph to obtain
the MFVS of the given S-graph. The final graph resulting from
such a process is unique irrespective of the order in which the
transformations are applied [15]. Hence, the process of repeatedly
applying the transformations T1, T2 and T3 is well defined and
we refer to it as procedure compress graph. This procedure can
be implemented to run in O(m logn) time as suggested in [16].
In particular, if compress graph reduces the S-graph to an empty
graph then the MFVS is determined in polynomial time complexity.
In [15], the class of graphs that reduce to an empty graph after
applying compress graph was called the two-way reducible class.

We propose a MFVS-preserving transformation that can reduce
S-graphs beyond what is possible using compress graph. There
are two advantages of using our transformation. First, our transfor-
mation defines a new polynomial time solvable class of graphs that
is strictly larger than the two-way reducible class and hence, we
can determine the MFVS of some S-graphs which are not two-way
reducible in polynomial time. Second, for arbitrary S-graphs, this
transformation will give a final graph with fewer vertices than the
final graph obtained through compress graph. Therefore, fewer
vertices have to be considered in the branch and bound search.

Consider the graph S shown in Figure 1. Suppose this is the
S-graph of a sequential circuit with thirteen flip-flops x1; . . . ; x13.
First, we reduce S by using the procedure compress graph. Ver-
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Figure 1: Example S-graph S.

tex v1 is removed by transformation T3. This results in a self-loop
on v2. Vertex v2 is then removed using transformation T1. The
transformed graph S0 is shown in Figure 2. None of the transfor-
mations are applicable at this point. Since S0 is not empty, our
S-graph does not belong to the two-way reducible class. However,
the transformed graph S0 can be further reduced based on the fol-
lowing observation:

Observation 1: It suffices to consider the strongly connected com-
ponents (scc’s) of the graph for finding the MFVS [8].

The graph S0 has the following strongly connected components:
fv3; v4; v5; v6g, fv7; v8; v9g and fv10; v11; v12; v13g. We extract the
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Figure 2: Example S-graph reduced by compress graph(S).

strongly connected components by deleting arcs (vi ! vj), where
vi and vj belong to different scc’s. The resulting graph S00 shown
in Figure 3 can now be reduced to an empty graph by performing
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Figure 3: SCC’s of graph in Figure 2.

the compress graph(S00 ). For example, consider the component
fv3; v4; v5; v6g of S00. The sequence of transformations for this
component is shown in Figure 4. Similarly, the other two scc’s are
also reduced to empty graphs.
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Figure 4: Reducing SCC fv3; v4; v5; v6g.

The following procedure reduces a graph by repeated use of
Observation 1.

Procedure transform graph(S)
do f

extract scc(S);
mfvs list=mfvs list + compress graph(S);
g while (S is modified and S is not empty)

return(S and mfvs list);

The procedure extract scc computes the strongly connected com-
ponents of a graph and deletes arcs (vi ! vj) where vi and vj
belong to different scc’s. Consider the application of procedure
transform graph to the example S-graph of Figure 1. Since S
is strongly connected, procedure extract scc(S) does not modify
S. Next, we perform compress graph(S), to obtain the graph
shown in Figure 2. Since the procedure compress graph modi-
fies the graph S, we recompute the strongly connected components
of the modified graph. Now procedure extract scc(S) modifies
S into the graph shown in Figure 3. Finally, compress graph(S)

reduces the graph shown in Figure 3 to the empty graph.
The transform graph procedure can be implemented to run

in time complexity O(mn logn). Observe that the procedure
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transform graph reduces the example S-graph, that did not be-
long to the two-way reducible class, to an empty graph. Conse-
quently, we have defined a new class of graphs, strictly larger than
the two-way reducible class, for which the MFVS can be computed
in polynomial-time complexity. We call this class scc compressible.
If the S-graph of a sequential circuit is not scc-compressible then
transform graph(S) will reduce it to a final graph containing
one or more scc’s. An scc that cannot be further reduced by the
procedure compress graph is called a compressed scc.

