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Abstract

In the Petrol Station Replenishment Problem (PSRP) the aim is to jointly determine an
allocation of petroleum products to tank truck compartments and to design delivery routes
to stations. This article describes an exact algorithm for the PSRP. This algorithm was
extensively tested on randomly generated data and on a real-life case arising in Eastern
Quebec.
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Introduction

The purpose of this article is to develop an exact algorithm for the Petrol Station

Replenishment Problem (PSRP). A truncated version of this algorithm can also be

April 



used as a heuristic. The problem is motivated by the situation prevailing in the

Province of Quebec (for which statistics were made available to us), but it also

applies to several other contexts. In Quebec, more than seven billion litres of fuel

(petrol and diesel) are distributed yearly to approximatively   stations. Distri-

bution costs account for a percentage of the sales price varying between .% and

.%, depending on the region, for an average of .%, representing  million

dollars a year .

In North America, most petroleum companies subcontract their distribution op-

erations to private regional transporters who receive an amount varying between a

few tenths of cent to slightly more than a cent for each litre delivered. Transporters

use tank trucks made up of a tractor and of one or two trailers divided into com-

partments. Each truck contains from three to six compartments whose capacities

vary between   and   litres. The total capacity of a truck varies between

  and   litres depending on the number of axles. Each petrol station uses

between three and five underground tanks of standard capacities ( ,  ,

 ,  ,   or   litres).

The replenishment of petrol stations is carried out from refineries or, more rarely,

from intermediate depots. The PSRP consists of determining least cost delivery

routes to a set of stations which must be supplied once by a heterogeneous fleet

of vehicle, subject to a number of constraints. Delivery costs are made up of

a term proportional to mileage and of a vehicle-dependent fixed portion. Con-

straints specify that the quantity of each product should be sufficient to fulfill the

entire demand (possibly including a safety stock), but no more than % of the

petrol station tank capacities may be filled. Also, no more than % to % of

the vehicle capacity may be used during the thawing season. Compartments are

not equipped with a flow meter, which implies that they must be entirely emp-

tied once replenishment has started. Because it is sometimes necessary to use the

content of two compartments to fill a tank, and stations generally require two or

three products, the number of stations visited by a truck on any given trip will very





rarely exceed two. In addition, the front part of each trailer must be emptied last

to ensure more stability when driving. Finally, a limit is imposed on the duration

of any trip.

The PSRP differs from most vehicle routing problems (see e.g. Toth and Vigo )

because of the presence of compartments which can only hold one product, and

the absence of flow meters which means that the content of a compartment cannot

be split between stations. In a sense the PSRP is more complicated than standard

routing problems but, at the same time, the limit of two visits per trip leads to an

interesting simplification which we will exploit. As far as we are aware, no previ-

ous article has addressed this particular problem, but related studies exist. Brown

and Graves have considered the planning of single-customer trips in the presence

of time windows, while Brown et al.  have developed a computerized assisted dis-

patch system for a problem similar to ours. The system combines human solutions

with heuristics to assist real-time decision making. Finally, Malépart et al. have

proposed a number of simple heuristics to handle a general petrol distribution

problem with multiple delivery trips and workforce management constraints.

The remainder of this article is organized as follows. A first section provides a

mathematical model for the PSRP. Then we develop an exact algorithm for the

case when at most two stations are visited on any trip. This is followed by compu-

tational results and conclusions.

Mathematical model

Let V = {1, . . . , n} be the set of stations to be visited and define a symmetric

travel cost matrix on V 2. The minimal and maximal demand of each product

at each station are known. All stations require a visit but the minimum demand

for some products may be zero. An unlimited heterogeneous fleet of vehicles is





available and there always exists a vehicle in which the minimum demand of any

station can fit. Thus only one visit is necessary for each station.

