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In the two-echelon capacitated vehicle routing problem (2E-CVRP), the delivery to customers from a depot uses interme-
diate depots, called satellites. The 2E-CVRP involves two levels of routing problems. The first level requires a design of
the routes for a vehicle fleet located at the depot to transport the customer demands to a subset of the satellites. The second
level concerns the routing of a vehicle fleet located at the satellites to serve all customers from the satellites supplied from
the depot. The objective is to minimize the sum of routing and handling costs. This paper describes a new mathematical
formulation of the 2E-CVRP used to derive valid lower bounds and an exact method that decomposes the 2E-CVRP into a
limited set of multidepot capacitated vehicle routing problems with side constraints. Computational results on benchmark
instances show that the new exact algorithm outperforms the state-of-the-art exact methods.
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1. Introduction
The two-echelon capacitated vehicle routing problem
(2E-CVRP) is a two-level distribution system where the
deliveries to customers from a depot are managed through
intermediate capacitated depots, called satellites. The first
level consists of vehicle routes that start and end at the
depot and deliver the customer demands to a subset of satel-
lites. In the 2E-CVRP we consider, a satellite has a limited
capacity and can be serviced by more than one first-level
route. The second level consists of vehicle routes that start
and end at the same satellite and supply all customers.
A homogeneous vehicle fleet is used at each level. The
first-level vehicles are located at the depot and supply the
satellites only. The second-level vehicles have a capacity
smaller than that of the first-level vehicles and supply the
customers from the satellites. The unloading of first-level
vehicles and loading of second-level vehicles at the satel-
lites imply a handling cost proportional to the quantity
loaded/unloaded.

The 2E-CVRP aims to find two sets of first and second-
level routes such that each customer is visited exactly once

by a second-level route and the total routing and handling
cost is minimized.

1.1. Literature Review

The 2E-CVRP has become a relevant distribution system
for supplying customers located in large cities. Because
many municipalities impose legal restrictions to keep large
vehicles out of city centers, distribution companies create
suburban platforms (satellites) where they transport goods
with large vehicles. Then, small vehicles service downtown
customers from the satellites.

Nonetheless, only recently the 2E-CVRP has received
some attention in the literature. Feliu et al. (2007) described
a commodity flow formulation and an exact branch-and-cut
algorithm that solved instances with up to 32 customers
and two satellites. This algorithm was improved by Perboli
et al. (2010), Perboli, Tadei, and Vigo (2011) by adding
valid inequalities. Perboli, Tadei, and Vigo (2011) reported
optimal solutions for instances with up to 32 customers
and two satellites, but their model has been shown by
Jepsen, Spoorendonk, and Ropke (2013) not to be correct
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on instances with three or more satellites. Jepsen, Spooren-
donk, and Ropke (2013) extended the problem considered
by Feliu et al. (2007) and Perboli, Tadei, and Vigo (2011)
by introducing fixed costs for the routes of both levels and
satellite capacities; they described an exact branch-and-cut
algorithm, based on the new formulation and new valid
inequalities, that outperforms the method of Perboli, Tadei,
and Vigo (2011). Heuristic methods can be found in Crainic
et al. (2008, 2011) and Perboli, Tadei, and Vigo (2011).
Recently, an adaptive large neighborhood search heuristic
has been proposed by Hemmelmayr et al. (2012). Variants
of the 2E-CVRP were considered by Tan et al. (2006) and
Nguyen et al. (2010).

We consider the 2E-CVRP studied by Jepsen, Spooren-
donk, and Ropke (2013). This 2E-CVRP generalizes the
capacitated location routing problem (LRP), which consists
of opening one or more depots, on given locations, and
designing, for each open depot, a number of routes to sup-
ply customers. A fixed cost and a capacity are associated
with each depot. The objective is to minimize the sum of
the fixed costs for opening the depots and the routing cost.
Exact algorithms for the LRP were presented by Laporte
et al. (1986), Akca et al. (2009), Belenguer et al. (2011),
and Baldacci et al. (2011b).

1.2. Contributions of This Paper

We introduce a new mathematical formulation of the
2E-CVRP that is used to derive both integer and continuous
relaxations. We present a new bounding procedure based
on dynamic programming (DP), a dual-ascent method, and
an exact algorithm that decomposes the 2E-CVRP into a
limited set of multidepot capacitated vehicle routing prob-
lems (MDCVRP) with side constraints. Extensive compu-
tational results on instances from the literature and on new
instances show that the proposed method outperforms pre-
vious exact algorithms, both for the quality of the lower
bounds achieved and the number and the size of the
instances solved.

This paper is organized as follows. Section 2 describes
the 2E-CVRP and the new mathematical formulation. The
relaxations used to derive valid lower bounds are described
in §3. Section 4 describes the bounding procedure based on
the relaxations derived in §3. Section 5 presents the exact
algorithm. Section 6 reports the computational results. Con-
cluding remarks are given in §7.

2. Problem Description and
Mathematical Formulation

An undirected graph G= 4N 1E5 is given, where the vertex
set N is partitioned as N = 809∪NS ∪NC . Vertex 0 repre-
sents the depot, NS = 81121 0 0 0 1 ns9 represents ns satellites,
and NC = 8ns + 11 0 0 0 1 ns + nc9 represents nc customers.
The edge set E is defined as E = 8801 j9: j ∈NS9∪ 88i1 j9:
i1 j ∈NS ∪ NC , i < j9. A travel cost dij is associated with
each edge 8i1 j9 ∈E. We assume that matrix dij satisfies the

triangle inequality. Each customer i ∈ NC requires qi units
of goods from depot 0. We denote with qtot =

∑

i∈NC
qi the

sum of the customer demands.
A fleet of m1 identical vehicles of capacity Q1 are

located at depot 0 and are used to transport goods to satel-
lites. If used, a first-level vehicle incurs a fixed cost U1

and performs a route passing through the depot 0 and a
subset of satellites. The cost of a first-level route is the
sum of the costs of the traversed edges plus the fixed
cost U1. Each satellite k ∈ NS can be visited by more than
one first-level route and has a capacity Bk that limits the
total customer demand that can be delivered to it by the
first-level routes. Moreover, a fleet of mk identical vehi-
cles of capacity Q2 <Q1 are available at satellite k ∈ NS

for servicing the customers. Nevertheless, at most m2 ¶
∑

k∈NS
mk second-level vehicles can be globally used. If

used, a second-level vehicle incurs a fixed cost U2 and per-
forms a route, that is a simple cycle in G passing through
a satellite and a subset of customers and such that the total
demand of the visited customers does not exceed the vehi-
cle capacity Q2. The cost of a second-level route is the sum
of the traversed edges plus the fixed cost U2. The handling
cost at satellite k ∈ NS is given by Hk times the quantity
delivered to satellite k.

The problem asks to design the vehicle routes of both
levels so that each customer is visited exactly once, the
quantity delivered to customers from each satellite is equal
to the quantity received from the depot, and the sum of the
routing and handling costs is minimized.

Figure 1 shows a solution to a 2E-CVRP instance with
four satellites (the gray circles) and 20 customers (the
white circles). Two first-level routes (the dashed lines) are
routed at the depot (the black square); the two first-level
routes visit one and two satellites, respectively. Satellite 4
is unused. Four second-level routes deliver goods to final
customers.

To consider vehicle fixed costs U1 and U2, we assume
that the travel cost matrix 6dij 7 is modified as follows:
(i) for each satellite k ∈ NS , cost 41/25U1 is added to d0k,
and (ii) for each satellite k ∈NS and each customer i ∈NC ,
cost 41/25U2 is added to dki.

2.1. Formulation of the 2E-CVRP

The 2E-CVRP can be formulated as follows. Let ­ be the
index set of all first-level routes, and let ­k ⊆ ­ be the
subset of first-level routes serving satellite k ∈ NS . Let Rr

and E4Rr5 be the subset of satellites visited and the subset
of edges traversed by route r ∈­, respectively. The cost gr
of route r ∈ ­ is gr =

∑

8i1 j9∈E4Rr 5
dij . We assume that

the route set ­ contains �min8mkQ21 qtot9/Q1� copies of
the single-satellite route 401 k105, for each satellite k ∈NS .
Let wmin and wmax

r be the minimum and maximum loads
of first-level route r ∈ ­, computed as wmin = max8qtot −

4m1 − 15Q11 09 and wmax
r = min8Q11 qtot1

∑

k∈Rr
mkQ29.

Moreover, we denote by Wr = 8w ∈ �+2 w
min ¶w ¶wmax

r 9
the set of possible loads of first-level route r ∈­. Because
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Figure 1. A solution to the 2E-CVRP.
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in real-world applications the number of satellites is small
(say ns ¶ 10), in the following we assume that we can enu-
merate the ­.

Let ²k be the index set of the second-level routes passing
through satellite k ∈NS , and let ²ik ⊆²k be the subset of
routes passing through satellite k ∈NS and customer i ∈NC .
We indicate with ²=

⋃

k∈NS
²k the set of all second-level

routes and with �l the satellite visited by route l ∈ ².
Moreover, we indicate with Rkl and E4Rkl5 the subset of
customers visited and the subset of edges traversed by route
l ∈²k, respectively. A load wkl =

∑

i∈Rkl
qi and a cost ckl =

∑

8i1 j9∈E4Rkl5
dij +Hkwkl are associated with route l ∈²k.

Let yr be a binary variable equal to one if and only
if route r ∈ ­ is in solution, xkl a binary variable equal
to one if and only if route l ∈ ²k of satellite k ∈ NS is in
solution, and qkr a nonnegative integer variable representing
the quantity delivered by first-level route r ∈­ to satellite
k ∈Rr (we assume qkr = 0, k ∈NS\Rr ). The 2E-CVRP can
be formulated as follows:

4F 5 z
(

F
)

= min
∑

k∈NS

∑

l∈²k

cklxkl +
∑

r∈­

gryr (1)

s0t0
∑

k∈NS

∑

l∈²ik

xkl = 11 i ∈NC1 (2)

∑

l∈²k

xkl ¶mk1 k ∈NS1 (3)

∑

k∈NS

∑

l∈²k

xkl ¶m21 (4)

∑

l∈²k

wklxkl ¶ Bk1 k ∈NS1 (5)

∑

r∈­

yr ¶m11 (6)

∑

r∈­k

qkr =
∑

l∈²k

wklxkl1 k ∈NS1 (7)

∑

k∈Rr

qkr ¶Q1yr 1 r ∈­1 (8)

xkl ∈ 801191 k ∈NS1 l ∈²k1 (9)

yr ∈ 801191 r ∈­1 (10)

qkr ∈�+1 k ∈Rr 1 r ∈­0 (11)

The objective function (1) states to minimize the total cost.
Constraints (2) specify that each customer i ∈ NC must be
visited by exactly one second-level route. Constraints (3),
(4), and (6) impose the upper bounds on the number of first
and second-level routes in solution. Constraints (5) impose
the satellite capacities. The balance between the quantity
delivered by first-level routes to a satellite and the customer
demands supplied from the satellite is imposed by con-
straints (7). Finally, constraints (8) impose that the vehicle
capacity of the first-level vehicles is not exceeded.