3. PARTITIONED BRANCH AND BOUND
We illustrate the partitioning scheme used in the branch and

bound procedure with the graph S shown in Figure 5. This graph
has seven vertices labeled v1; . . . ; v7. We note that performing
transform graph(S) does not reduce it any further. We begin
by associating a Boolean variable xi to each vertex vi in the graph.
For any assignment of 0-1 values to the Boolean variables, we can
construct a vertex set that includes only those vertices for which
the corresponding Boolean variables assume the value 1. The 0-
1 assignments that correspond to feedback vertex sets are called
feasible solutions and the rest are infeasible solutions. The feasi-
ble solutions include the optimum solutions corresponding to the
MFVS’s. The branch and bound procedure systematically searches
the space of all 0-1 vectors for an optimum solution.

v3

v2

v1 v4 v6

v5

v7

Figure 5: A compressed scc.

We begin the search with all Boolean variables unassigned. We
define the index set to be a list of subscripts of all unassigned vari-
ables. The index set corresponding to the initial search space here
is N 0

= f1;2; 3; 4; 5;6; 7g. We pick x4 as our first decision vari-
able and let x4 = 1. This implies that we wish to include vertex v4

in the feedback vertex set and hence, we remove this vertex from
S. The modified graph S0 is shown in Figure 6. Next, we try to
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Figure 6: Graph after removing v4.

reduce the graph S0 by doing transform graph(S0 ), but it does
not reduce any further. Now the index set corresponding to search
space of S0 is N 1 = f1; 2;3; 5; 6; 7g. Conventionally, we may ex-
plore this search space as shown in Figure 7. However, the MFVS
of S0 can be found by solving the two strongly connected compo-
nents fv1; v2; v3g and fv5; v6; v7g, independently (Observation 1).
Hence, we can partition the index setN 1 into f1,2,3g and f5,6,7g
and independently explore the corresponding search spaces. This
situation is shown in Figure 8. Partitioning the search space ofN 1

has lead to an efficient search. Observe that the number of nodes in
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Figure 7: Conventional branch and bound.

the search tree of Figure 8 is 3 whereas the number of nodes in the
search tree of Figure 7 is 4. In general, we can expect the search
tree for the partitioned branch and bound to be much smaller than
the search tree for the conventional branch and bound. Note the
recursive use of Observation 1 within branch and bound search.
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Figure 8: Partitioned branch and bound.

Any branch and bound procedure can be expressedas a sequence
of moves through the search spaces. Let S(N 0

) denote the initial
space of (Boolean) vectors and S(N i) for i � 1 denote the sub-
sequent search spaces where N 0 and N i are the index sets. The
complexity of exploring a subspace is exponential in the size of
its index set. In conventional branch and bound search, the search
space is halved by fixing the value of one decision variable, since
jN i+1j = jN ij � 1. For example, in Figure 7, jN 1j = jN 0j � 1.
Sometimes, we could have jN i+1j = jN ij�k for some small value
of k. This can happen if fixing one variable implicates a few others.
A variable xi implicates a variable xj if inclusion or exclusion of
vi from the MFVS forces us to either include or exclude vj from
the MFVS. Here every unit increase in the value of k reduces the
subsequent search space by a factor of two.

In the partitioned search strategy, we partition the index set of the
current search space into one or more pieces and proceed to solve
them, independently. This results in the reduction of the search
space by a large factor. For example, the size of the search space
corresponding to the index set N 1 in the conventional branch and
bound is 26 = 64 whereas it is 23 + 23 = 16 in the partitioned
branch and bound. This can lead to a substantial reduction in the
overall complexity of the search procedure since we apply this
strategy recursively. Hence, the search is likely to be much faster.
Here, the partitions are inherent as in the case ofN 1. They depend
on the compressed scc’s present in the current graph. Since the
search could branch multiway after each decision depending on the
number of compressedscc’s, we refer to this as the multiway branch
and bound algorithm. We present the pseudo-codeand other details
involved in the implementation of this algorithm in Section 5.