Let S ⊆ V be a subset of stations, and K(S) be the set of vehicles capable of

delivering the minimal demand of the stations of S. Then the cost dS,k of using a

vehicle k ∈ K(S) to visit all stations of S can be computed as a Traveling Salesman

Problem with Precedence Constraints (TSPPC). These constraints are dictated by

the necessity to empty the front of each trailer last. Let k∗ ∈ K(S) be the vehicle

yielding the least TSPPC cost. Given a set S of stations and a vehicle k ∈ K(S), it

is generally preferable to fill the vehicle as much as possible without exceeding the

compartment capacities and the station maximal demands.

The PSRP can now be formulated as a Set Partitioning Problem (SPP). Let xS be

a binary variable equal to 1 if and only if all stations of S are served by the same

vehicle. The formulation is then:

(SPP) Minimize
∑

S⊆V,S 6=Ø

dS,k∗xS ()

subject to:
∑

S:i∈S

xS = 1 (i ∈ V ) ()

xS = 0 or 1 (S ⊆ V, S 6= Ø). ()

Solving the SPP optimally is impossible for all but trivial cases because of the large

number of subsets S, and of the difficulty of determining k∗ and dS,k∗ . However,

an exact solution methodology can be developed for the special case where |S| ≤ 2,

which corresponds to current practice, as discussed in the introduction.





The Tank Truck Loading Problem

We now address the more difficult Tank Truck Loading Problem (TTLP) which

consists of optimally assigning the demand of a set S of stations to a given ve-

hicle k ∈ K(S). The TTLP can be shown to be NP-hard by using the same

argument as Smith for the multiple inventory loading problem. More precisely,

the TTLP is defined as follows. Let the tanks of all stations of S be indexed by t

(t ∈ {1, . . . , T}). This index does not contain any information on the stations, so

that the difficulty of the TTLP does not depend on |S|, but on the total number

of underground tanks associated with S. Let the compartments of vehicle k be

indexed by c (c ∈ {1, . . . , C}). Also define the constants:

st the initial inventory level of tank t;

Pt the usable capacity of tank t;

mt the minimum inventory level of tank t required to fulfill the de-

mand for the planning horizon;

at the minimum delivery for tank t: at = max{0, mt − st};

bt the maximum delivery for tank t: bt = Pt − st;

Qc the capacity of compartment c;

and the variables:

xt the amount delivered to tank t;

ytc a binary variable equal 1 if and only if compartment c is used to

deliver the demand of tank t.





The TTLP is then formulated as follows:

(TTLP) Maximize
T∑

t=1

xt ()

subject to: at ≤ xt ≤ bt (t ∈ {1, . . . , T}) ()

xt ≤
C∑

c=1

Qcytc (t ∈ {1, . . . , T}) ()

T∑
t=1

ytc ≤ 1 (c ∈ {1, . . . , C}) ()

ytc = 0 or 1 (t ∈ {1, . . . , T}; c ∈ {1, . . . , C}). ()

In this formulation the objective function () maximizes the total delivered quan-

tity. Constraints () impose bounds on the amounts delivered. Constraints ()

specify that the delivery amount associated with tank t does not exceed the alloted

compartment capacity. By constraints () at most one demand can be assigned to

any compartment.

Note that this problem differs from related problems studied by Christofides et al.

and Smith. In the loading problem described by Christofides et al., there is

only one liquid product and the objective function is to minimize the number

of used compartments. These authors have also studied the unloading problem

where a demand quantity may be unloaded from several tanks and a tank may

be only partially unloaded. A value is associated with each compartment and the

objective is to minimize the value of all used compartments. Smith deals with

the multiple inventory loading problem where a holding cost per unit of volume

is associated to each product and a fixed cost is incurred for each delivery. Each

demand correspond to a fixed number of units. In this problem, the objective is

to minimize an aggregate objective function containing both delivery and storage

costs, subject to the restrictions of determining a feasible loading arrangement

within the vehicle.





