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In the two-echelon capacitated vehicle routing problem (2E-CVRP), the delivery to customers from a depot uses interme-
diate depots, called satellites. The 2E-CVRP involves two levels of routing problems. The first level requires a design of
the routes for a vehicle fleet located at the depot to transport the customer demands to a subset of the satellites. The second
level concerns the routing of a vehicle fleet located at the satellites to serve all customers from the satellites supplied from
the depot. The objective is to minimize the sum of routing and handling costs. This paper describes a new mathematical
formulation of the 2E-CVRP used to derive valid lower bounds and an exact method that decomposes the 2E-CVRP into a
limited set of multidepot capacitated vehicle routing problems with side constraints. Computational results on benchmark
instances show that the new exact algorithm outperforms the state-of-the-art exact methods.
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1. Introduction

The two-echelon capacitated vehicle routing problem
(2E-CVRP) is a two-level distribution system where the
deliveries to customers from a depot are managed through
intermediate capacitated depots, called satellites. The first
level consists of vehicle routes that start and end at the
depot and deliver the customer demands to a subset of satel-
lites. In the 2E-CVRP we consider, a satellite has a limited
capacity and can be serviced by more than one first-level
route. The second level consists of vehicle routes that start
and end at the same satellite and supply all customers.
A homogeneous vehicle fleet is used at each level. The
first-level vehicles are located at the depot and supply the
satellites only. The second-level vehicles have a capacity
smaller than that of the first-level vehicles and supply the
customers from the satellites. The unloading of first-level
vehicles and loading of second-level vehicles at the satel-
lites imply a handling cost proportional to the quantity
loaded/unloaded.

The 2E-CVRP aims to find two sets of first and second-
level routes such that each customer is visited exactly once
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by a second-level route and the total routing and handling
cost is minimized.

1.1. Literature Review

The 2E-CVRP has become a relevant distribution system
for supplying customers located in large cities. Because
many municipalities impose legal restrictions to keep large
vehicles out of city centers, distribution companies create
suburban platforms (satellites) where they transport goods
with large vehicles. Then, small vehicles service downtown
customers from the satellites.

Nonetheless, only recently the 2E-CVRP has received
some attention in the literature. Feliu et al. (2007) described
a commodity flow formulation and an exact branch-and-cut
algorithm that solved instances with up to 32 customers
and two satellites. This algorithm was improved by Perboli
et al. (2010), Perboli, Tadei, and Vigo (2011) by adding
valid inequalities. Perboli, Tadei, and Vigo (2011) reported
optimal solutions for instances with up to 32 customers
and two satellites, but their model has been shown by
Jepsen, Spoorendonk, and Ropke (2013) not to be correct
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on instances with three or more satellites. Jepsen, Spooren-
donk, and Ropke (2013) extended the problem considered
by Feliu et al. (2007) and Perboli, Tadei, and Vigo (2011)
by introducing fixed costs for the routes of both levels and
satellite capacities; they described an exact branch-and-cut
algorithm, based on the new formulation and new valid
inequalities, that outperforms the method of Perboli, Tadei,
and Vigo (2011). Heuristic methods can be found in Crainic
et al. (2008, 2011) and Perboli, Tadei, and Vigo (2011).
Recently, an adaptive large neighborhood search heuristic
has been proposed by Hemmelmayr et al. (2012). Variants
of the 2E-CVRP were considered by Tan et al. (2006) and
Nguyen et al. (2010).

We consider the 2E-CVRP studied by Jepsen, Spooren-
donk, and Ropke (2013). This 2E-CVRP generalizes the
capacitated location routing problem (LRP), which consists
of opening one or more depots, on given locations, and
designing, for each open depot, a number of routes to sup-
ply customers. A fixed cost and a capacity are associated
with each depot. The objective is to minimize the sum of
the fixed costs for opening the depots and the routing cost.
Exact algorithms for the LRP were presented by Laporte
et al. (1986), Akca et al. (2009), Belenguer et al. (2011),
and Baldacci et al. (2011b).