4. PRUNING STRATEGIES
We need to compute good lower bounds on the cardinality of

the MFVS of a graph to effectively prune our search. First, we
show that the lower bound for any compressed scc is two. This
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can be used as the trivial lower bound in the branch and bound
procedure. We then formulate the MFVS problem as an integer
linear program (ILP) [17]. This formulation can be used in several
ways for computing lower bounds.

Claim 1: For any compressed scc S, jMFV S(S)j � 2.

Proof: Let S be the given compressed scc. By contradiction, let us
suppose that the size of optimum solution is 1. Let that vertex be
u. If we remove u from S then the resulting graph must be acyclic.
Clearly this graph has a vertex with in-degree 0. Let that vertex be
v. This implies that the in-degree of v in S must have been� 1 (the
only possible arc being u ! v). This contradicts the assumption
that S is compressed.

4.1. ILP Formulation
Let W = (w1; w2; . . . ; wn) be weights associated with the ver-

tices v1 . . . vn of the graph. We start with the following require-
ment: for every arc (vi ! vj), we require that wi � wj � 1.
By transitivity, this implies that, along any path in the graph, the
weights assigned to its vertices must decrease. Clearly, the above
requirement cannot be satisfied for all the arcs of a cycle. We will
use this infeasibility to identify the vertex feedback sets of a graph.
Consider an arc (vi ! vj) that is part of some cycle. Let the
weight of vertex vj be n. Starting from vertex vj , if we decrease
the weights of vertices along the cycle by one unit, then the weight
of vertex vi cannot be less than 1. This is because the longest cycle
can have at most n arcs. Therefore, if we add n to the weight of
vertex vi, then (wi+ n)�wj � 1. In general, it is possible to sat-
isfy the requirement wi�wj � 1 for all arcs on a cycle by adding
n to the weight of any one vertex on the cycle. This requirement
can be expressed as follows: for every (vi ! vj) we require that
wi�wj+nxi � 1. Here, xi is a Boolean variable associated with
vertex vi. If the weight of vertex vi on a cycle has to be augmented
by n, then the Boolean variable xi assumes the value 1. Otherwise,
its value is 0. To find a MFVS, it suffices to minimize

P
xi. The

ILP formulation for the MFVS problem is as follows:

Minimize
P

xi
Subject to: wi � wj + nxi � 1 8 (vi ! vj) 2 A

where 0 � wi � n� 1 and xi are Boolean.

As an example, consider the graph shown in Figure 9. This is a
compressed scc. Let W = (w1; . . . ; w6) and X = (x1; . . . ; x6).
The ILP formulation for this graph is as follows:

C  = {1,2}
C  = {3,4}
C  = {5,6}
C  = {1,3,5}
C  = {2,4,6}

1

2

3

4

5
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v2

vv 34

v5

v6 CHORDLESS  CYCLES

Figure 9: Example to illustrate ILP formulation.

Minimize x1 + x2 + x3 + x4 + x5 + x6

Subject to: w1 � w2 + 6x1 � 1 w2 �w1 + 6x2 � 1
w1 � w3 + 6x1 � 1 w5 �w1 + 6x5 � 1
w2 � w4 + 6x2 � 1 w6 �w2 + 6x6 � 1
w3 � w4 + 6x3 � 1 w3 �w5 + 6x3 � 1
w4 � w3 + 6x4 � 1 w4 �w6 + 6x4 � 1

w5 �w6 + 6x5 � 1 w6 � w2 + 6x6 � 1
0 � wi � 5, xi are Boolean.

An optimum solution to the ILP corresponds to an MFVS of the
graph. In the present example, the solution X = (0;1; 1; 0; 0;1)
corresponds to the MFVS fv2; v3; v6g. Observe that the graph has
many MFVS.

Claim 2: There exists a one-to-one correspondence between the
feedback vertex sets of the graph and the feasible solutions to X of
the above formulation.