To help the reader throughout the rest of the paper,
we report a glossary of the symbols introduced so far in
the e-companion to this paper (available as supplemental
material at http://dx.doi.org/10.1287/opre.1120.1153; see
Table EC.1).

2.2. The Special Case of the Location
Routing Problem (LRP)

The 2E-CVRP contains the LRP as a special case. The LRP
is defined on an undirected graph G′ = 4N ′1E ′5, where
N ′ is partitioned as N ′ = L ∪ V , where L represents pos-
sible depot locations and V a set of customers. A travel
cost dij is associated with each edge 8i1 j9 ∈ E ′. A fixed
cost Ck and a capacity Bk are associated with each depot
location k ∈ L. Each customer i ∈ V has associated a non-
negative demand qi. An unlimited fleet of identical vehicles
of capacity Q are available at the depots to supply the cus-
tomers. If used, a vehicle incurs into a fixed cost U and
performs a route passing through one of the depot locations
and such that the total demand of the visited customers is
at most Q. The cost of a route is the sum of the costs of
the traversed edges plus the fixed cost U . The LRP consists
of opening a set of depots and designing a set of routes for
each open depot so that the total load of the routes operated
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from a depot k ∈ L does not exceed its capacity Bk and
each customer is visited by exactly one route. The objec-
tive is to minimize the sum of the cost of open depots and
the costs of the routes.

Any LRP instance can be converted into an equivalent
2E-CVRP instance as follows:

(a) Define graph G = 4N 1E5 by setting NS = L,
NC = V , and define the edge costs d0k = 41/25Ck, k ∈ NS ,
and dkj = �, k1 j ∈NS , k < j .

(b) Define the first-level vehicle fleet by setting
m1 = �NS �, Q1 = � and U1 = 0.

(c) Define the second-level vehicle fleet by setting
m2 = �NC �, U2 =U , Q2 =Q and mk = �NC �, k ∈NS .
Any optimal solution of the resulting 2E-CVRP instance
is also an optimal solution of the original LRP instance.
Because dkj = �, for any k1 j ∈ NS , k < j , each first-level
vehicle route can only be a single-satellite route 401 k105
of cost Ck, k ∈ NS . Because Q1 = �, any optimal solution
contains at most a single-satellite route for each k ∈ NS

representing the opening of depot k.

2.3. An Overview of the Proposed Exact Method

The exact method we propose consists of three main steps.
(1) We enumerate the set ­ of first-level routes and

compute lower bound LD1 and upper bound UB1 on the
2E-CVRP (see §§3 and 4).

(2) We generate the set ° of all possible subsets (con-
figurations) of first-level routes that could be used in any
optimal 2E-CVRP solution (see §5). Different bounding
functions and dominance criteria are used to limit the size
of the set °.

(3) For each configuration M ∈ °, we solve the corre-
sponding problem F by fixing yr = 1, r ∈ M , and yr = 0,
r ∈ ­\M . This problem is a MDCVRP with side con-
straints (see §5), which is solved with an extension of
the method of Baldacci and Mingozzi (2009). The optimal
solution cost, z4F 5, of the 2E-CVRP corresponds to the
minimum solution cost of such MDCVRPs. We propose
different bounding functions to solve to integrality only few
MDCVRPs.

3. Relaxations of Formulation F

Let LF be the LP-relaxation of formulation F , and let
z
(

LF
)

be its optimal solution cost. Notice that, in any opti-
mal LF solution, yr is equal to 4

∑

k∈Rr
qkr5/Q1, r ∈ ­.

Thus, the higher the first-level routing cost, the worse the
lower bound z

(

LF
)

. In the following, we describe an inte-
ger relaxation of the 2E-CVRP, called RF , that can provide
a lower bound better than z

(

LF
)

.

3.1. Relaxation RF

This relaxation derives from problem F by relaxing, in
a Lagrangean fashion, constraints (2)–(4) with penalties
�i ∈�, i ∈NC , �k ∈�−, k ∈NS , and �0 ∈�−, respectively,

and by defining the marginal routing costs �ik for servicing
customer i ∈NC from satellite k ∈NS as a solution of
∑

i∈NC

aikl�ik ¶ ckl −
∑

i∈NC

aikl�i −�k −�01 l ∈²k1 k ∈NS1

(12)

where aikl is the number of times customer i ∈NC is visited
by route l ∈²k of satellite k ∈NS .

Problem RF involves binary variables �ik equal to one if
customer i ∈NC is supplied from satellite k ∈NS (0 other-
wise) and variables yr and qkr , as defined for problem F .
Relaxation RF is

4RF 5 z4RF 4Â1Ë1Ì55

= min
∑

k∈NS

∑

i∈NC

�ik�ik +
∑

r∈­

gryr +
∑

i∈NC

�i

+
∑

k∈NS

mk�k +m2�0 (13)

s0t0
∑

k∈NS

�ik = 11 i ∈NC1 (14)

∑

r∈­k

qkr =
∑

i∈NC

qi�ik1 k ∈NS1 (15)

∑

i∈NC

qi�ik ¶ Bk1 k ∈NS1 (16)

(6)1 (8)1 (10) and (11)1 (17)

�ik ∈ 801191 i ∈NC1 k ∈NS 0 (18)

Theorem 1. z
(

RF 4Â1Ë1Ì5
)

is a valid lower bound on the
2E-CVRP for any solution Â of inequalities (12) and any
pair of penalty vectors Ë ∈�NC and Ì ∈�NS+1

−
.

Proof. The proof is provided in §EC.2 of the e-companion
to this paper.

From Theorem 1, the following corollary follows.

Corollary 1. Let z4UB5 be a valid upper bound on the
2E-CVRP. For a given pair of vectors Ë, Ì and any solu-
tion Â of inequalities (12), let

c̃kl = ckl −
∑

i∈NC

aikl4�ik +�i5−�k −�0

be the reduced cost of second-level route l ∈²k, k ∈NS .
Any optimal 2E-CVRP solution of cost smaller than

z4UB5 cannot contain any second-level route l ∈ ²k,
k ∈NS , of reduced cost c̃kl ¾ z4UB5− z

(

RF 4Â1Ë1Ì5
)

.

Proof. The proof is provided in §EC.2 of the e-companion
to this paper.

Theorem 2. The relation maxÂ1Ë1Ì8z
(

RF 4Â1Ë1Ì5
)

9 ¾
z
(

LF
)

holds, and such inequality can be strict.

Proof. The proof is provided in §EC.2 of the e-companion
to this paper.

3.2. Relaxation RF

Solving RF to optimality can be time consuming, so we
describe a further relaxation of RF , called RF , that can
be efficiently solved. Let �rw be a lower bound on the
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cost for delivering a demand w ∈Wr to customers from the
subsets of satellites Rr visited by first-level route r ∈ ­.
For a given vector Â satisfying inequalities (12), the value
�rw is defined as the optimal solution cost of the following
continuous knapsack problem, called KP4r1w5:

4KP4r1w55 �rw = min
∑

i∈NC

min
k∈Rr

8�ik9zi

s0t0
∑

i∈NC

qizi =w1

0 ¶ zi ¶ 11 i ∈NC 0

For each pair 4r1w5, we denote by z∗
i 4r1w5, i ∈ NC ,

the optimal solution of problem KP4r1w5, and we define
V 4r1w5= 8i ∈NC 2 z

∗
i 4r1w5 > 09. Let �rw, r ∈­, w ∈Wr ,

be a binary variable equal to one if and only if first-level
route r delivering w units of goods is in solution. Problem
RF is defined as

4RF 5 z
(

RF 4Â1Ë1Ì5
)

= min
∑

r∈­

∑

w∈Wr

4gr +�rw5�rw

+
∑

i∈NC

�i +
∑

k∈NS

mk�k +m2�0 (19)

s0t0
∑

r∈­

∑

w∈Wr

w�rw = qtot1 (20)

∑

w∈Wr

�rw ¶ 11 r ∈­1 (21)

�rw ∈ 801191 r ∈­1 w ∈Wr 0 (22)

Problem RF is a multiple-choice knapsack problem and
can be conveniently solved by DP. The following theorem
shows that RF is a relaxation of problem RF .

Theorem 3. z
(

RF 4Â1Ë1Ì5
)

¶ z
(

RF 4Â1Ë1Ì5
)

for any
solution Â of inequalities (12) and for any penalty vectors Ë
and Ì.

Proof. The proof is provided in §EC.2 of the e-companion
to this paper.

Because of Theorem 3 and Corollary 1, any optimal
2E-CVRP solution of cost smaller than a known upper
bound z4UB5 cannot contain any second-level route l ∈²k,
k ∈NS , of reduced cost c̃kl ¾ z4UB5 − z

(

RF 4Â1Ë1Ì5
)

,
where c̃kl is defined as above.

A valid lower bound LD1 on the 2E-CVRP can be com-
puted as the cost of a near-optimal solution of problem

LD1 = max
Â1Ë1Ì

8z
(

RF 4Â1Ë1Ì5
)

90 (23)

4. Lower Bound LD1 and Bounding
Procedure DP1

In this section, we describe a bounding procedure, called DP1,
and a heuristic algorithm based on relaxation RF to com-
pute lower and upper bounds LD1 and UB1, respectively.
Bounding procedure DP1 finds a near-optimal solution of
problem (23) and uses a DP algorithm to solve problem RF .

Bounding procedure DP1 is based on a relaxation of
the 2E-CVRP, where the second-level route sets ²k, k ∈

NS , are enlarged to also contain nonnecessarily elementary
routes. The method used by DP1 to find a feasible solution
of inequalities (12) is based on the following theorem.

Theorem 4. Let us associate penalties �i ∈�, i ∈NC , with
constraints (2), �k ∈ �−, k ∈ NS , with constraints (3), and
�0 ∈�− with constraint (4). Let ²̂k ⊇²k be the index set
of nonnecessarily elementary routes for satellite k. A fea-
sible solution �ik of inequalities (12) is given by

�ik = qi min
l∈²̂ik

{

ckl −
∑

i∈NC
aikl�i −�k −�0

∑

i∈NC
aiklqi

}

1

i ∈NC1 k ∈NS 0 (24)

Proof. The proof is provided in §EC.2 of the e-companion
to this paper.

In procedure DP1, the route set ²̂k is defined as the set
of ng-routes introduced by Baldacci et al. (2011a) that are
shortly described below.