Exact algorithm for the Tank Truck Loading Problem

We have devised the following exact algorithm for the TTLP. A first test is con-

ducted in order to quickly identify some classes of infeasible instances (Step ), and

an attempt is then made to identify a feasible solution by means of a sequential

allocation process (Steps -). If this process fails, the TTLP is solved by means

of a standard Integer Linear Programming (ILP) algorithm (Step ). If a feasible

allocation is known to exist an attempt is made to identify an even better solution

by solving an Assignment Problem (AP) (Step ), and by then applying an improve-

ment step (Step ). A test is then applied to check whether the solution is optimal

(Step ). If this is the case the algorithm terminates with a feasible and optimal

solution ; otherwise the ILP solver is applied (Step ).

Step  (Feasibility test)

Let T+ be the number of tanks for which at > 0 and T s the number of tanks that

must be split between several compartments, i.e., those tanks for which

at > max{Qc}. If T+ + T s > C or
∑T

t=1 at >
∑C

c=1 Qc, then no feasible so-

lution exists : stop.

Step  (Sequential assignment)

Sort the tanks in non-increasing order of the at and break ties by non-increasing

order of the bt; sort the compartments in non-increasing order of the Qc. Iteratively

assign the minimal demand at of each tanks to the next unused compartment. If

at exceeds the capacity Qc of the compartment being considered, split this demand

into two demands t′ and t′′ with at′ = bt′ = Qc and at′′ = at −Qc, bt′′ = bt −Qc.

Then assign t′ to compartment c and insert t′′ in its appropriate position in the list

and set T := T + 1 (increase the number of demands by one). If some demands

cannot be assigned to a compartment through this process, go to Step .





Step  (Assignment algorithm)

Demands for which at > 0 (including split demands) must then be assigned to

compartments in order to minimize the total unused capacity. The assignment

costs etc are defined as etc = ∞ if at > Qc, and etc = max{0, Qc − bt} otherwise.

If T < C, create C − T dummy demands t with etc = Qc for all c. If in the

solution of the assignment problem t is assigned to c and bt > Qc, then define a

new demand t̃ with at̃ = 0 and bt̃ = max{0, bt−Qc}. For each demand for which

at = 0, define a new demand with at̃ = 0 and bt̃ = bt.

Step  (Assignment of remaining demands)

If all compartments have been used or all demands have been assigned, go to

Step 5. Consider all non-assigned demands t̃ with bt̃ > 0. Iteratively assign the

largest bt̃ to the largest unused compartment c available, and set bt̃ := max{0, bt̃−

Qc}. Repeat this operation as long there remain positive bt̃ and unused compart-

ments.

Step  (Optimality test)

The solution is optimal and the algorithm terminates whenever any of the follow-

ing conditions is satisfied: ) all compartments are full, ) all maximal demands

have been assigned to a compartment, ) T+ = C, or ) there exists a unique tank

t with a demand at > 0 completely filling the largest C − 1 compartments and

part of the smallest compartment, i.e., T+ = 1 and
∑C−1

c=1 Qc < at ≤
∑C

c=1 Qc.

Condition  simply states that if there is only one positive demand and if that

demand have to use all compartments, its assignment is optimal.





Step  (ILP solution)

Solve the TTLP by means of an ILP solver. In this algorithm Step  always ter-

minates with an optimal solution if it is entered from Step . However, it may

terminate with an infeasible solution if it entered from Step . A simple TTLP

heuristic consists of eliminating Step , which increases the risk of ending with an

infeasible or suboptimal solution.

Solving the routing problem for |S| ≤ 2

Two distinct strategies can be applied to solve the routing problem when |S| ≤ 2.

First observe that the number of non-empty feasible subsets is at most (n2 + n)/2.

As a result, all cases can readily be enumerated. Strategy  consists of solving the

TTLP for each S, and values of k in non-decreasing order of fixed costs until

a feasible solution is obtained for vehicle k∗. The value of dS,k∗ is then readily

determined. Because |S| ≤ 2, the SPP ()-() reduces to a Matching Problem (MP)

over V (with possible self-matchings), with matching costs dS,k∗ , as shown by

Christofides. Under this strategy, the TTLP is solved (n2 + n)/2 times, once for

each set S.