Proof: Given F , a feedback vertex set of the graph, remove all
outgoing arcs of the vertices in F and delete the inequalities corre-
sponding to these arcs. Since the graph is acyclic now, the resulting
formulation has a feasible solution for (W;X) with X = 0. Let
xi = 1 for all the vertices in F and we get a feasible solution
corresponding to F . Alternatively, let (W 1;X1

) be a feasible so-
lution to the formulation. Let F = fi : xi = 1g. We show by
contradiction thatF is a feedback vertex set. Suppose it is not, then
the graph obtained by removing all vertices in F has a cycle C . If
we add inequalities corresponding to all arcs in the cycle C , thenP

vi2C
xi � k=n (k is the length of the cycle). However, this is a

contradiction becausexi on the cycle have a value 0.

Claim 3: The optimum solution to the above formulation gives the
MFVS.

Proof: Let X� be the given optimum solution. From the previous
claim it is clear that there exists a feedback vertex set, sayF �, cor-
responding to X�. SupposeF 0 is another feedback vertex set with
fewer vertices. Then, again by previous claim, we get a feasible
solution X 0 corresponding to F 0 with smaller objective value than
X�. This contradicts the assumption that X� is optimum.

The linear programming (LP) relaxation to this formulation is
one way to determine lower bounds on the cardinality of the MFVS.
Unfortunately, the lower bounds returned by the relaxation are
weak. In the relaxation, we allow 0 � xi � 1 and hence, wi = 0
8 i and xi = 1=n 8 i is a feasible solution. This implies that
the optimum value returned by the LP relaxation will always be
� 1. This is especially weak considering that we have already
shown a lower bound of two for compressed scc’s. We can enhance
the above formulation by adding more constraints like facets [17]
derived from the graph or cuts derived from the above formulation.

One such constraint is the cycle constraint. For every cycle
C in the graph, we can add an inequality

P
vi2C

xi � 1 to the
above formulation. Since two-cycles are easy to identify, one
can add all the two-cycle constraints and use the corresponding
LP relaxation to compute lower bounds. The LP relaxation after
such enhancements will yield better bounds. Consider again the
example shown in Figure 9. We add the following inequalities for
the two cycles C1; C2 and C3: w1 + w2 � 1, w3 + w4 � 1 and
w5 + w6 � 1. The optimal solution to the LP relaxation after
adding these constraints is 3 whereas it was 1 before. In general,
if we add the cycle constraints corresponding to cycles with more
than two vertices, then we can obtain better lower bounds.

5. MULTIWAY BRANCH AND BOUND
We combine the MFVS-preserving graph transformation, parti-

tioned search strategy and ILP-based lower bounding technique to

4



obtain an exact algorithm for computing the MFVS. Given an S-
graph we first reduce it by using the procedure transform graph.
If the resulting graph is not empty, then we solve each compressed
scc of this graph independentlyby using the partitioned search strat-
egy of Section 3. The following procedure computes the MFVS of
an S-graph:

Procedure MFVS(S)
mfvs list = transform graph(S);
if (S is not empty)

for (each scc Si)
mfvs list = mfvs list + SOLV E SCC(Si);

return(mfvs list);

The optimum solution for each scc Si is obtained by using the
recursive procedure SOLV E SCC . Let xj be the first decision
variable for scc S1. The right branch for decision variable xj
corresponds to the case in which vertex vj is included in the feed-
back vertex set (remove(vj)). The left branch corresponds to the
case in which vertex vj is excluded from the feedback vertex set
(ignore(vj)). We compute the best possible feedback vertex set
for both the right and left branches and store them in r fvs[vj] and
l fvs[vj], respectively. The cardinality of the MFVS of the scc S1

is equal to the minimum of jr fvs[vj]j and jl fvs[vj]j.
The vertex vj can be included in the feedback vertex set by using

procedure remove(vj). Similarly, vertex vj can be excluded from
the feedback vertex set by using the procedure ignore(vj). In
either case, the scc S1 has changed and we use the procedure
transform graph(S1) to further reduce S1. After including vj ,
if the reduced S1 is not empty, then we recursively apply procedure
SOLV E SCC to each of its components. After that, we restore
(backtrack) S1 to the state it was before we removed vertex vj .
For the left branch, after excluding vj, we can compute a lower
bound on the cardinality of the MFVS for the transformed graph.
If jl fvs[vj]j + lower bound(vj) � jr fvs[vj]j, then there is no
need to explore the left branch. Otherwise, we again recursively
apply the procedure SOLV E SCC to each of its components.
After that, we restore (backtrack) S1 to the state it was before we
ignored vertex vj . For the lower bound computation we can either
use the trivial lower bound of 2 or the lower bound returned by the
enhanced LP relaxation explained in the previous section.