Let Ni ⊆ NC , i ∈ NC , be a set of selected customers
for customer i (according to some criterion), such that
Ni 3 i and �Ni� ¶ ã4Ni5, where ã4Ni5 is a parameter.
The sets Ni allow us to associate with each path P =

4k1 i11 0 0 0 1 it5 that starts from satellite k ∈ NS , visits ver-
tices i11 0 0 0 1 it ∈NC , and ends at vertex it , the subset ç4P5
containing it and every customer is , s = 11 0 0 0 1 t − 1, of
P that belongs to all sets Ns+11 0 0 0 1Nit

associated with
the customers is+11 0 0 0 1 it visited after is . The set ç4P5
is defined as ç4P5 = 8is2 is ∈

⋂t
j=s+1 Nij

1 s = 11 0 0 0 1
t − 1

}

∪ 8it9. A forward ng-path 4NG1k1q1 i5 is a non-
necessarily elementary path P = 4k1 i11 0 0 0 1 it−11 it = i5 that
starts from satellite k ∈NS , ends at customer i, visits a sub-
set of customers of total demand equal to q, and such that
NG = ç4P5 and i y ç4P ′5, where P ′ = 4k1 i11 0 0 0 1 it−15.
An 4NG1k1q1 i5-route (or simply ng-route) is obtained by
adding edge 8i1 k9 to an ng-path 4NG1k1q1 i5.

Algorithm DP1 uses column generation to solve Equa-
tions (24) and subgradient optimization to solve problem (23).

4.1. Description of Procedure DP1

To solve Equations (24), procedure DP1 uses a limited set
²̄k ⊆ ²̂k, k ∈ NS , of ng-routes. Procedure DP1 initializes
each set ²̄k with all single-customer routes 4k1 i1 k5, i ∈NC ,
and sets Ë = 0, Ì = 0, LD1 = 0 and UB1 = �. Bound-
ing procedure DP1 executes an a priori defined number
4Maxit15 of macro iterations where, at each macro itera-
tion, the following steps are performed.

(1) Initialize z∗ = 0, and perform Maxit2 iterations of
the following steps:

(i) Compute values �ik, i ∈ NC , k ∈ NS , through
expression (24), where each ²̂k is replaced with ²̄k,
k ∈NS .
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(ii) Solve RF using values �ik as described in §4.2.
If z4RF 4Â1Ë1Ì55 > z∗, then update z∗ = z4RF 4Â1Ë1Ì55,
Â∗ = Â, Ë∗ =Ë and Ì∗ =Ì.

(iii) Update penalty vector Ë and Ì as described
in §4.3.

(2) Generate a set of ng-routes ®k ⊆ ²̂k\²̄k, k ∈ NS ,
for which inequalities (12) are violated by Â∗, Ë∗, and Ì∗

as described in §4.4. There are two cases:
(i) ®k = �, for each k ∈ NS . If LD1 < z∗, then

update LD1 = z∗, Â1 = Â∗, Ë1 = Ë∗, Ì1 = Ì∗, and execute
the heuristic algorithm described in §4.5 producing upper
bound z4UB5. Update UB1 = min8UB11 z4UB59.

(ii) ®k 6= �, for some k ∈ NS , then update ²̄k =

²̄k ∪®k.
Notice that Â1, Ë1, and Ì1 are the vectors producing

lower bound LD1 in problem (23).

4.2. Solving Problem RF

Problem RF can be solved by DP as follows. Let h4r1w5
be the optimal solution cost of RF obtained by using the
first-level routes 11 0 0 0 1 r , 0 ¶ r ¶ �­�, and replacing qtot

in Equation (20) with w ∈ �+, wmin ¶ w ¶ qtot. The DP
recursion for computing functions h4r1w5, r = 11 0 0 0 1 �­�,
wmin ¶w¶ qtot, is

h4r1w5= min
{

h4r − 11w51

min
wmin¶w′¶min8w1wmax

r 9
8h4r − 11w−w′5+ gr +�rw′9

}

0 (25)

The recursion is initialized by setting h4r105 = 0, r =

01 0 0 0 1 �­�, and h401w5= �, w = 11 0 0 0 1 qtot. The RF opti-
mal solution cost is z4RF 4Â1Ë1Ì55= h4�­�1 qtot5.

Let z̄ be an upper bound on z4RF 4Â1Ë1Ì55. The num-
ber of states 4r1w5 to generate in order to compute
z4RF 4Â1Ë1Ì55 can be reduced by using bounding func-
tions lb4r1w5, described below, to eliminate any state
4r1w5 that cannot lead to any RF solution of cost smaller
than z̄.

We denote by lb4r1w5 a lower bound on the optimal
solution cost of problem RF , where ­ is replaced with
the subset 8r1 r + 11 0 0 0 1 �­�9 and qtot with w. Let �r =

minwmin¶w¶wmax
r
84gr + �rw5/w9, r ∈ ­. By assuming that

the routes in ­ are indexed so that �1 ¶ �2 ¶ · · · ¶ ��­�,
functions lb4r1w5 can be computed using the following
backward recursion.

Initialize (i) lb4r105= 0, r = 11 0 0 0 1 �­�; (ii) lb4r1w5=

�, 0 <w<wmin, r = 11 0 0 0 1 �­�; (iii) lb4�­�1w5=w��­�,
w ∈W�­�; and (iv) lb4�­�1w5= �, wmax

r <w¶ qtot.
For each r = �­� − 11 �­� − 21 0 0 0 11 and wmin ¶

w¶ qtot compute

lb4r1w5

=

{

w�r if w¶wmax
r

wmax
r �r +lb4r+11w−wmax

r 5 if wmax
r +1¶w¶qtot0

Thus, a state 4r1w5, r < �­�, is fathomed if h4r1w5 +

lb4r + 11 qtot −w5¾ z̄.
In performing recursion (25), the upper bound z̄ is ini-

tialized as z̄= UB1 and dynamically updated, at the end of
stage r , as z̄= min8z̄1 h4r1 qtot59.

4.3. Computing a Subgradient

Usual backtracking can be used to derive the RF solution
Æ of cost h4�­�1 qtot5. Given Æ and the sets V 4r1w5, as
defined in §3.2, associated to �rw, we derive the index sets
²̃k ⊆ ²̄k, k ∈NS , of the second-level routes in solution and
the index l4i1 k5 of the route in ²̃k associated with �ik as
follows:

(i) Initialize ²̃k = �, k ∈ NS , and l4i1 k5 = 0, i ∈ NC ,
k ∈NS .

(ii) Repeat the following steps for each route r ∈ ­
such that �rw = 1 for some load w ∈Wr :

(a) Compute k̄4i5= arg mink∈Rr
8�ik9, i ∈ V 4r1w5. Let

l4i1 k̄4i55, i ∈ V 4r1w5, be the index of the route in ²̂k asso-
ciated with �ik̄4i5 in expressions (24).

(b) For each i ∈ V 4r1w5, set ²̃k̄4i5 = ²̃k̄4i5 ∪

8l4i1 k̄4i559.
A subgradient to function z4RF 4Â1Ë1Ì55, at point 4Ë1Ì5,
can be computed as follows. Let x̃ be a vector whose com-
ponents are computed as

x̃kl =
∑

i∈NC 2 l4i1k5=l

aiklqi
∑

i∈NC
aiklqi

1 l ∈ ²̃k1 k ∈NS 0

Let

�i =
∑

k∈NS

∑

l∈²̃k

aiklx̃kl1 i ∈NC1

�k =
∑

l∈²̃k

x̃kl1 k ∈NS1 and �0 =
∑

k∈NS

�k0

Then, penalty vectors Ë and Ì are modified as �i = �i −

��4�i−151 i ∈NC , �k = min801�k−��4�k−mk591 k ∈NS ,
and �0 = min801�0 − ��4�0 −m259, where � is a positive
constant and

� =
002z4RF 4Â1Ë1Ì55

∑

i∈NC
4�i − 152 +

∑

k∈NS
4�k −mk5

2 + 4�0 −m252
0

4.4. Generating the ng-Route Set ®k for a
Given Satellite k

We describe the procedure to generate, for a given satellite
k ∈ NS , the set of ng-routes ®k ⊆ ²̂k that violate inequal-
ities (12) for given vectors Â∗, Ë∗, and Ì∗, when ²k is
replaced by ²̂k.

Define the modified edge costs d̄ij = dij − 41/254�∗
ik +

�∗
i −Hkqi5− 41/254�∗

jk +�∗
j −Hkqj5 and the sets Ni ⊆NC ,

i ∈NC , to contain the ã4Ni5 nearest customers to i accord-
ing to dij .
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Let f 4NG1k1q1 i5 be the cost of a least-cost ng-path
4NG1k1q1 i5 using the modified edge cost d̄ij . Func-
tions f 4NG1k1q1 i5 are computed using the DP recursions
described by Baldacci et al. (2011a) on the state-space
graph ¨= 4¶1ë5, defined for a given satellite k ∈NS , as

¶=

{

4NG1k1q1 i52 qi ¶ q ¶Q21 ∀NG⊆Ni

s.t. NG 3 i and
∑

j∈NG

qj ¶ q1 ∀ i ∈NC

}

1

ë =
{

44NG′1 k1 q′1 j51 4NG1k1q1 i552 ∀ 4NG′1 k1 q′1 j5

∈ë−14NG1k1q1 i51 ∀ 4NG1k1q1 i5 ∈ ¥
}

1

where ë−14NG1k1q1 i5= 84NG′1 k1 q − qi1 j52 ∀NG′ ⊆Nj

s.t. NG′ 3 j and NG′ ∩Ni =NG\8i9, j ∈NC s.t. 8i1 j9 ∈E
if i < j or 8j1 i9 ∈E if j < i9.

Let

r4i1 k5= min
4NG1k1q1 i5∈¶

{

f 4NG1k1q1 i5−�∗

k −�∗

0 + d̄ik

}

be the cost of a least-cost ng-route visiting i ∈ NC imme-
diately before arriving at satellite k. The route set ®k con-
tains the ng-routes corresponding to r4i1 k5 < 0, i ∈NC .

4.5. A Lagrangean Heuristic

Procedure DP1 is interwoven with a heuristic algorithm that
produces a feasible 2E-CVRP solution of cost z4UB5 using
the second-level route sets ²̃k, k ∈ NS , and vector x̃ asso-
ciated with an RF solution (see §4.3). First, the routes in
²̃k, k ∈ NS , are modified with the objective of obtaining a
solution vector x satisfying constraints (2)–(5). Then, the
solution vector x is used to derive solution vectors y and q
such that 4x1y1q5 represents a feasible 2E-CVRP solution.

Description of the Heuristic Algorithm
(1) 6Initialization7. Let ²̃ =

⋃

k∈NS
²̃k. Initialize

SOL = � and �4i5= 0, i ∈NC .
(2) 6Extract a subset of routes SOL ⊆ ²̃7. Let l∗ be the

route of ²̃, where x̃�l∗ l
∗ = max8x̃�ll

2 l ∈ ²̃9. Remove l∗

from ²̃. If �4i5= 0, for some i ∈R�l∗ l
∗ , then update SOL =

SOL ∪ 8l∗9 and �4i5 = �4i5 + 1, i ∈ R�l∗ l
∗ . Repeat Step 1

until ²̃= �.
(3) 6Modify the route set SOL7. Remove from SOL any

route l ∈ SOL such that �4i5 > 1, i ∈R�ll
and update �4i5=

�4i5−1. For each l ∈ SOL, compute the savings that can be
achieved by removing from route l every customer i ∈R�ll

having �4i5 > 1. Let l∗ ∈ SOL be the route of maximum
saving. Remove from route l∗ every customer i ∈ R�l∗ l

∗

with �4i5 > 1, and update �4i5 = �4i5 − 1. Repeat Step 3
until �4i5¶ 1, for each i ∈NC .