1.2. Contributions of This Paper

We introduce a new mathematical formulation of the
2E-CVRP that is used to derive both integer and continuous
relaxations. We present a new bounding procedure based
on dynamic programming (DP), a dual-ascent method, and
an exact algorithm that decomposes the 2E-CVRP into a
limited set of multidepot capacitated vehicle routing prob-
lems (MDCVRP) with side constraints. Extensive compu-
tational results on instances from the literature and on new
instances show that the proposed method outperforms pre-
vious exact algorithms, both for the quality of the lower
bounds achieved and the number and the size of the
instances solved.

This paper is organized as follows. Section 2 describes
the 2E-CVRP and the new mathematical formulation. The
relaxations used to derive valid lower bounds are described
in §3. Section 4 describes the bounding procedure based on
the relaxations derived in §3. Section 5 presents the exact
algorithm. Section 6 reports the computational results. Con-
cluding remarks are given in §7.

2. Problem Description and
Mathematical Formulation

An undirected graph G = (N, E) is given, where the vertex
set N is partitioned as N = {0} U Ny U N,.. Vertex O repre-
sents the depot, Ny = {1, 2, ..., n,} represents n, satellites,
and No = {n, +1,...,n, + n,} represents n. customers.
The edge set E is defined as E = {{0, j}: j € N;JU{{i, j}:
i,j€NgUNc, i<j}. A travel cost d; is associated with
each edge {i, j} € E. We assume that matrix d;; satisfies the

triangle inequality. Each customer i € N requires g; units
of goods from depot 0. We denote with g, =3y, ¢; the
sum of the customer demands.

A fleet of m' identical vehicles of capacity Q, are
located at depot 0 and are used to transport goods to satel-
lites. If used, a first-level vehicle incurs a fixed cost U,
and performs a route passing through the depot 0 and a
subset of satellites. The cost of a first-level route is the
sum of the costs of the traversed edges plus the fixed
cost U,. Each satellite k € Ng can be visited by more than
one first-level route and has a capacity B, that limits the
total customer demand that can be delivered to it by the
first-level routes. Moreover, a fleet of m, identical vehi-
cles of capacity Q, < O, are available at satellite k € Ng
for servicing the customers. Nevertheless, at most m? <
>_ken, My second-level vehicles can be globally used. If
used, a second-level vehicle incurs a fixed cost U, and per-
forms a route, that is a simple cycle in G passing through
a satellite and a subset of customers and such that the total
demand of the visited customers does not exceed the vehi-
cle capacity Q,. The cost of a second-level route is the sum
of the traversed edges plus the fixed cost U,. The handling
cost at satellite k € Ng is given by H, times the quantity
delivered to satellite k.

The problem asks to design the vehicle routes of both
levels so that each customer is visited exactly once, the
quantity delivered to customers from each satellite is equal
to the quantity received from the depot, and the sum of the
routing and handling costs is minimized.

Figure 1 shows a solution to a 2E-CVRP instance with
four satellites (the gray circles) and 20 customers (the
white circles). Two first-level routes (the dashed lines) are
routed at the depot (the black square); the two first-level
routes visit one and two satellites, respectively. Satellite 4
is unused. Four second-level routes deliver goods to final
customers.

To consider vehicle fixed costs U, and U,, we assume
that the travel cost matrix [d;;] is modified as follows:
(i) for each satellite k € Ny, cost (1/2)U, is added to dy,
and (ii) for each satellite k € Ny and each customer i € N,
cost (1/2)U, is added to d;.

2.1. Formulation of the 2E-CVRP

The 2E-CVRP can be formulated as follows. Let M be the
index set of all first-level routes, and let M, € M be the
subset of first-level routes serving satellite k € Ng. Let R,
and E(R,) be the subset of satellites visited and the subset
of edges traversed by route r € M, respectively. The cost g,
of route r € M is g, = 3 ; jyerr,) d;- We assume that
the route set M contains [min{m,Q,, q}/0Q,] copies of
the single-satellite route (0, &, 0), for each satellite k € N;.
Let w™" and w™* be the minimum and maximum loads
of first-level route r € M, computed as w™" = max{g,,, —
(m' — 1)Q,, 0} and w™ = min{Q,, G, Yrcr, M Ds}-
Moreover, we denote by W, ={w e Z,: w™" < w < w"*}
the set of possible loads of first-level route r € M. Because
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Figure 1. A solution to the 2E-CVRP.

in real-world applications the number of satellites is small
(say n, < 10), in the following we assume that we can enu-
merate the M.