Strategy  is based on a column generation scheme. Initially the least fixed cost

vehicle is assigned to each set S and the MP is solved. A test is then performed

to check TTLP feasibility on each of the selected routes. If all routes are feasible,

the algorithm ends. Otherwise the cheapest feasible vehicle k∗ is determined for

each set S for which the TTLP was infeasible, and the MP is solved again with

the new matching costs. This procedure is iterated until a feasible solution has

been reached. Under the second strategy, more MPs may have to be solved but the

number of calls to the TTLP is likely to be much less than under the first strategy.





A preprocessing step applicable to both strategies is to eliminate sets S which are a

priori infeasible. These are sets for which the trip duration exceeds the prescribed

limit and those for which Step  of the TTLP algorithm concludes that no feasible

solution exists.

Numerical example

This section describes an example with nine stations and two products. Table 

gives the coordinates of each station i (0 is the depot) as well as their minimum

and maximum demands aip and bip for each of the two products p. Table  shows

the travel costs cij between stations i and j (equal to the Euclidian distances), and

Table  describes the routing cost of all possible routes visiting one or two stations.

We use four compartments with capacities Q1 = 7, Q2 = 3, Q3 = 2 and Q4 = 1.

This example shows that the algorithm can easily handle fixed demands as only

stations 5 and 9 have different minimum and maximum demands.

Table . Station coordinates, minimum and maximum demands

i xi yi ai1 bi1 ai2 bi2

0 3 2 - - - -
1 3 5 1 1 3 3
2 0 4 2 2 7 7
3 2 4 1 1 3 3
4 3 3 2 2 4 4
5 5 3 0 1 6 8
6 5 2 1 1 8 8
7 1 1 0 0 2 2
8 3 0 3 3 7 7
9 4 0 0 2 4 4

We present in Table  TTLP data associated with S = {5, 9}, where (a1, b1)

corresponds to (a5,1, b5,1), (a2, b2) to (a5,2, b5,2), (a3, b3) to (a9,1, b9,1), and (a4, b4)

to (a9,2, b9,2). In Step  of the TTLP algorithm, the feasibility test is successful

because T+ + T s < C and
∑T

t=1 at <
∑C

c=1 Qc.