(4) 6Insert unrouted customers7. For each unrouted cus-
tomer i (i.e., �4i5 = 0) perform the following operations.
Compute the minimum extra-mileage exm4i1 l5 for insert-
ing i in route l ∈ SOL. We set exm4i1 l5 = � if the total

load of the resulting route l exceeds the vehicle capac-
ity Q2. Let l∗ be such that exm4i1 l∗5= minl∈SOL6exm4i1 l57.
If exm4i1 l∗5 = �, then set z4UB5 = � and stop; other-
wise, insert customer i in route l∗ in the position of cost
exm4i1 l∗5 and set �4i5= 1.

(5) 6Define the F solution x7. Define x�ll
= 1, for each

l ∈ SOL, and x�ll
= 0, for each l ∈ ²\SOL. If x does not

satisfy constraints (3)–(5), then set z4UB5 = � and the
algorithm terminates.

(6) 6Improve the cost of the routes in SOL7. The post-
optimization procedure for improving the total cost of the
routes in SOL applies the following procedure in the order
specified below.

(a) 6Exchange of one customer between two routes
of SOL7. For each customer i ∈ NC , compute the saving
move4i1 l5 achieved by removing i from its current route li
and inserting i in the least-cost position of route l ∈ SOL.
Set move4i1 li5= 0 and move4i1 l5= −� if the load of the
resulting route l violates constraint (5) for satellite �l or
if customer i cannot be inserted in route l without violat-
ing the vehicle capacity Q2. Let i∗ and l∗ be determined
such that move4i∗1 l∗5 = max6move4i1 l52 i ∈ NC1 l ∈ SOL7.
If move4i∗1 l∗5 > 0, then remove customer i∗ from its cur-
rent route and insert it in the best position of route l∗. This
procedure is repeated until move4i∗1 l∗5¶ 0.

(b) 6Exchange of two customers between two routes
of SOL7. For all pairs of routes l1 l′ ∈ SOL and for each
pair of customers i ∈ R�ll

and j ∈ R�l′ l
′ , compute the sav-

ing sav4i1 j5 obtained by moving customer i from route l
to route l′ and customer j from route l′ to route l. We set
sav4i1 j5 = −� if the exchange violates constraint (5) for
one of the two satellites �l, �l′ or if the total load of
one of the two routes exceeds the vehicle capacity Q2.
The two customers i∗ and j∗ producing the maximum sav-
ing are then exchanged if sav4i∗1 j∗5 > 0. This procedure
is repeated until sav4i∗1 j∗5 ¶ 0. Whenever this procedure
improves the solution, then the post-optimization routing is
restarted from the beginning.

(c) Optimize each route l ∈ SOL using a three-optimal
method.

(7) 6Constructing a feasible 2E-CVRP solution7. Let
�k =

∑

l∈²k
wklxkl, k ∈ NS , be the total demand associated

with satellite k by the solution vector x defined above.
We solve to optimality the following problem F 4x5 with an
integer programming solver:

4F 4x55 z
(

F 4x5
)

= min
∑

r∈­

gryr

s0t0
∑

r∈­

yr ¶m11

∑

r∈­k

qkr =�k1 k ∈NS1

∑

k∈Rr

qkr ¶Q1yr 1 r ∈­1

yr ∈ 801191 r ∈­1

qkr ¾ 01 k ∈Rr 1 r ∈­0
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Let 4y1q5 be the optimal F 4x5 solution (we assume
z
(

F 4x5
)

= � if problem F 4x5 does not admit a feasible
solution). If problem F 4x5 admits a feasible solution, then
the vectors 4x1y1q5 represent a feasible 2E-CVRP solution
of cost z4UB5= z

(

F 4x5
)

+
∑

k∈NS

∑

l∈²k
cklxkl.

5. An Exact Method for
Solving the 2E-CVRP

The method for solving the 2E-CVRP is based on the fol-
lowing reformulation of problem F .

Let ° = 8M ⊆ ­2 �M �Q1 ¾ qtot1 �M � ¶ m19. We call
configuration each element M of the set °. For each con-
figuration M ∈ °, let NS4M5 =

⋃

r∈M Rr , Mk = M ∩ ­k,
k ∈NS , and U4M5=

∑

r∈M gr . An optimal 2E-CVRP solu-
tion can be computed as

z
(

F
)

= min
M∈°

8U4M5+ z
(

F 4M5
)

91 (26)

where z
(

F 4M5
)

is the optimal solution cost of the follow-
ing problem F 4M5:

4F 4M55 z
(

F 4M5
)

=min
∑

k∈NS 4M5

∑

l∈²k

cklxkl

s0t0
∑

k∈NS 4M5

∑

l∈²ik

xkl =11 i∈NC1

∑

l∈²k

xkl¶mk1 k∈NS4M51

∑

k∈NS 4M5

∑

l∈²k

xkl¶m21

∑

l∈²k

wklxkl¶Bk1 k∈NS4M51

∑

r∈Mk

qkr =
∑

l∈²k

wklxkl1

k∈NS4M51
∑

k∈Rr

qkr ¶Q11 r ∈M1

xkl ∈801191 k∈NS4M51l∈²k1

qkr ¾01 k∈Rr 1 r ∈M0

We assume z
(

F 4M5
)

= � if F 4M5 has no feasible solution
for configuration M ∈°.

Problem F 4M5 is an extension of the multidepot vehi-
cle routing problem considered by Baldacci and Mingozzi
(2009). The methods for generating the set °, solving
problems F 4M5 and (26) are described in §§5.1–5.3,
respectively.

5.1. Generating the Set of Configurations °

The generation of the set ° of configurations is based on
the following propositions.

Let LBR be a lower bound on the second-level routing
cost of any optimal solution computed as

LBR =
∑

i∈NC

min
k∈NS

8�1
ik9+

∑

i∈NC

�1
i +

∑

k∈NS

mk�
1
k +m2�1

01

and let LBW4M5 be a lower bound on z
(

F 4M5
)

com-
puted as

LBW4M5=
∑

i∈NC

min
k∈NS 4M5

8�1
ik9

+
∑

i∈NC

�1
i +

∑

k∈NS 4M5

mk�
1
k +m2�1

00

Proposition 1. Let z4UB5 be a valid upper bound on the
2E-CVRP. A configuration M ∈° can belong to an optimal
2E-CVRP solution if and only if it satisfies the following
conditions:

�Rr ∩Rr ′ �¶ 11 r1 r ′ ∈M1 r 6= r ′1 4a5

∑

r∈M

min
{

Q11
∑

k∈Rr

mkQ2

}

¾ qtot1 4b5

∑

r∈M

∑

k∈Rr

mk ¾ �qtot/Q2�1 4c5

U4M5< z4UB5− LBR1 4d5

U4M5< z4UB5− LBW4M50 4e5























































Condition (a) is a property of the feasible solutions of
the split delivery vehicle routing problem (see Dror and
Trudeau 1990). Conditions (b) and (c) are feasibility con-
ditions. Conditions (d) and (e) follow from the properties
of any optimal 2E-CVRP solution of cost less than z4UB5.

Proposition 2. For a given configuration M ∈°, let �4k5,
k ∈ NS4M5, be a lower bound on the quantity that must
be supplied to satellite k in any feasible F 4M5 solution
by the first-level routes Mk ⊆ M passing through satel-
lite k. Problem F 4M5 has no feasible solution if either
∑

k∈NS 4M5��4k5/Q2� > m2 or ��4k5/Q2� > mk, for some
k ∈NS . If so, M can be removed from °.

Lower bound �4k5 can be computed as the optimal solu-
tion cost of the following problem:

�4k5= min
∑

r∈Mk

qkr (27)

s0t0
∑

h∈Rr

qhr ¶Q11 r ∈M1 (28)

∑

r∈M

∑

h∈Rr

qhr = qtot1 (29)

∑

r∈Mh

qhr ¾ qmin1 h ∈NS4M51 (30)

∑

r∈Mh

qhr ¶mkQ21 h ∈NS4M51 (31)

qhr ¾ 11 h ∈Rr 1 r ∈M1 (32)

where

qmin
= max

{

min
i∈NC

8qi91 qtot − 4m2
− 15Q2

}

0

We assume �4k5 = � if problem (27)–(32) has no feasi-
ble solution. The set ° is generated by pure enumeration
by using Propositions 1 and 2 to eliminate any configura-
tion M that cannot lead to an optimal 2E-CVRP solution.
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5.2. Solving Problem F 4M5

Problem F 4M5 is solved with the following three-phase
method. In the first phase, bounding procedure DP1 is used
to compute lower bound LD14M5 on z

(

F 4M5
)

by replacing
­ with M . In the second phase, a near-optimal dual solu-
tion of the LP-relaxation of F 4M5 strengthened by valid
inequalities, called problem F̄ 4M5, is computed. In the
third phase, the F̄ 4M5 dual solution is used to generate the
subsets ²′

k ⊆²k, k ∈ NS4M5, of all second-level routes of
any F 4M5 optimal solution. An F 4M5 optimal solution is
obtained by replacing, in F 4M5, each set ²k with ²′

k, k ∈

NS4M5, and solving the resulting problem, called F ′4M5,
with an integer programming solver.

5.2.1. Phase 1: Computing Lower Bound LD14M5.
We execute procedure DP1, by replacing the set ­
with M , to compute lower bound LD14M5 and upper bound
UB14M5 on F 4M5. If LD14M5 is greater than a known
upper bound on the 2E-CVRP, Phases 2 and 3 are skipped.

5.2.2. Phase 2: Solving F̄ 4M5. Problem F̄ 4M5 corre-
sponds to the LP-relaxation of problem F 4M5 strengthened
with the following valid inequalities:

(a) Capacity constraints. Let ³ = 8H2 H ⊆ NC1
�H �¾ 29. The capacity constraints are

∑

k∈NS 4M5

∑

l∈²k 2Rkl∩H 6=�

xkl ¾
⌈∑

i∈H qi
Q2

⌉

1 H ∈ ³0 (33)

(b) Clique inequalities. Let ²4M5 =
⋃

k∈NS 4M5²k, and
let §= 4²4M51¥5 be the conflict graph associated with the
route set ²4M5, where the edge set ¥ contains every edge
8l1 l′9, l1 l′ ∈ ²4M5, such that l < l′ and R�ll

∩R�l′ l
′ 6= �.