Procedure SOLVE SCC(Si)
Pick a variable xj from scc Si;
r fvs[vj] = �; l fvs[vj] = �;
remove(vj); /* Include vj in feedback vertex set */
r fvs[vj] = transform graph(Si) + vj;
if (Si is not empty)

for (each scc of Si)
r fvs[vj] = r fvs[vj] + SOLV E SCC(scc);

backtrack; /* Restore Si to its state before remove(vj) */
ignore(vj); /* Exclude vj from feedback vertex set */
l fvs[vj] = transform graph(Si);
if ( jl fvs[vj]j + lower bound(vj) < jr fvs[vj]j ) f

if (Si is not empty)
for (each scc of Si)
l fvs[vj] = l fvs[vj] + SOLV E SCC(scc);

backtrack; /* Restore Si to its state before ignore(vj) */
return( minimum (r fvs[vj],l fvs[vj]));

g else f

backtrack; /* Restore Si to its state before ignore(vj) */
return( r fvs[vj] ); g

6. RESULTS
We implemented the procedure MFVS presented in Section 5 in

a C language program called PSCAN. We compare our algorithm
with three other state-of-the art methods: Lee and Reddy [9], Pas-
cant [11] and Opus [5]. All three are heuristic approaches and do
not guarantee an MFVS. They also cannot determine how close
their solution is to the optimum solution. However, they all select
flip-flops to break all cycles (except self-loops) in the S-graph. All
experiments were performed on a Sparc2 SUN workstation.

Table 1 reports results of experiments on the ISCAS 89 bench-
mark set of circuits. The number of flip-flops in each circuit is
shown in the column FF. The number of scan flip-flops selected
by various methods and the CPU seconds required to find the scan
flip-flops are shown in columns Scan Flip-Flops and CPU sec,
respectively. A 0 under CPU sec means less than 0:1 seconds.
Under columns LR, Pa, Op and PSCAN, we report data obtained by
Lee and Reddy, Pascant, Opus and PSCAN algorithms, respectively.
The results in the column LR were communicated to us by the au-
thors. They have recently modified their heuristics to obtain better
(smaller) feedback vertex sets. Also, the table does not show the
CPU seconds required by their algorithm. Their program requires
less than 3 seconds for all the circuits in the table. Results for
the exact algorithm of Smith and Walford are not included here
since that technique is practical only for small circuits [9]. The
0�0 in Table 1 indicates that the feedback vertex set reported by the
corresponding program did not break all cycles.

Optimal results for large circuits are being reported for the first
time here. PSCAN computes the MFVS of large S-graphs (obtained
from circuits like s15850, s38417, s38584 and others) in less than
one minute. The CPU time required by PSCAN to compute the
optimal solution is comparable or better than the time required by
the heuristic methods to compute an approximate solution. For
small circuits, the feedback vertex sets produced by the heuristic
methods are optimal. For the larger circuits, the heuristic methods
produce sub-optimal results. As an example, consider the circuit
s15850. This circuit has 597 flip-flops. Lee and Reddy’s technique
computed a feedback vertex set of size 89. Pascant and Opus
computed feedback vertex sets of size 101 and 91, respectively.
PSCAN computed the optimal feedback vertex set of size 88.

We also compared our algorithm with the conventional branch
and bound method. If we do not include our graph transformation
procedure and pruning techniques, then the conventional branch
and bound algorithm is unable to determine the MFVS for the S-
graphs of large circuits like s15850 and s38417 even after running
on a Sparc 2 SUN workstation for more than three days. If we
include the graph transformation procedure and the pruning tech-
niques, then the conventional branch and bound algorithm is able
to determine the MFVS for all the S-graphs except for the S-graph
of s38417. However, for the cases where MFVS is obtained, this
method requires significantly more CPU seconds. As shown in
Table 1, by using partitioned branch and bound, PSCAN is able to
compute the MFVS for the S-graphs of s15850 and s38417 in less
than a minute of CPU time.