Table . Travel cost matrix between stations

i xi yi ai1 bi1 ai2 bi2

0 3 2

1 3 5 1 1 3 3

2 0 4 2 2 7 7

3 2 4 1 1 3 3

4 3 3 2 2 4 4

5 5 3 0 1 6 8

6 5 2 1 1 8 8

7 1 1 0 0 2 2

8 3 0 3 3 7 7

9 4 0 0 2 4 4

Capa. 7 3 2 1

j = 0 1 2 3 4 5 6 7 8 9

i = 0 0.00 3.00 3.61 2.00 1.00 2.24 2.00 2.24 2.00 2.24

1 0.00 3.16 1.00 2.00 2.83 3.61 4.47 5.00 5.10

2 0.00 3.00 3.16 5.10 5.39 3.16 5.00 5.66

3 0.00 1.00 2.24 2.83 3.61 4.00 4.12

4 0.00 2.00 2.24 3.83 3.00 3.16

5 0.00 1.00 4.47 3.61 3.16

6 0.00 4.12 2.83 2.24

7 0.00 2.24 3.16

8 0.00 1.00

9 0.00

j = 1 2 3 4 5 6 7 8 9

i = 1 6.00 9.77 6.00 6.00 8.06 8.61 9.71 10.00 10.30

2 7.21 8.61 7.77 10.90 11.00 9.00 10.60 11.50

3 4.00 4.00 6.47 6.83 7.84 8.00 8.36

4 2.00 5.24 5.24 6.06 6.00 6.40

5 4.47 5.24 8.94 7.84 7.63

6 4.00 8.36 6.83 6.47

7 4.47 6.47 7.63

8 4.00 5.24

9 4.47

1 2 3 4 5 6 7 8 9

1 9 0 5 3 7 3

2 4 0 2 0

3 9 3 1 7 3

4 7 0 5 3

5 4 2 0

6 4 2

7 11 1 5

8 3

9 7

1 2 3 4 5 6 7 8 9

1 15.0 9.8 11.0 9.0 M M 16.7 M 13.3

2 11.2 8.6 M M M 11.0 M 11.5

3 13.0 7.0 7.5 M 14.8 M 11.4

4 9.0 5.2 M 11.1 M 9.4

5 8.5 M 10.9 M 7.6

6 8.0 10.4 M M

7 15.5 7.5 12.6

8 7.0 M

9 11.5

Table . Cost of routes containing stations i and j

i xi yi ai1 bi1 ai2 bi2

0 3 2

1 3 5 1 1 3 3

2 0 4 2 2 7 7

3 2 4 1 1 3 3

4 3 3 2 2 4 4

5 5 3 0 1 6 8

6 5 2 1 1 8 8

7 1 1 0 0 2 2

8 3 0 3 3 7 7

9 4 0 0 2 4 4

Capa. 7 3 2 1

j = 0 1 2 3 4 5 6 7 8 9

i = 0 0.00 3.00 3.61 2.00 1.00 2.24 2.00 2.24 2.00 2.24

1 0.00 3.16 1.00 2.00 2.83 3.61 4.47 5.00 5.10

2 0.00 3.00 3.16 5.10 5.39 3.16 5.00 5.66

3 0.00 1.00 2.24 2.83 3.61 4.00 4.12

4 0.00 2.00 2.24 3.83 3.00 3.16

5 0.00 1.00 4.47 3.61 3.16

6 0.00 4.12 2.83 2.24

7 0.00 2.24 3.16

8 0.00 1.00

9 0.00

j = 1 2 3 4 5 6 7 8 9

i = 1 6.00 9.77 6.00 6.00 8.06 8.61 9.71 10.00 10.30

2 7.21 8.61 7.77 10.90 11.00 9.00 10.60 11.50

3 4.00 4.00 6.47 6.83 7.84 8.00 8.36

4 2.00 5.24 5.24 6.06 6.00 6.40

5 4.47 5.24 8.94 7.84 7.63

6 4.00 8.36 6.83 6.47

7 4.47 6.47 7.63

8 4.00 5.24

9 4.47

1 2 3 4 5 6 7 8 9

1 9 0 5 3 7 3

2 4 0 2 0

3 9 3 1 7 3

4 7 0 5 3

5 4 2 0

6 4 2

7 11 1 5

8 3

9 7

1 2 3 4 5 6 7 8 9

1 15.0 9.8 11.0 9.0 M M 16.7 M 13.3

2 11.2 8.6 M M M 11.0 M 11.5

3 13.0 7.0 7.5 M 14.8 M 11.4

4 9.0 5.2 M 11.1 M 9.4

5 8.5 M 10.9 M 7.6

6 8.0 10.4 M M

7 15.5 7.5 12.6

8 7.0 M

9 11.5

Table . Tanks in non-decreasing order
of the at and compartments in non-de-
creasing order of the Qc

Tanks Compartments

(a2, b2) = (6, 8) Q1 = 7

(a4, b4) = (4, 4) Q2 = 3

(a1, b1) = (0, 1) Q3 = 2

(a3, b3) = (0, 2) Q4 = 1

Table . Sequential assignment

Tanks Compartments

(a2, b2) = (6, 8) Q1 = 7

(a4′ , b4′) = (3, 3) Q2 = 3

(a4′′ , b4′′) = (1, 1) Q3 = 2

(a1, b1) = (0, 1) Q4 = 1

(a3, b3) = (0, 2)

In Table  tanks are sorted in non-increasing order of the at and compartments

in non-increasing order of the Qc. We split the second demand as it exceeds the

second compartment capacity, and we now have five demands (Table ). We then

assign a compartment to each demand in order to minimize the total unused ca-





pacity (Step ). Figure  depicts the associated bipartite graph with costs etc on

which the assignment algorithm is applied. The bold edges are those which are

selected.