Let C be the set of all cliques of graph §. The clique
inequalities are

∑

l∈C

x�ll
¶ 11 C ∈£0 (34)

Problem F̄ 4M5 is solved with a column-and-cut genera-
tion procedure that starts by setting ³ = �, £ = �. The
master problem is initialized with a set of elementary
routes obtained from the final set of ng-routes generated in
Phase 1 for computing lower bound LD14M5 by removing,
from each ng-route, the customers visited more than once.
At each iteration, a set of negative reduced cost routes are
generated and a set of violated inequalities (33) and (34)
are added as described in Baldacci and Mingozzi (2009).
The procedure ends when no negative reduced cost routes
exist and no inequalities (33) and (34) are violated and
provides an F̄ 4M5 dual solution of cost z

(

F̄ 4M5
)

.

5.2.3. Phase 3: Solving F 4M5 to Optimality. In
Phase 3, two steps are performed.

(1) Define the reduced problem F ′4M5 resulting from
F 4M5 by doing the following:

(i) Replace the route set ²k, k ∈ NS4M5, with the
largest subset ²′

k ⊆ ²k of routes such that c′
kl < z4UB5−

4U4M5 + z4F̄ 4M555, l ∈ ²′
k, k ∈ NS4M5, where c′

l is the
reduced cost of route l ∈²′

k with respect to the F̄ 4M5 dual
solution achieved at Phase 2 and z4UB5 is the current best
upper bound on the 2E-CVRP.

(ii) Add all constraints (33) and (34) saturated by the
final F̄ 4M5 solution.

(2) Solve problem F ′4M5 with a general purpose integer
programming solver.

5.3. Description of the Exact Method

The exact method we propose for solving the 2E-CVRP
can be described as follows:

(1) Generate the set ­ and compute a lower bound on
the 2E-CVRP.

(a) Generate the set ­ of first-level routes by pure
enumeration.

(b) Execute bounding procedure DP1 to produce
lower and upper bounds LD1 and UB1.

(2) Generate the set ° of configurations as described
in §5.1.

(3) Solve the 2E-CVRP.
(a) Initialize z4F 5= UB1, LB = UB1, z4UB5= UB1,

°̄= � and rmax = 0.
(b) If °= �, then stop. Let

M = arg min
M ′∈°

8LBW4M ′590

Remove M from °. If LBW4M5¾ z4F 5 then stop (z4F 5 is
the optimal 2E-CVRP solution cost).

(c) Solve problem F 4M5.
(i) Execute Phase 1 (see §5.2.1) to compute

lower bound LD14M5 and upper bound UB14M5 on
F 4M5. Update z4UB5 = min8z4UB51UB14M59, z4F 5 =

min8z4F 51UB14M59, and LB = min8LB1 z4F 59. If
LD14M5¾ z4F 5, go to Step 3.b.

(ii) Execute Phase 2 (see §5.2.2) to compute lower
bound z4F̄ 4M55, and update

LB = min
{

LB1max8LD14M51U4M5+ z4F̄ 4M559
}

0

If U4M5 + z4F̄ 4M55 ¾ z4F 5, go to Step 3(b). If the
F̄ 4M5 solution of cost z4F̄ 4M55 is integer, update z4F 5 =

U4M5+ z4F̄ 4M55 and go to Step 3(b).
(iii) Execute Phase 3 (see §5.2.3) to solve prob-

lem F 4M5. Let z4F 4M55 be the optimal solution cost
of F ′4M5. Update z4F 5 = min8z4F 51 U4M5 + z4F 4M559,
°̄= °̄∪ 8M9 and rmax = max8rmax1

∑

k∈NS 4M5 �²
′
k�9. Go to

Step 3(b).
Notice that Step 3(c(iii)) is executed for any configura-

tion M ∈ ° such that U4M5 + z4F̄ 4M55 < z4F 5 and the
F̄ 4M5 solution is not integer. Thus, if Step 3(c(iii)) is never
executed, the algorithm terminates with °̄ = �, implying
that LB = z4F 5 and the optimal 2E-CVRP solution corre-
sponds to either the initial upper bound UB14M5 computed
at Step 3(c(i)) or to the integer F̄ 4M5 solution achieved at
Step 3(c(ii)) for some configuration M ∈°.
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At the end of the exact method, LB represents a valid
lower bound on the 2E-CVRP because it corresponds to
LB = minM∈°8max8LD14M5, U4M5 + z4F̄ 4M5599. Value
rmax is the maximum number of second-level routes gen-
erated, and set °̄ contains the configurations for which
the corresponding problem F 4M5 was solved to optimal-
ity at Step 3(c(iii)). Value z4UB5 is the cost of the best
upper bound computed at Step 1 or at Step 3(c(i)). Finally,
because we impose a limit ãmax on the maximum num-
ber of second-level routes,

⋃

k∈NS 4M5²
′
k, to generate at

Step 3(c(iii)), whenever such limit is reached for some con-
figuration M ∈ °̄, at the end of the algorithm, the value
z4F 5 is an upper bound on the 2E-CVRP but is not neces-
sarily the optimal solution cost.

6. Computational Results
We report on the computational results of the exact
method (hereafter BMRW) described in §5.3 and its com-
parison with the methods of Perboli, Tadei, and Vigo
(2011) (PTV) and Jepsen, Spoorendonk, and Ropke (2013)
(JSR). BMRW was coded in Fortran 77. CPLEX 12.1 (see
CPLEX 2009) was used as the linear programming and
integer programming solver. All tests were run on an IBM
Intel Xeon X7350 Server (2.93 GHz—16 GB of RAM).

We considered four sets of instances from the literature:
set 2 and 3 (introduced by Feliu et al. 2007), set 4 (Crainic
et al. 2010), and set 5 (Hemmelmayr et al. 2012). In all
these instances, the handling costs are zero. We generated
another set of 54 instances introduced also to evaluate the
effectiveness of BMRW on instances with nonzero handling
costs. The instances are partitioned into two sets, called 6A
and 6B, corresponding to instances with zero and nonzero

Table 1. Computational results on set 2 instances.

Name ns z4F 5 %LD1 tLD1 �°� %UB %LB tLB �°̄� rmax ttot

E-n22-k4-s6-17 2 417007 9909 004 1 10000 10000 005 0 0 005
E-n22-k4-s8-14 2 384096 9905 004 1 10000 10000 007 0 0 007
E-n22-k4-s9-19 2 470060 9504 005 1 10000 10000 102 0 0 102
E-n22-k4-s10-14 2 371050 9906 005 1 10000 10000 005 0 0 005
E-n22-k4-s11-12 2 427022 9605 004 2 10005 10000 103 0 0 103
E-n22-k4-s12-16 2 392078 9607 005 2 10000 10000 101 0 0 101

E-n33-k4-s1-9 2 730016 9709 2501 1 10000 10000 3706 0 0 3706
E-n33-k4-s2-13 2 714063 9708 2708 2 10000 10000 3409 0 0 3409
E-n33-k4-s3-17 2 707048 9500 2809 3 10508 10000 4801 0 0 4801
E-n33-k4-s4-5 2 778074 9401 2301 4 10009 10000 7205 0 0 7205
E-n33-k4-s7-25 2 756085 9608 2704 3 10100 10000 4701 0 0 4701
E-n33-k4-s14-22 2 779005 9807 2600 3 10000 10000 3107 0 0 3107

E-n51-k5-s3-18 2 597049 9305 300 5 10000 9908 2307 1 331547 2508
E-n51-k5-s5-47 2 530076 9801 301 4 10106 9908 2509 1 341110 2705
E-n51-k5-s7-13 2 554081 9406 303 6 10002 9809 3703 2 421075 5501
E-n51-k5-s12-20 2 581064 9505 301 3 10005 9903 2701 1 391033 4403
E-n51-k5-s28-48 2 538022 9508 302 6 10000 9907 4001 2 341797 4400
E-n51-k5-s33-38 2 552028 9504 308 3 10000 10000 1306 0 0 1306
E-n51-k5-s3-5-18-47 4 530076 9606 606 55 10000 9909 25902 1 621913 26008
E-n51-k5-s7-13-33-38 4 531092 9407 706 68 10000 9904 26306 1 681796 26606
E-n51-k5-s12-20-28-48 4 527063 9506 900 24 10000 9906 7108 1 671620 7402

handling costs, respectively. The details on the instances
can be found in §EC.3 of the online supplement.

In all instances the satellite capacities are unlimited (i.e.,
Wk = �, k ∈NS). Furthermore, in sets 2, 3, and 5 the max-
imum number of vehicles per satellite is unlimited (i.e.,
mk = �, k ∈ NS). Set 4 was treated differently by Jepsen,
Spoorendonk, and Ropke (2013) who considered the given
upper bounds on the maximum number of vehicles per
satellite, mk, and Perboli, Tadei, and Vigo (2011) who
ignored such values. To compare BMRW with both JSR
and PTV, we considered two versions of set 4, namely, set
4A and set 4B, where set 4A corresponds to the original
set 4 whereas, in set 4B, mk is unbounded (i.e., mk = �,
k ∈ NS). Perboli, Tadei, and Vigo (2011) solved to opti-
mality 66 instances with 12 customers and two satellites
(therein set 1). BMRW solved all these instances in a few
seconds, so corresponding results are not reported.

According to Standard Performance Evaluation Corpo-
ration (SPEC) (http://www.spec.org/benchmarks.html), our
machine is 10% faster than the Intel(R) Xeon X5550 2.67
GHz with 24 GB of memory and eight cores of JSR and
twice as fast as the 3 GHz Pentium PC with 1 Gb of RAM
of PTV. A time limit of 10,000 seconds was imposed on
PTV and JSR.

BMRW used the following parameter settings. In DP1,
we set ã4Ni5 = 12, and we set Maxit1 = 25, � = 100,
Maxit2 = 200, at Step 1, and Maxit1 = 10, � = 005,
Maxit2 = 100 at Step 3(c(i)). Moreover, we set ãmax = 106

and imposed a time limit of 5,000 seconds to solve problem
F ′4M5.

Tables 1–7 report the results obtained by BMRW on
the seven sets of instances. The tables report the instance
name, the number ns of satellites, the cost z4F 5 of the best
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Table 2. Computational results on set 3 instances.

Name ns z4F 5 %LD1 tLD1 �°� %UB %LB tLB �°̄� rmax ttot

E-n22-k4-s13-14 2 526015 9604 004 4 10000 10000 201 0 0 201
E-n22-k4-s14-19 2 498080 9302 005 6 10000 10000 204 0 0 204
E-n22-k4-s13-16 2 521009 9409 004 4 10000 10000 208 0 0 208
E-n22-k4-s17-19 2 512080 9505 005 4 10000 10000 206 0 0 206
E-n22-k4-s13-17 2 496038 9608 005 1 10000 10000 102 0 0 102
E-n22-k4-s19-21 2 520042 9409 005 5 10000 10000 308 0 0 308

E-n33-k4-s22-26 2 680037 9407 2802 3 10001 9908 7108 1 231690 7303
E-n33-k4-s16-22 2 672017 9200 3206 5 10200 9904 11504 1 261474 12705
E-n33-k4-s16-24 2 666002 9406 3800 5 10001 9909 12502 1 231040 12804
E-n33-k4-s24-28 2 670043 9506 3100 3 10000 10000 7301 1 241266 7808
E-n33-k4-s19-26 2 680037 9400 2703 3 10001 9906 7008 2 221549 7208
E-n33-k4-s25-28 2 650058 9507 3007 3 10003 10000 5600 0 0 5600

E-n51-k5-s13-19 2 560073 9506 303 5 10000 9906 4308 2 341800 4800
E-n51-k5-s13-42 2 564045 9708 306 1 10003 9901 1803 1 441083 5001
E-n51-k5-s13-44 2 564045 9608 302 3 10104 9900 2907 1 501444 7300
E-n51-k5-s40-42 2 746031 9102 306 5 10206 9900 3408 1 531016 10702
E-n51-k5-s41-42 2 771056 9707 507 2 10001 9809 3609 1 3151861 2107806
E-n51-k5-s41-44 2 802091 9108 401 4 10102 9906 3908 1 391979 5904

Table 3. Computational results on set 4A instances.