Let R, be the index set of the second-level routes passing
through satellite k € N, and let R, € X, be the subset of
routes passing through satellite k € Ny and customer i € N,..
We indicate with R = (J;cy, R, the set of all second-level
routes and with 7, the satellite visited by route [ € R.
Moreover, we indicate with R,, and E(R,,) the subset of
customers visited and the subset of edges traversed by route
l € Ry, respectively. A load wy, = 3 ";cx, ¢; and a cost ¢;; =
2 oii, j1eE(Ry) i + Hywy, are associated with route / € ;.

Let y, be a binary variable equal to one if and only
if route r € M is in solution, x;; a binary variable equal
to one if and only if route / € R, of satellite k € N; is in
solution, and ¢,, a nonnegative integer variable representing
the quantity delivered by first-level route » € M to satellite
k € R, (we assume g,, =0, k € Ny\R,). The 2E-CVRP can
be formulated as follows:

(F) Z(F)=min Y Y cyxy+ Y gy, (1)

keNg le Ry, reMm
s.t. Z Z xy=1, i€eNg, 2)

keNg leR;,
D Xy <my, keN, 3)
leR;
Z Z X < m?, 4)
keNg leR,
Y wyxy < B, keN;, (5)
leR,
Yy, <m', (6)
rem
Z iy = Z wyXy, ke€Ng, (7)
reMy leRy,
Z rr < Qlyr’ re M’ (8)

keR,

Il Depot
@ Satellite
O Customer

Ny={1,2,3,4}
Ne={5,...,24}

x,€{0,1}, keN,, leR, 9)
y, €{0, 1},

iy € Z+’

reM, (10)
keR,, reM. (11)

The objective function (1) states to minimize the total cost.
Constraints (2) specify that each customer i € N, must be
visited by exactly one second-level route. Constraints (3),
(4), and (6) impose the upper bounds on the number of first
and second-level routes in solution. Constraints (5) impose
the satellite capacities. The balance between the quantity
delivered by first-level routes to a satellite and the customer
demands supplied from the satellite is imposed by con-
straints (7). Finally, constraints (8) impose that the vehicle
capacity of the first-level vehicles is not exceeded.

To help the reader throughout the rest of the paper,
we report a glossary of the symbols introduced so far in
the e-companion to this paper (available as supplemental
material at http://dx.doi.org/10.1287/opre.1120.1153; see
Table EC.1).

2.2. The Special Case of the Location
Routing Problem (LRP)

The 2E-CVRP contains the LRP as a special case. The LRP
is defined on an undirected graph G’ = (N’, E’), where
N’ is partitioned as N' = L UV, where L represents pos-
sible depot locations and V a set of customers. A travel
cost d,; is associated with each edge {i, j} € E’. A fixed
cost C, and a capacity B, are associated with each depot
location k € L. Each customer i € V has associated a non-
negative demand ¢;. An unlimited fleet of identical vehicles
of capacity Q are available at the depots to supply the cus-
tomers. If used, a vehicle incurs into a fixed cost U and
performs a route passing through one of the depot locations
and such that the total demand of the visited customers is
at most Q. The cost of a route is the sum of the costs of
the traversed edges plus the fixed cost U. The LRP consists
of opening a set of depots and designing a set of routes for
each open depot so that the total load of the routes operated
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from a depot k € L does not exceed its capacity B, and
each customer is visited by exactly one route. The objec-
tive is to minimize the sum of the cost of open depots and
the costs of the routes.

Any LRP instance can be converted into an equivalent
2E-CVRP instance as follows:

(a) Define graph G = (N,E) by setting N, = L,
N =V, and define the edge costs dy, = (1/2)Cy, k € N,
and dkj=oo, k,jeNg, k<.

(b) Define the first-level vehicle fleet by setting
m' =|Ns|, Q, = o0 and U, =0.