6 - 8

1 - 1

7

2

1

Demands Compartments

0

∞

6

1
0

∞

0 - 0

7

2

1

33 - 3
0
0

0
0

∞

2

3

Figure . Graph of the assignment problem

Table . Assignment of residual demands

Demands Compartments

(a3̃, b3̃) = (0, 2) Q3 = 2

(a2̃, b2̃) = (0, 1)

(a1̃, b1̃) = (0, 1)

(a4̃, b4̃) = (0, 0)

As there are residual demands (one unit of non-satisfied demand for tank  and

three units for tank ), and one unused compartment (Table ), we assign demand

3 to compartment 3 (Step ). All compartments are now full and this solution

passes the optimality test (Step ). There is therefore no need to solve the TTLP

by means of an ILP solver.

Using this algorithm, we are able to determine whether a route is feasible or not.

Some sets are eliminated by means of the preliminary test ; this is the case for the

route visiting stations  and  for which
∑T

t=1 at >
∑C

c=1 Qc, and for the route





visiting stations  and  for which T+ + TS > C. One demand must be split

as a6,2 > max{Qc}. Other routes (like the route visiting stations  and ) are

eliminated only after solving the ILP in Step .

Solving the TTLP on all possible combination of stations leads to the elimination

of the following sets : {,}, {,}, {, }, {,}, {,}, {,}, {, }, {, }, {, }, {,

}, {, }, {, }, {, }, {, }, and {, }. These infeasible sets are shaded in Table .

The cost of each of these combinations is set to ∞ and the matching is found on

the resulting cost matrix. The resulting distribution plan is {,}, {,}, {,}, {.},

and {,}, with a total cost of 31.9.

Computational results

The algorithms just described were coded in Objective-C and run on an Apple

iBook G Mhz computer. The MPs were solved with an implementation of

Gabow’s version  of Edmonds’s algorithm . The ILPs in Step  of the TTLP

algorithm were solved by means of GLPK . (GNU Linear Programming Kit:

http://www.gnu.org/software/glpk/glpk.html).

We present three sets of tests. We have first evaluated the performance of the TTLP

algorithm. Second, we have tested the complete algorithm for the PSRP. Finally,

we have solved a real case provided by a local distributor.

Results for the TTLP algorithm

We have first randomly generated instances with 5 demands and 5 compartments,

under several values of the ratios T+/C, Ra =
∑T

t=1 at/
∑C

c=1 Qc and Rb =∑T
t=1 bt/

∑C
c=1 Qc which significatively affect problem difficulty. To assess the be-

havior of the TTLP algorithm, we have solved a total of  instances of the

TTLP:  for each combination of T+, Ra and Rb with T+ ∈ {1, . . . , 4},





Ra ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and Rb ∈ {1.0, 1.5, 2.0, 2.5}. We used a tank truck

with five compartments: Q1 = 15500, Q2 = 5500, Q3 = 5500, Q4 = 9000 and

Q5 = 14500. Each instance was solved by using the TTLP model ()-() to ensure

its feasibility and to determine its optimal solution value.

To create an instance, we first generate the at values such that
∑T

t=1 at/
∑C

c=1 Qc

equals a given constant Ra:

() choose T+ − 1 random numbers ht from a discrete uniform distribution

U(0, Ra
∑C

c=1 Qc);

() sort these numbers in non-decreasing order;

() set a1 = h1, at = ht−ht−1 for all t ∈ {2, . . . , T+−1}, and aT+ =
∑C

c=1 Qc−

hT+−1;

() set at = 0 for all t ∈ {T+ + 1, . . . , T}.