Name nS z4F 5 % tLD1 �°� %UB %LB tLB �°̄� rmax ttot

Instance50-1 2 11569042 9701 2303 2 10001 9909 7205 2 301903 7505
Instance50-2 2 11438033 9508 1406 3 10009 9906 11007 2 441411 16109
Instance50-3 2 11570043 9701 2303 2 10206 9909 6708 1 311377 7006
Instance50-4 2 11424004 9604 2002 2 10107 9904 5906 1 441211 10108
Instance50-5 2 21193052 9803 2501 5 10002 9906 28602 5 671491 66307
Instance50-6 2 11279087 9502 1805 2 10000 10000 4207 0 0 4207
Instance50-7 2 11458063 9800 2907 2 10407 9908 9207 2 301995 10004
Instance50-8 2 11363074 9505 2008 3 10001 9905 19902 2 4041659 2126109
Instance50-9 2 11450027 9800 2805 2 10405 9909 8206 1 291683 8406
Instance50-10 2 11407065 9209 2209 2 10003 9906 7109 1 521513 11209
Instance50-11 2 21047046 9900 3507 5 10008 9905 22505 5 881929 33901
Instance50-12 2 11209042 9301 2500 2 10001 10000 6904 0 0 6904
Instance50-13 2 11481083 9505 2405 2 10204 9909 8601 2 301277 9201
Instance50-14 2 11393061 9306 2108 3 10009 9904 12602 2 1811889 1118803
Instance50-15 2 11489094 9505 2501 2 10204 9908 6606 1 301130 7105
Instance50-16 2 11389017 9500 1601 2 10101 9908 5600 1 361097 6206
Instance50-17 2 21088049 9703 2808 5 10007 9908 25300 2 401721 30503
Instance50-18 2 11227061 9301 1609 2 10000 9903 6005 1 491390 11702

Instance50-19 3 11564066 9205 7207 8 10000 9903 17903 2 531950 23403
Instance50-20 3 11272097 9307 2405 8 10103 9901 5904 1 841784 14001
Instance50-21 3 11577082 9600 6201 4 10001 9902 13908 2 581059 21809
Instance50-22 3 11281083 9501 3309 8 10104 10000 7602 1 501177 7902
Instance50-23 3 11807035 8903 5201 11 10000 9807 31009 3 1901099 1151009
Instance50-24 3 11282068 9501 2806 14 10000 10000 8000 0 0 8000
Instance50-25 3 11522042 9103 6300 8 10200 9902 22107 2 671095 33509
Instance50-26 3 11167046 9702 2701 1 10002 9909 5109 1 491094 5400
Instance50-27 3 11481057 9309 7202 4 10200 9903 19600 2 671175 35509
Instance50-28 3 11210044 9302 3803 10 10000 10000 27905 1 551285 29506
Instance50-29 3 11722004 8909 6707 12 10205 9808 46104 3 ãmax 9109209
Instance50-30 3 11211059 9305 3208 13 10005 10000 24301 0 0 24301
Instance50-31 3 11490034 9108 6501 8 10202 9801 32509 4 ãmax 11156103
Instance50-32 3 11199000 9401 2509 7 10001 9807 26207 1 6191322 4100904
Instance50-33 3 11508030 9304 6405 6 10102 9800 23406 2 ãmax 12192203
Instance50-34 3 11233092 9302 3007 10 10000 9900 13008 1 851850 20700
Instance50-35 3 11718041 8706 6309 12 10001 9803 61909 5 ãmax 20137706
Instance50-36 3 11228089 9303 2806 14 10000 9903 12106 1 591745 15401

Instance50-37 5 11528073 9405 16207 116 10007 9905 77803 3 821225 80708
Instance50-38 5 11169020 9309 5205 134 10009 9900 42903 1 2531662 1164802
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Table 3. (Cont’d)

Name nS z4F 5 %LD1 tLD1 �°� %UB %LB tLB �°̄� rmax ttot

Instance50-39 5 11520092 9406 16800 63 10006 9908 68800 2 781320 69500
Instance50-40 5 11199042 9003 5504 66 10106 9906 98608 2 991764 99604
Instance50-41 5 11667096 9503 19504 64 10003 9906 1130209 4 791889 1134407
Instance50-42 5 11194054 9502 5005 61 10106 9904 17703 1 941931 22302
Instance50-43 5 11439067 9504 17505 56 10103 9905 1103202 3 871237 1109507
Instance50-44 5 11045013 9506 8404 100 10002 9908 42401 1 901132 43508
Instance50-45 5 11450096 9409 16009 34 10107 9902 57707 2 1351411 77400
Instance50-46 5 11088077 9108 6800 62 10002 9903 1115005 5 1311810 1134504
Instance50-47 5 11587029 9602 20505 62 10201 9904 1147007 2 981905 1156603
Instance50-48 5 11082020 9607 5607 6 10101 10000 9100 0 0 9100
Instance50-49 5 11434088 9500 16403 74 10203 10000 71408 0 0 71408
Instance50-50 5 11083012 9302 5501 134 10005 9901 86901 1 2391534 1133700
Instance50-51 5 11398005 9406 17906 64 10100 10000 74400 1 731279 74804
Instance50-52 5 11125067 9003 5200 65 10105 9900 1123109 7 1671299 1153307
Instance50-53 5 11567077 9500 21104 63 10001 9807 1171200 2 2681139 4122303
Instance50-54 5 11127061 9401 4803 58 10002 9809 34304 1 4141080 1104106

Table 4. Computational results on set 4B instances.

Name nS z4F 5 %LD1 tLD1 �°� %UB %LB tLB �°̄� rmax ttot

Instance50-1 2 11569042 9500 3902 3 10105 10000 11303 2 311196 11700
Instance50-2 2 11438033 9508 1407 5 10100 9907 12908 2 421949 18805
Instance50-3 2 11570043 9501 3809 3 10105 10000 9501 1 311017 9708
Instance50-4 2 11424004 9603 2109 3 10102 9903 6903 1 481595 11506
Instance50-5 2 21193052 9803 4008 7 10002 9906 32606 5 621190 63105
Instance50-6 2 11279087 9501 1704 3 10209 9909 4901 1 341244 5206
Instance50-7 2 11408057 9805 4105 3 10106 9909 7300 1 311607 7605
Instance50-8 2 11360032 9507 1703 5 10002 9906 22208 3 6041910 3129306
Instance50-9 2 11403053 9807 4000 3 10303 9909 8003 1 351515 8107
Instance50-10 2 11360056 9601 2008 3 10000 10000 4603 0 0 4603
Instance50-11 2 21047046 9900 5006 7 10008 9905 29608 6 881960 45008
Instance50-12 2 11209042 9300 2201 3 10000 9909 10609 1 481537 11109
Instance50-13 2 11450093 9601 4401 3 10203 10000 9401 0 0 9401
Instance50-14 2 11393061 9306 2006 5 10101 9904 14704 2 1751756 1106907
Instance50-15 2 11466083 9505 3907 3 10101 9909 10304 1 291552 10600
Instance50-16 2 11387083 9501 1604 3 10001 9908 7607 2 431428 9900
Instance50-17 2 21088049 9703 4403 7 10006 9908 30600 2 381365 35803
Instance50-18 2 11227061 9301 1700 3 10000 9902 6907 1 511842 12708

Instance50-19 3 11546028 9307 8603 16 10102 9902 26205 1 601815 29304
Instance50-20 3 11272097 9308 2403 9 10103 9900 5907 1 1071430 17009
Instance50-21 3 11577082 9600 8506 12 10008 9902 19908 2 581718 25009
Instance50-22 3 11281083 9502 3102 9 10300 10000 6809 0 0 6809
Instance50-23 3 11652098 9606 8306 7 10200 10000 19307 0 0 19307
Instance50-24 3 11282068 9502 2901 16 10000 10000 7907 0 0 7907
Instance50-25 3 11408057 9802 8702 7 10109 9909 15009 1 451580 15500
Instance50-26 3 11167046 9702 2701 2 10002 9909 5206 1 481772 5509
Instance50-27 3 11444051 9605 9301 8 10203 9909 19402 1 441411 19801
Instance50-28 3 11210044 9209 3409 11 10009 10000 24906 0 0 24906
Instance50-29 3 11552066 9607 10404 7 10300 10000 25703 1 481508 25804
Instance50-30 3 11211059 9302 3806 16 10005 9909 23909 1 611768 24509
Instance50-31 3 11440086 9408 8705 13 10102 10000 26202 0 0 26202
Instance50-32 3 11199000 9401 3101 8 10001 9807 11609 1 5791861 3181203
Instance50-33 3 11478086 9504 8600 11 10105 9900 23906 1 1211197 46709
Instance50-34 3 11233092 9301 2706 11 10101 9901 16606 1 1311443 28707
Instance50-35 3 11570072 9407 9505 7 10204 9809 33200 3 2211318 1129907
Instance50-36 3 11228089 9301 2608 16 10000 9902 12602 1 721167 18001

Instance50-37 5 11528073 9307 20607 223 10200 9709 1152003 10 ãmax 14152203
nstance50-38 5 11163007 9406 7808 153 10000 9901 48507 3 2291650 1116300
Instance50-39 5 11520092 9301 21204 112 10003 9808 1109706 7 1261528 1179100
Instance50-40 5 11163004 9300 5902 82 10103 9906 31208 1 961251 34800
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Table 4. (Cont’d.)