(c) Define the second-level vehicle fleet by setting

m*=|N.|, Uy,=U, Q, = Q and m; = |N¢|, k € Ng.
Any optimal solution of the resulting 2E-CVRP instance
is also an optimal solution of the original LRP instance.
Because dkj = oo, for any k, j € Ny, k < j, each first-level
vehicle route can only be a single-satellite route (0, &, 0)
of cost C,, k € Ng. Because O, = oo, any optimal solution
contains at most a single-satellite route for each k € Ng
representing the opening of depot k.

2.3. An Overview of the Proposed Exact Method

The exact method we propose consists of three main steps.

(1) We enumerate the set M of first-level routes and
compute lower bound LD1 and upper bound UBI1 on the
2E-CVRP (see §§3 and 4).

(2) We generate the set P of all possible subsets (con-
figurations) of first-level routes that could be used in any
optimal 2E-CVRP solution (see §5). Different bounding
functions and dominance criteria are used to limit the size
of the set P.

(3) For each configuration M € P, we solve the corre-
sponding problem F by fixing y, =1, r € M, and y, =0,
r € M\M. This problem is a MDCVRP with side con-
straints (see §5), which is solved with an extension of
the method of Baldacci and Mingozzi (2009). The optimal
solution cost, z(F'), of the 2E-CVRP corresponds to the
minimum solution cost of such MDCVRPs. We propose
different bounding functions to solve to integrality only few
MDCVRPs.

3. Relaxations of Formulation F

Let LF be the LP-relaxation of formulation F, and let
z(LF ) be its optimal solution cost. Notice that, in any opti-
mal LF solution, y, is equal t0 (X 1cp qi,)/ Q1> 7 € M.
Thus, the higher the first-level routing cost, the worse the
lower bound z(LF). In the following, we describe an inte-
ger relaxation of the 2E-CVRP, called RF, that can provide
a lower bound better than z(LF).

3.1. Relaxation RF

This relaxation derives from problem F by relaxing, in
a Lagrangean fashion, constraints (2)—(4) with penalties
A eR,ieNg, pu, €R_, ke N, and u, € R_, respectively,

and by defining the marginal routing costs (3, for servicing
customer i € N from satellite k € Ng as a solution of

D QB < Cu— D Qi — My — Ho, L€ Ry, kENg,
ieN¢ ieN¢
(12)
where a;;, is the number of times customer i € N is visited
by route [ € R, of satellite k € Ni.
Problem RF involves binary variables &, equal to one if
customer i € N, is supplied from satellite k € Ny (0 other-

wise) and variables y, and g,,, as defined for problem F.
Relaxation RF is

(RF) z(RF(B,\,p))

= min Z Z B+ Z &y, + Z A

keNg ieN¢ reM ieNc
+ 3 myy +mP g (13)
keNg

st E=1, ieN,, (14)
keNg
Z qrr = Z 9:€x» Kk €N, (15)
reM; ieNc
Z q:€x < By, k€N, (16)
ieN¢
(6),(8), (10) and (11), (17)
£,€{0,1}, ieNg, keN;. (18)

THEOREM 1. z(RF(B, A, p)) is a valid lower bound on the
2E-CVRP for any solution B of inequalities (12) and any
pair of penalty vectors N € RVc and p € RVs*!,

PrOOF. The proof is provided in §EC.2 of the e-companion
to this paper.

From Theorem 1, the following corollary follows.

CorOLLARY 1. Let z(UB) be a valid upper bound on the
2E-CVRP. For a given pair of vectors N, \ and any solu-
tion B of inequalities (12), let
Cu=cu— Z A (Bix +Ai) — i — o
ieN¢
be the reduced cost of second-level route | € R, k € Ng.
Any optimal 2E-CVRP solution of cost smaller than

z(UB) cannot contain any second-level route | € R,,
k € Ny, of reduced cost ¢,; > z(UB) — z(RF (B, N, p)).

PrOOF. The proof is provided in §EC.2 of the e-companion
to this paper.

THEOREM 2. The relation maxg , ,{z(RF(B,\,p))} >
z(LF ) holds, and such inequality can be strict.