We are now able to generate the bt values in such a way that
∑T

t=1 bt/
∑C

c=1 Qc

equals a given constant Rb, and bt ≥ at for all t ∈ {1, . . . , T}:

() choose T − 1 random numbers gt from a uniform distribution

U
(
0, (Rb −Ra)

∑C
c=1 Qc

)
;

() sort these numbers in non-decreasing order;

() set b1 = a1 + g1, bt = at + gt − gt−1 for all t ∈ {2, . . . , T − 1}, and aT =

aT + (Rb −Ra)
∑C

c=1 Qc − gT−1.

The results are reported in Tables  and . The column headings are as follows:

T+ number of demands for which at > 0;

Ra ratio of the sum of the minimal demands to the total ca-

pacity of vehicle:
∑T

t=1 at/
∑C

c=1 Qc;

Rb ratio of the sum of the maximal demands to the total ca-

pacity of vehicle:
∑T

t=1 bt/
∑C

c=1 Qc;





Feasible Steps - number of instances solved by means of the heuristic part

of the TTLP algorithm (Steps  to );

Optimal Steps - number of instances that were actually optimal after Step

 of the TTLP algorithm (this is known because each in-

stance was optimally solved during the generation pro-

cess);

Optimal proven

Steps -

number of instances for which a provably optimal solu-

tion was determined by Step  of the TTLP algorithm;

Average optimality

gap

average deviation of the heuristic solutions value (Steps 

to ) from the optimum;

%Capacity average vehicle capacity used in the solution;

Seconds Heuristic average time in seconds required for the resolution by the

heuristic;

Seconds ILP average time in seconds required for the resolution by the

ILP solver.

Tests were performed for various combinations of T+, Ra and Rb. For the sake of

conciseness, we only report in Table  extensive results for the case Rb = 1.5 which

appears to be the most realistic value. Average statistics computed over the 

instances are reported for all values of Rb in Table . Results reported in Table 

indicate that the TTLP heuristic (Step  to ) identifies a feasible solution in .%

of all cases, and a proven optimum .% of the time. We know that the average

percentage of optimal solutions after Step  is in fact .%. This means that the

TTLP heuristic identifies .% (./.) of the optimal solutions. The aver-

age optimality gap after Step  is only .% and computation times per instance

are insignificant. The high values in the column %Capacity indicate that our in-





stances are tightly constrained and our solutions make good use of compartment

capacity. Average results reported in Table  show that similar conclusions extend

to other values of Rb (except for the case Rb = 1 where optimality can rarely be

proven after Step ).

Results for the PSRP

In the second series of tests, we have solved the PSRP under the two strategies

described for the solution of the routing problem. We have also solved instances of

the PSRP with an homogeneous and an heterogeneous fleet. The tank and truck

characteristics, station demands and distances were randomly generated in a way

that reflects real-life situation which served as a basis for the study. For each station,

we chose a total consumption of three products equals to M =
∑3

t=1 mt (litres

per day) from a discrete uniform distribution U(10 000, 50 000). More specifi-

cally, m1 = 0.7M , m2 = 0.1M and m3 = 0.2M . The initial inventory levels

st were chosen from a discrete uniform distribution U(0, Pt), with P1 = 35 000,

P2 = 25 000 and P3 = 25 000. The depot and stations coordinates were uniformly

generated in a 100× 300 Euclidian space (distances are symmetric and Euclidian).

We assume that all stations must be replenished, so we only retained those for

which there was at least one strictly positive minimal demand at. We generated

 problems with n = 50, 100 and 200. No limit was imposed on the length of

vehicle routes.

We also considered three types of tank trucks with four or five compartments:

– Type : five compartments with capacities  ,  ,  ,  , and

  litres (total:   litres);

– Type : five compartments with capacities  ,  ,  ,  , and  

litres (total:   litres);
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– Type : four compartments with capacities  ,  ,  , and  

litres (total:   litres).