Name nS z4F 5 %LD1 tLD1 �°� %UB %LB tLB �°̄� rmax ttot

Instance50-41 5 11652098 9503 26604 117 10100 9906 2122906 14 1531550 2137006
Instance50-42 5 11190017 9505 5505 75 10109 9902 23804 2 1321823 43204
Instance50-43 5 11406011 9502 21003 79 10103 9906 1106504 1 941023 1109804
Instance50-44 5 11035003 9604 6700 93 10009 10000 38209 1 841919 38702
Instance50-45 5 11401087 9503 18703 55 10207 9906 46407 1 821077 48407
Instance50-46 5 11058011 9407 8305 65 10004 10000 42609 0 0 42609
Instance50-47 5 11552066 9508 26008 103 10300 10000 1122001 2 1461044 1122700
Instance50-48 5 11074050 9703 6000 6 10005 9909 12104 1 741056 12505
Instance50-49 5 11434088 9404 21704 142 10101 9801 1149807 8 ãmax 13194003
Instance50-50 5 11065025 9408 8902 126 10000 9909 50007 1 831400 50800
Instance50-51 5 11387051 9309 22500 92 10202 9809 84509 2 1131910 1129901
Instance50-52 5 11103042 9200 5600 81 10001 9904 78808 1 1091254 84600
Instance50-53 5 11545073 9502 28301 97 10106 9900 2111307 3 2321398 2139508
Instance50-54 5 11113062 9502 5104 36 10008 9900 23200 2 2221523 1102709

Table 5. Computational results on set 5 instances.

Name nS z4F 5 %LD1 tLD1 �°� %UB %LB tLB �°̄� rmax ttot

2eVRP_100-5-1 5 11564046 9709 1605 44 10201 9903 38108 5 1471996 9135906
2eVRP_100-5-1b 5 11142053a 9308 3605 60 10000 9406 1133902 10 ãmax 24102809
2eVRP_100-5-2 5 11016032 9506 1502 197 10006 9901 92808 19 1561424 10151706
2eVRP_100-5-2b 5 796053a 9502 2909 100 10000 9606 1175008 10 ãmax 26109907
2eVRP_100-5-3 5 11045029 9705 1603 50 10003 9902 26205 13 1371379 2193002
2eVRP_100-5-3b 5 833094a 9507 3907 95 10000 9706 1147501 8 ãmax 32169308

aHemmelmayr et al. (2012) computed improved upper bounds for instances 2eVRP_100-5-1b, 2eVRP_100-5-2b and 2eVRP_100-5-3b of
values 1,111.34, 782.25 and 828.99, respectively.

Table 6. Computational results on set 6A (instances with zero handling costs).

Name nS z4F 5 %LD1 tLD1 �°� %UB %LB tLB �°̄� rmax ttot

A-n51-4 4 652000 9406 607 16 10003 9907 10800 4 551040 11901
A-n51-5 5 663041 9507 1004 81 10003 9907 14908 2 641146 15408
A-n51-6 6 662051 9409 1509 246 10006 10000 26208 0 0 26301
A-n76-4 4 985095 9509 1601 71 10109 9904 26706 2 781465 34307
A-n76-5 5 979015 9508 2706 281 10108 9906 81809 4 911512 85702
A-n76-6 6 970020 9508 4600 11391 10108 9905 3121502 8 1081558 3132704
A-n101-4 4 11194017 9509 5207 120 10100 9902 1170906 11 4611313 5197103
A-n101-5 5 11211038 9606 4307 647 10205 9904 3154003 4 2341285 4182303
A-n101-6 6 11158098 9508 9109 41814 10107 9807 24185102 51 ãmax 118107704

B-n51-4 4 563098 9600 606 10 10101 9808 3003 1 871968 5608
B-n51-5 5 549023 9408 907 64 10100 9900 10508 1 1001364 13009
B-n51-6 6 556032 9403 1505 106 10000 10000 12505 0 0 12506
B-n76-4 4 792073 9405 1204 23 10201 9903 25709 2 1191142 33307
B-n76-5 5 783093 9400 2103 167 10105 9903 57202 1 1441513 61008
B-n76-6 6 774017 9404 3206 877 10202 9906 2102302 2 1641489 2107500
B-n101-4 4 939021 9703 4201 10 10200 9809 19507 1 4851177 2151205
B-n101-5 5 967082 9408 3703 587 10201 9901 4177203 7 3311423 7105808
B-n101-6 6 960029 9602 7609 456 10300 9901 1197004 4 2731755 3177204

C-n51-4 4 689018 9505 607 26 10003 9904 5402 1 511909 7803
C-n51-5 5 723012 9306 1003 64 10003 9809 8104 1 1251120 43106
C-n51-6 6 697000 9404 1603 126 10101 9904 14508 1 761426 16600
C-n76-4 4 11054089 9409 1505 66 10209 9901 29007 4 1081471 45403
C-n76-5 5 11115032 9205 2106 303 10300 9902 1108902 6 1361054 1181700
C-n76-6 6 11064072 9202 3107 11449 10107 9708 4178607 20 ãmax 47184009
C-n101-4 4 11305068 9500 4903 116 10107 9804 1139208 10 ãmax 29162604
C-n101-5 5 11309042 9604 8404 206 10106 9806 1120302 2 ãmax 10186501
C-n101-6 6 11284048 9602 9406 11373 10303 9807 6180404 8 ãmax 27196904
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Table 7. Computational results on set 6B (instances with nonzero handling costs).

Name nS z4F 5 z4HC5 %LD1 tLD1 �°� %UB %LB tLB �°̄� rmax ttot

A-n51-4 4 744024 81024 9802 608 2 10000 9904 4404 2 541769 8807
A-n51-5 5 811052 104091 9702 904 45 10000 9909 8303 1 601674 8608
A-n51-6 6 930011 235076 9607 1508 174 10000 9905 34502 6 791716 38305
A-n76-4 4 11385051 351052 9706 1306 69 10004 9904 40708 6 1001182 66602
A-n76-5 5 11519086 485090 9808 2105 162 10108 9908 46905 2 891793 49700
A-n76-6 6 11666006 622002 9801 2704 395 10008 9907 63404 4 1101043 68707
A-n101-4 4 11881044 597069 9709 4809 117 10103 9905 1114705 8 3181548 3135903
A-n101-5 5 11709006 364008 9807 6005 304 10203 9904 2101201 8 ãmax 11108406
A-n101-6 6 11777069 491005 9703 7908 51767 10209 9906 32197507 66 ãmax 38131608

B-n51-4 4 653009 54039 9803 709 3 10007 9905 2402 1 511627 3106
B-n51-5 5 672010 89037 9701 1807 11 10007 9909 4102 1 611785 4303
B-n51-6 6 767013 165015 9700 1702 23 10002 9900 5706 1 961049 12305
B-n76-4 4 11094052 275022 9709 1703 9 10100 9903 6000 1 921311 12700
B-n76-5 5 11218013 396014 9806 1908 16 10100 9907 11009 1 921539 13107
B-n76-6 6 11326076 489099 9800 3007 92 10103 9907 21208 1 1071631 22803
B-n101-4 4 11505068 552006 9707 3804 38 10008 9809 41205 1 ãmax 5187608
B-n101-5 5 11400062 385016 9701 5203 797 10101 9807 6147305 19 ãmax 32130201
B-n101-6 6 11450039 394075 9708 5404 87 10103 9901 80207 3 ãmax 6135204

C-n51-4 4 866058 84000 9604 607 23 10003 9903 7008 3 691690 12007
C-n51-5 5 943012 168059 9504 1003 62 10100 9902 13205 3 861225 23808
C-n51-6 6 11050042 246072 9702 1605 105 10000 9907 23202 4 761281 29102
C-n76-4 4 11438096 369094 9802 1701 22 10200 9905 12407 1 891304 18200
C-n76-5 5 11745039 581031 9604 1903 108 10009 9905 35404 2 1731901 84006
C-n76-6 6 11756054 671027 9804 2907 256 10102 9905 69802 2 1581988 1144206
C-n101-4 4 21070027 735009 9705 3000 131 10101 9901 76603 2 ãmax 12108004
C-n101-5 5 11967080 521089 9700 6002 240 10106 9901 1168909 4 ãmax 12141901
C-n101-6 6 11869029 546057 9706 6507 352 10106 9808 1193308 5 ãmax 23128502

solution found, the percentage ratio %LD1 of lower bound
LD1 over z4F 5 (i.e., %LD1 = 100 LD1/z4F 5), the time tLD1

in seconds for computing LD1, the cardinality �°� of the
set ° at the beginning of Step 3, the percentage ratio %UB
of upper bound z4UB5 over z4F 5, the percentage ratio %LB
of lower bound LB over z4F 5, the total time tLB in sec-
onds for computing LD1 and LB, the cardinality �°̄� of
the set °̄, the value of rmax, and finally, the total comput-
ing time ttot in seconds. Table 7 also shows column z4HC5
reporting the total handling cost. Whenever �°̄� > 0, the
difference ttot − tLB is the time spent by CPLEX for solving
the problems F ′4M5, for all configurations M ∈ °̄.

Table 8. Comparison with the exact methods PTV and JSR on set 2 instances.

PTV JSR BMRW

Name z4F 5 %UB %gap %UB %LB %gap ttot %UB %LB tLB %gap ttot

E-n22-k4-s6-17 417007 10000 000 10000 9607 000 002 10000 10000 005 000 005
E-n22-k4-s8-14 384096 10600 000 10000 9800 000 100 10000 10000 007 000 007
E-n22-k4-s9-19 470060 10000 000 11301 9004 000 1204 10000 10000 102 000 102
E-n22-k4-s10-14 371050 11703 000 10000 9608 000 102 10000 10000 005 000 005
E-n22-k4-s11-12 427022 10000 000 10401 9407 000 302 10005 10000 103 000 103
E-n22-k4-s12-16 392078 10804 000 10000 9509 000 200 10000 10000 100 000 101

E-n33-k4-s1-9 730016 10009 000 10000 8703 000 4904 10000 10000 3706 000 3706
E-n33-k4-s2-13 714063 10300 105 10000 8904 000 3402 10000 10000 3409 000 3409
E-n33-k4-s3-17 707048 10405 107 11302 9100 000 1112608 10508 10000 4801 000 4801
E-n33-k4-s4-5 778074 10409 105 10000 8706 000 5409 10009 10000 7205 000 7205
E-n33-k4-s7-25 756085 10000 106 10000 8600 000 8705 10100 10000 4701 000 4701
E-n33-k4-s14-22 779005 10000 106 10509 8800 000 204 10000 10000 3107 000 3107

Tables 8–10 compare BMRW with PTV and JSR. Under
the headings “PTV” and “JSR,” we report the percentage
ratio, over z4F 5, of the upper bound (%UB) and of the lower
bound (%LB) achieved at the root node, the percentage gap
(%gap) between the best lower and upper bound computed,
and the total computing time (ttot) in seconds. The values
in columns z4F 5 are in bold whenever the instances were
open before BMRW. The last lines of the tables report, for
each method, the number of instances solved to optimality
(in columns %gap), and, for JSR and BMRW, the aver-
age percentage deviation of the upper and lower bounds
(in columns %UB and %LB) and the average computing
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Table 8. (Cont’d)

PTV JSR BMRW

Name z4F 5 %UB %gap %UB %LB %gap ttot %UB %LB tLB %gap ttot

E-n51-k5-s3-18 597049 10000 206 10000 9206 405 — 10000 9908 2307 000 2508
E-n51-k5-s5-47 530076 10203 108 10204 9700 000 1303 10106 9908 2509 000 2705
E-n51-k5-s7-13 554081 10000 401 10000 9404 106 — 10002 9809 3703 000 5501
E-n51-k5-s12-20 581064 10004 307 10402 9402 000 21306 10005 9903 2701 000 4403
E-n51-k5-s28-48 538022 10000 200 10000 9505 008 — 10000 9907 4001 000 4400
E-n51-k5-s33-38 552028 10407 007 10000 9508 000 2111400 10000 10000 1306 000 1306
E-n51-k5-s3-5-18-47 530076 10202 208 10303 9404 000 8400 10000 9909 25902 000 26008
E-n51-k5-s7-13-33-38 531092 10705 306 10207 9406 000 3164208 10000 9904 26306 000 26606
E-n51-k5-s12-20-28-48 527063 11308 105 10904 9505 000 79807 10000 9906 7108 000 7402

Avg./solved 10306 7 10208 9301 18 45709 10005 9908 21 5306

Table 9. Comparison with the exact methods PTV and JSR on set 3 instances.