PrOOF. The proof is provided in §EC.2 of the e-companion
to this paper.

3.2. Relaxation RF

Solving RF to optimality can be time consuming, so we
describe a further relaxation of RF, called RF, that can
be efficiently solved. Let ¢,, be a lower bound on the
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cost for delivering a demand w € W, to customers from the
subsets of satellites R, visited by first-level route r € M.
For a given vector B satisfying inequalities (12), the value
¢,,, 1s defined as the optimal solution cost of the following
continuous knapsack problem, called KP(r, w):

(KP(r, w)) ¢,,, = min Z min{B; }z;
X keR,
ieN¢
st Y. gz=w,
ieN¢
0<z; <1, ieN..

For each pair (r,w), we denote by zi(r,w), i € N,
the optimal solution of problem KP(r,w), and we define
V(r,w)={ie N¢: j(r,w)>0}. Let {,,, re M, weW,,
be a binary variable equal to one if and only if first-level
route r delivering w units of goods is in solution. Problem
RF is defined as

(RF) z(RF(B.\.p))
=min Y > (&+¢.) 0w

reM weW,
+ 2 N+ X mutmy  (19)
ieN¢ keNg
s.L. Z Z Wy = YGror» (20)
reM weW,
Y. Lu<Ll, rem, (21)
weW,
{w€f{0,1}, reM,weW,. (22)

Problem RF is a multiple-choice knapsack problem and
can be conveniently solved by DP. The following theorem
shows that RF is a relaxation of problem RF.

THEOREM 3. z(RF (B, N, p)) < z(RF(B,\,p)) for any
solution B of inequalities (12) and for any penalty vectors N
and .

PrOOF. The proof is provided in §EC.2 of the e-companion
to this paper.

Because of Theorem 3 and Corollary 1, any optimal
2E-CVRP solution of cost smaller than a known upper
bound z(UB) cannot contain any second-level route [ € R,
k € N, of reduced cost ¢, > z(UB) — z(RF(B, N\, p)),
where ¢, is defined as above.

A valid lower bound LD1 on the 2E-CVRP can be com-
puted as the cost of a near-optimal solution of problem

LD1 = max {z(RF (B, X, b))} (23)

4. Lower Bound LD1 and Bounding
Procedure DP'

In this section, we describe a bounding procedure, called DP',
and a heuristic algorithm based on relaxation RF to com-
pute lower and upper bounds LD1 and UBI, respectively.
Bounding procedure DP' finds a near-optimal solution of
problem (23) and uses a DP algorithm to solve problem RF.

Bounding procedure DP' is based on a relaxation of
the 2E-CVRP, where the second-level route sets R, k €
N, are enlarged to also contain nonnecessarily elementary
routes. The method used by DP' to find a feasible solution
of inequalities (12) is based on the following theorem.

THEOREM 4. Let us associate penalties \; € R, i € N, with
constraints (2), p, € R_, k € Ny, with constraints (3), and
o € R_ with constraint (4). Let R, 2 R, be the index set
of nonnecessarily elementary routes for satellite k. A fea-
sible solution B, of inequalities (12) is given by

Cry — ZieNC A i — Mg — Mo }
b

B'k =gq; mln{
l ' ZiENC Qj19;

1eR
i€eN., keN;. (24)

PrOOF. The proof is provided in §EC.2 of the e-companion
to this paper.

In procedure DP', the route set .7%,( is defined as the set
of ng-routes introduced by Baldacci et al. (2011a) that are
shortly described below.

Let N; € N, i € N., be a set of selected customers
for customer i (according to some criterion), such that
N; > i and |N,| < A(N,), where A(N,) is a parameter.
The sets N, allow us to associate with each path P =

(k,iy,...,1,) that starts from satellite k € Ny, visits ver-
tices #,,...,1, € N., and ends at vertex i,, the subset I1(P)
containing i, and every customer i, s=1,...,r—1, of

P that belongs to all sets N,...,N; associated with
the customers i ,,...,i, visited after i;. The set II(P)
is defined as II(P) = {i: i, € Njyy Nyo s = 1,0,
t —1} U {i}. A forward ng-path (NG,k,q,i) is a non-
necessarily elementary path P = (k,i,,...,i,_,,i, =) that
starts from satellite k € Ny, ends at customer i, visits a sub-
set of customers of total demand equal to g, and such that
NG =TI(P) and i ¢ I1(P’), where P' = (k,i\,... i, ).
An (NG, k, g, i)-route (or simply ng-route) is obtained by
adding edge {i, k} to an ng-path (NG, k, g, i).