For the homogeneous fleet case, we chose the type  tank truck. Results are re-

ported in Table  under the following column headings:

Nb. vehicle types number of vehicle types ( corresponds to an homoge-

neous instance;  corresponds to an heterogeneous in-

stance);

Nb. Stations number of stations to replenish;

The following headings are averages over  instances:

TTLPs solved number of TTLPs solved;

Infeasible TTLPs number of infeasible TTLPs;

Seconds time in seconds required for the resolution of the PSRP;

Sets eliminated number of infeasible TTLPs eliminated in the preprocess-

ing step under strategy ;

MPs solved number of matching problems solved under strategy .

Results presented in Table  indicate that the second algorithmic strategy for the

routing problem is far superior to the first. The preprocessing step leads to the

elimination of over .% of all station sets, representing .% of the infeasible

sets. As a result very few matching problems have to be solved. The computing

time of the second strategy is about .% of the first. This is mostly due to the

fact that very few TTLPs are solved under the second strategy.

The comparison between the homogeneous and the heterogeneous fleet cases re-

veals that the second type of problem is more difficult for the first strategy but
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easier for the second. This can be explained as follows. When the fleet is hetero-

geneous and the first strategy is used, a larger number of TTLPs must be solved,

each using a different vehicle type. In contrast, with the second strategy, the pres-

ence of many vehicle types means that fewer matching problems need to be solved

because the likehood of being able to serve a given set S of stations is higher in the

heterogeneous case.

Results for the real life instance

We have also solved a real-life instance arising in Eastern Quebec, with a depot

located in Quebec City. The area covered by this region is about   km2

(see Figure ). We used the data relative to deliveries made to  Esso stations

on a single day. We used the drivers’ worksheets to determine the ordered and

delivered quantities of three products for that day. On that day  routes using

eight vehicle types were used to make deliveries, resulting in a total distance of

. km. Currently all routes are determined by the dispatchers and vehicle loads

are determined by the drivers.

To generate an equivalent instance (called scenario A), we reconstructed the dis-

tance matrix from postal codes using the commonly used package PC*MILER .

We set the at values equal to the delivered quantities and the bt values equal to the

ordered quantities. We also generated three other instances with the same distance

matrix but using different at and bt values, as shown in Table .

Computational results are reported in Table  and compared with the actual solu-

tion. In scenario A, which corresponds to the actual case, the solution uses  vehi-

cles instead of the current , and these vehicles travel .% fewer km. The total

quantity delivered is .% higher and the number of litres per kilometer is .%

higher. These statistics clearly confirm the efficiency of our solution methodology

on this example. The three columns B, C and D shows the sensitivity of the solu-





tion to variations in the minimal and maximal demands. Increasing the bt values

leads to larger delivered quantities but vehicle routes remain the same. In scenario

D, the results show that decreasing the at values leads a higher quantity delivered

with fewer vehicles and fewer kilometers. This can be explained by the fact that

lowering the minimal demands gives a higher likehood of being able to identify a

better solution of the corresponding routing problem since more sets S of stations

are feasible.

Table . at and bt values for the four real-life instances

Scenario at bt

A at = delivered quantity bt = ordered quantity

B at bt + 5 000

C at bt + 10 000

D max{1 000, at − 5 000} bt + 5 000

Table . Results for the real-life instances

Actual solution A B C D

#routes     

min              

max               

qty               

km . . . . .

qty/km . . . . .

Conclusions

We have developed an exact algorithm for the Petrol Station Replenishment Prob-

lem which decomposes into two subproblems: the Tank Truck Loading Problem
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and the Routing Problem. The TTLP is NP-hard but can often be solved to opti-

mality by a heuristic. Otherwise an optimal solution is easily obtained by solving

an integer linear program. This approach is appropriate for any instance size aris-

ing in practice. The Routing Problem is also NP-hard but reduces to a polynomial

matching problem when at most two stations are visited on each route, as in most

real-life instances we have encountered. Both algorithms were extensively tested

on randomly generated data and on a real-life example arising in Eastern Quebec.

Results show that the proposed solution algorithms perform remarkably well.
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