PTV JSR BMRW

Name z4F 5 %UB %gap %UB %LB %gap ttot %UB %LB tLB %gap ttot

E-n22-k4-s13-14 526015 10001 000 10202 9802 000 302 10000 10000 201 000 201
E-n22-k4-s14-19 498080 10500 000 10500 9101 000 6102 10000 10000 204 000 204
E-n22-k4-s13-16 521009 10000 000 10100 9802 000 203 10000 10000 208 000 208
E-n22-k4-s17-19 512080 10000 000 10408 9308 000 800 10000 10000 206 000 206
E-n22-k4-s13-17 496038 10000 000 10000 9304 000 101 10000 10000 102 000 102
E-n22-k4-s19-21 520042 10104 000 10104 9504 000 505 10000 10000 308 000 308

E-n33-k4-s22-26 680037 10000 402 10105 9100 000 603 10001 9908 7108 000 7303
E-n33-k4-s16-22 672017 10000 507 11302 9300 201 — 10200 9904 11504 000 12705
E-n33-k4-s16-24 666002 10004 600 10000 9604 000 74704 10001 9909 12502 000 12804
E-n33-k4-s24-28 670043 10303 506 10000 9408 000 1706 10000 10000 7301 000 7808
E-n33-k4-s19-26 680037 10000 407 10902 8904 000 2604 10001 9906 7008 000 7208
E-n33-k4-s25-28 650058 10000 503 10000 9206 000 15802 10003 10000 5600 000 5600

E-n51-k5-s13-19 560073 10000 9505 000 1100709 10000 9906 4308 000 4800
E-n51-k5-s13-42 564045 10601 9606 000 20803 10003 9901 1803 000 5001
E-n51-k5-s13-44 564045 10706 9608 000 28805 10104 9900 2907 000 7300
E-n51-k5-s40-42 746031 10009 8809 705 — 10206 9900 3408 000 10702
E-n51-k5-s41-42 771056 10005 9501 006 — 10001 9809 3609 000 2107806
E-n51-k5-s41-44 802091 10000 8907 700 — 10102 9906 3908 000 5904

Avg./solved 10008 6 10300 9309 14 18106 10005 9907 18 4205

time (in columns ttot), computed over all instances solved
by JSR, that are a subset of the instances solved by BMRW.
The results on sets 6A and 6B show that BMRW behave
similarly with zero and nonzero handling costs.

On the sets 2 and 3 (see Tables 8 and 9), BMRWsolved
to optimality all 39 instances, whereas PTV and JSR solved
to optimality 13 and 32 instances, respectively. Of the
54 instances of the set 4A, BMRWand JSR solved 50

Table 10. Comparison with the exact method JSR on set 4A instances.

JSR BMRW

Name nS z4F 5 %UB %LB %gap ttot %UB %LB tLB %gap ttot

Instance50-1 2 11569042 11209 9102 107 — 10001 9909 7205 000 7505
Instance50-2 2 11438033 10000 9105 000 1114607 10009 9906 11007 000 16109
Instance50-3 2 11570043 11207 8807 106 — 10206 9909 6708 000 7006
Instance50-4 2 11424004 10000 9001 009 — 10107 9904 5906 000 10108
Instance50-5 2 21193052 10003 8506 004 — 10002 9906 28602 000 66307
Instance50-6 2 11279087 10000 9702 000 4146304 10000 10000 4206 000 4207
Instance50-7 2 11458063 11402 8909 105 — 10407 9908 9207 000 10004

and 15 of them, respectively. None of the 18 instances
considered by PTV of set 4B were solved to optimality,
whereas 52 instances out of 54 were solved to optimal-
ity by BMRW. Tables 8–10 show that BMRW outperforms
both PTV and JSR.

Tables 1–7 show that BMRW solved 185 out of
207 instances to optimality. Columns �°� and �°̄� show
the effectiveness of both the procedure applied at Step 2
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Table 10. (Cont’d)

JSR BMRW

Name nS z4F 5 %UB %LB %gap ttot %UB %LB tLB %gap ttot

Instance50-8 2 11363074 10000 9108 000 1116405 10001 9905 19902 000 2126109
Instance50-9 2 11450027 11309 8908 103 — 10405 9909 8206 000 8406
Instance50-10 2 11407065 10100 9804 000 3193301 10003 9906 7109 000 11209
Instance50-11 2 21047046 10009 8907 006 — 10008 9905 22505 000 33901
Instance50-12 2 11209042 10000 9507 000 2203 10001 10000 6904 000 6904
Instance50-13 2 11481083 11109 9107 102 — 10204 9909 8601 000 9201
Instance50-14 2 11393061 10106 9102 001 — 10009 9904 12602 000 1118803
Instance50-15 2 11489094 11108 9107 101 — 10204 9908 6606 000 7105
Instance50-16 2 11389017 10000 9100 000 1104501 10101 9908 5600 000 6206
Instance50-17 2 21088049 10004 8507 001 — 10007 9908 25300 000 30503
Instance50-18 2 11227061 10000 9605 000 8113001 10000 9903 6005 000 11702

Instance50-19 3 11564066 10908 8202 005 — 10000 9903 17903 000 23403
Instance50-20 3 11272097 11606 9302 006 — 10103 9901 5904 000 14001
Instance50-21 3 11577082 10608 8805 004 — 10001 9902 13908 000 21809
Instance50-22 3 11281083 10501 8602 000 8163607 10104 10000 7602 000 7902
Instance50-23 3 11807035 10000 8302 1000 — 10000 9807 31009 000 1151009
Instance50-24 3 11282068 10108 9309 000 6155909 10000 10000 7909 000 8000
Instance50-25 3 11522042 10008 8307 102 — 10200 9902 22107 000 33509
Instance50-26 3 11167046 11304 9501 000 6604 10002 9909 5109 000 5400
Instance50-27 3 11481057 10700 8604 100 — 10200 9903 19600 000 35509
Instance50-28 3 11210044 10401 8607 000 2104600 10000 10000 27905 000 29506
Instance50-29 3 11722004 10009 8005 008 — 10205 9808 46104 102 9109209
Instance50-30 3 11211059 10108 9201 000 1704 10005 10000 24301 000 24301
Instance50-31 3 11490034 10907 9003 105 — 10202 9801 32509 109 11156103
Instance50-32 3 11199000 10408 8609 005 — 10001 9807 26207 000 4100904
Instance50-33 3 11508030 10503 8207 103 — 10102 9800 23406 200 12192203
Instance50-34 3 11233092 10205 8506 001 — 10000 9900 13008 000 20700
Instance50-35 3 11718041 10003 7903 102 — 10001 9803 61909 107 20137706
Instance50-36 3 11228089 10001 8508 000 2103802 10000 9903 12106 000 15401

Instance50-37 5 11528073 10807 8206 209 — 10007 9905 77803 000 80708
Instance50-38 5 11169020 10802 8206 002 — 10009 9900 42903 000 1164802
Instance50-39 5 11520092 10604 8406 004 — 10006 9908 68800 000 69500
Instance50-40 5 11199042 10100 8105 206 — 10106 9906 98608 000 99604
Instance50-41 5 11667096 10801 8606 104 — 10003 9906 1130209 000 1134407
Instance50-42 5 11194054 11208 8303 102 — 10106 9904 17703 000 22302
Instance50-43 5 11439067 11303 8704 107 — 10103 9905 1103202 000 1109507
Instance50-44 5 11045013 10905 8004 000 14400 10002 9908 42401 000 43508
Instance50-45 5 11450096 10805 8201 100 — 10107 9902 57707 000 77400
Instance50-46 5 11088077 10107 7704 100 — 10002 9903 1115005 000 1134504
Instance50-47 5 11587029 10907 8305 100 — 10201 9904 1147007 000 1156603
Instance50-48 5 11082020 11508 8601 000 13304 10101 10000 9100 000 9100
Instance50-49 5 11434088 10804 8403 201 — 10203 10000 71407 000 71408
Instance50-50 5 11083012 10504 7709 107 — 10005 9901 86901 000 1133700
Instance50-51 5 11398005 10606 8203 406 — 10100 10000 74400 000 74804
Instance50-52 5 11125067 10002 8100 101 — 10105 9900 1123109 000 1153307
Instance50-53 5 11567077 10904 8308 103 — 10001 9807 1171200 000 4122303
Instance50-54 5 11127061 11006 8802 009 — 10002 9809 34304 000 1104106

Avg./solved 10509 8701 15 2159901 10100 9904 50 27600

for generating the set ° and the procedures applied at
Steps 3(c(i)) and 3(c(ii)) for computing valid lower bounds
on z4F 4M55. Notice that few problems F 4M5 required to
be solved by CPLEX (see columns �°̄�). BMRW was able
to solve 44 out of 60 instances of the sets 5, 6A, and 6B
(see Tables 5–7). On the other 16 instances, BMRW could
not generate all second-level routes required to solve some
problems F 4M5 to optimality because of the gap between
the computed lower and upper bounds.

Tables 8 and 9 indicate that the heuristic algorithm
described in §4.5 provided better solutions, on average,

than the heuristic algorithms of PTV and JSR. Finally,
the results obtained by Hemmelmayr et al. (2012) are bet-
ter than the results obtained by our heuristic, being their
average percentage ratios equal to 100.0, 100.0, 100.3, and
100.0 on instance sets 2, 3, 4B, and 5, respectively.

7. Conclusions
In this paper, we have proposed a new exact method for
solving the two-echelon capacitated vehicle routing prob-
lem. We have described a bounding procedure that is used
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by the exact algorithm to decompose the 2E-CVRP into a
limited set of multidepot capacitated vehicle routing prob-
lems with side constraints. The optimal 2E-CVRP solution
is obtained by solving the set of MDCVRPs generated. The
proposed method was tested on 207 instances, taken both
from the literature and newly generated, with up to 100 cus-
tomers and six satellites. The new exact algorithm solved
to optimality 144 out of the 153 instances from literature
and closed 97 of them for the first time. The comparison
with the state-of-the-art exact methods shows that the new
exact method outperforms the other exact methods in terms
of size, number of problems solved to optimality, and com-
puting time.
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Supplemental material to this paper is available at http://dx.doi
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