If we also break self-loops, then the size of the feedback vertex
set obtained by the heuristic methods is the same as the optimal
solution determined by PSCAN for all benchmark circuits. This is
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Table 1: Partial scan results.

Ckt FF Scan Flip Flops CPU Sec.
LR Pa Op PSCAN Pa Op PSCAN

s208 8 0 0 0 0 0 0 0
s298 14 1 1 1 1 0 0.1 0.1
s344 15 5 5 5 5 0 0.1 0.1
s349 15 5 5 5 5 0 0.1 0.1
s382 21 9 9 9 9 0 0 0
s386 6 5 5 5 5 0 0.1 0.1
s400 21 9 9 9 9 0 0 0
s420 16 0 0 0 0 0 0.4 0
s444 21 9 9 9 9 0 0 0
s510 6 5 5 5 5 0 0.1 0.1
s526 21 3 4 3 3 0 0 0
s526n 21 3 4 3 3 0 0 0
s641 19 7 7 7 7 0 0.3 0.1
s713 19 7 7 7 7 0 0.3 0.1
s820 5 4 4 4 4 0 0 0
s832 5 4 4 4 4 0 0 0
s838 32 0 0 0 0 0 0.4 0
s953 29 5 5 5 5 0 0.1 0.1
s1196 18 0 0 0 0 0 0.4 0
s1238 18 0 0 0 0 0 0.4 0
s1423 74 21 37 22 21 0.3 1.0 0.9
s1488 6 5 5 5 5 0 0.5 0.1
s1494 6 5 5 5 5 0 0.5 0.1
s5378 179 30 32 30 30 0.2 0.3 0.1
s9234 228 53 65 - 53 0.8 6.6 0.9
s13207 669 59 71 - 59 1.5 24.2 0.4
s15850 597 89 101 91 88 6.4 18.0 48.0
s35932 1728 306 306 306 306 9.3 27.3 0.5
s38417 1636 374 400 380 374 43.3 909.0 32.8
s38584 1452 218 376 222 218 33.0 55.8 7.7

Table 2: Results for production VLSI circuits.

Ckt Gates PI PO FF Scan FF % Scan Sec
ckt1 12054 18 30 873 83 9.5 1.2
ckt2 30272 104 82 3020 479 16.0 1.1
ckt3 53279 26 83 2810 1117 40.0 12.5

because these circuits have many self-loops. The graph obtained
after deleting self-loop vertices is much smaller and is either already
acyclic or has very few cycles.

7. RESULTS FOR PRODUCTION VLSI CIRCUITS
Several production VLSI circuits were also processed by PSCAN.

These circuits contain logic gates, tri-state buffers, bidirectional IO
buffers and buses. Table 2 reports results on a few circuits. Self-
loops were ignored for all circuits. The number of flip-flops selected
for partial scan is shown in column Scan FF. The percentage of
flip-flops selected for partial scan is shown in column % Scan. Our
experiments show that 10% to 40% of the flip-flops will have to
be scanned to break all cycles. If we consider the overhead of
full-scan design to be about 30%, then the area overhead for partial
scan can be estimated to be between 3% to 12%. Note that the
CPU seconds required to determine the optimum number of scan
flip-flops is extremely low. We are unable to report the results for
the heuristic methods since the corresponding C programs provided
by the authors are unable to parse these circuit descriptions. They
appear to have preset limits on several characteristics of the input
circuit like the maximum number of flip-flops or maximum fanin
of a gate.

8. CONCLUSION
Our exact algorithm computes the MFVS of the flip-flop depen-

dency graph of a sequential circuit. As expected, our algorithm

has worst case exponential complexity. However, our experimen-
tal results show that the method outperforms the available heuristic
methods for large practical instances of the partial scan problem.
The presented solution has other applications. For example, the
proposed technique has been used to solve MFVS problems arising
in the resynthesis and retiming of sequential circuits for enhanced
testability [18].

Acknowledgment - We are grateful to J. Patel, S. Reddy and K. Sreeni-

vas for providing C programs that implement their heuristics. We thank

S. Bhawmik and T. J. Chakraborty for their assistance with the Pascant

program. We also thank S. Rothweiler for assistance with the program

PSCAN.

REFERENCES

[1] E. Trischler, “Incomplete Scan Path with an Automatic Test Gener-
ation Methodology,” in Proc. of the Intl. Test Conf., pp. 153 – 162,
1980.

[2] M. Abramovici, J. J. Kulikowski, and R. K. Roy, “The Best Flip-
Flops to Scan,” in Proc. of the Intl. Test Conf., pp. 166–173, 1991.

[3] V. D. Agrawal, K. T. Cheng, D. D. Johnson, and T. Lin, “Designing
Circuits with Partial Scan,” IEEE Design and Test of Computers,
vol. 5, pp. 8–15, April 1988.

[4] H.-K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-
Vincentelli, “An Incomplete Scan Design Approach to Test Gen-
eration for Sequential Machines,” in Proc. of the Intl. Test Conf.,
pp. 730 – 734, 1988.

[5] V. Chickermane and J. H. Patel, “A Fault Oriented Partial Scan
Design Approach,” in Proc. of the Intl. Conf. on Computer-Aided
Design, pp. 400 – 403, November 1991.

[6] P. S. Parikh and M. Abramovici, “A Cost Based Approach to Partial
Scan,” in Proc. of the 30th ACM/IEEE Design Automation Conf.,
June 1993.

[7] K. T. Cheng and V. D. Agrawal, “A Partial Scan Method for Se-
quential Circuits with Feedback,” IEEE Transactions on Computers,
vol. 39, pp. 544 – 548, April 1990.

[8] G. W. Smith and R. B. Walford, “The Identification of Minimum
Feedback Vertex Set of a Directed Graph,” IEEE Transactions on
Circuits and Systems, vol. 22, pp. 9 – 14, January 1975.

[9] D. Lee and S. Reddy, “On Determining Scan Flip-Flops in Partial-
Scan Designs,” in Proc. of the Intl. Conf. on Computer-Aided
Design, pp. 322 – 325, November 1990.

[10] A. Kunzmann and H. J. Wunderlich, “An Analytical Approach to
the Partial Scan Problem,” J. of Electronic Testing: Theory and
Applications, vol. 1, pp. 163–174, 1990.

[11] S. Bhawmik, C. J. Lin, K. T. Cheng, and V. D. Agrawal, “Pascant:
A Partial Scan and Test Generation System,” in Custom Integrated
Circuits Conf., pp. 17.3.1 – 17.3.4, 1991.

[12] S. Park and S. B. Akers, “A Graph Theoretic Approach to Partial
Scan Design by K-Cycle Elimination,” in Proc. of the Intl. Test
Conf., pp. 303–311, 1992.

[13] S. E. Tai and D. Bhattacharya, “A Three Stage Partial Scan Design
Method using the Sequential Circuit Flow Graph,” in Proc. of the
7th Intl. Conf. on VLSI Design, pp. 101–106, January 1994.

[14] P. Ashar and S. Malik, “Implicit Computation of Minimum-Cost
Feedback-Vertex Sets for Partial Scan and Other Applications,” in
Proc. of the 31st ACM/IEEE Design Automation Conf., June 1994.

[15] E. L. Lloyd, M. L. Soffa, and C. C. Wang, “On Locating Minimum
Feedback Vertex Sets,” J. of Computer and System Sciences, vol. 37,
pp. 293 – 311, 1975.

[16] H. Levy and L. Low, “A Contraction Algorithm for Finding Small
Cycle Cutsets,” J. of Algorithms, vol. 9, pp. 470 – 493, 1988.

[17] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization
Algorithms and Complexity. Englewood Cliffs, New Jersey: Pren-
tice Hall, 1982.

[18] S. T. Chakradhar and S. Dey, “Resynthesis and Retiming for Opti-
mum Partial Scan,” in Proc. of the 31st ACM/IEEE Design Automa-
tion Conf., June 1994.

6