Algorithm DP' uses column generation to solve Equa-
tions (24) and subgradient optimization to solve problem (23).

4.1. Description of Procedure DP'

To solve Equations (24), procedure DP' uses a limited set
R, € R, k € N, of ng-routes. Procedure DP' initializes
each set R, with all single-customer routes (k, i, k), i € N,
and sets A =0, o =0, LD1 =0 and UB1 = co. Bound-
ing procedure DP' executes an a priori defined number
(Maxit1) of macro iterations where, at each macro itera-
tion, the following steps are performed.

(1) Initialize z* = 0, and perform Maxif2 iterations of
the following steps:

(i) Compute values By, i € No, k € Ng, through

expression (24), where each R, is replaced with .’]_Bk,
k € N;.
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(ii) Solve RF using values B, as described in §4.2.
If Z(RF(B, N\, 1)) > z*, then update z* = z(RF (B, \, p)),
B*=P, A*=Nand p*=p.

(iii) Update penalty vector N and g as described
in §4.3. o

(2) Generate a set of ng-routes N, € R \XK,, k € Ng,
for which inequalities (12) are violated by B*, N*, and p*
as described in §4.4. There are two cases:

(i) Ny = @, for each k € N;. If LDI < z*, then
update LD1 = z*, B! =B*, A! =A%, p! =p*, and execute
the heuristic algorithm described in §4.5 producing upper
bound z(UB). Update UB1 = min{UB1, z(UB)}. B

(i) N, # @, for some k € Ny, then update R, =
R,UN,.

Notice that B!, N!, and w! are the vectors producing
lower bound LDI in problem (23).

4.2. Solving Problem RF

Problem RF can be solved by DP as follows. Let h(r, w)
be the optimal solution cost of RF obtained by using the
first-level routes 1,...,r, 0 < r < |M|, and replacing ¢,
in Equation (20) with w € Z,, w™" < w < ¢, The DP
recursion for computing functions A(r, w), r=1,..., |[M]|,
w™ <w < Gros 18

h(r, w) =min{h(r —1,w),

min }{h(r— 1,w—w/)+g,+¢,w,}}. (25)

wmin <y’ <min{w, wnax

The recursion is initialized by setting A(r,0) =0, r =
0,...,|M|,and h(0, w) =00, w=1,..., g, The RF opti-
mal solution cost is Z(RF(B, N, p)) = A(|M], g,)-

Let 7 be an upper bound on z(RF(B, N, i)). The num-
ber of states (r,w) to generate in order to compute
Z(RF(B, N\, ) can be reduced by using bounding func-
tions Ib(r, w), described below, to eliminate any state
(r,w) that cannot lead to any RF solution of cost smaller
than Z.

We denote by Ib(r, w) a lower bound on the optimal
solution cost of problem RF, where M is replaced with
the subset {r,r +1,...,| M|} and g, with w. Let a, =
N min ¢y e { (8, + @) /w}, ¥ € M. By assuming that
the routes in M are indexed so that a; <, <--- < @ )5
functions 1b(r, w) can be computed using the following
backward recursion.

Initialize (i) 1b(r,0) =0, r=1, ..., |M]|; (ii) Ib(r, w) =
00,0 <w<w™, r=1,...,|M] (iii) Ib(|M], w) = wayy,
w € Wiyep; and (iv) Ib(| M|, w) = oo, w™ < w < Gyoy-

For each r = | M| — 1,|M| — 2,...,1 and w™" <
w < ¢, compute

Ib(r, w)

r

wya, +Ib(r+1w—wy™) if w +1<w < gy

wa, ifw<w

Thus, a state (r,w), r < | M|, is fathomed if A(r,w) +
Ib(r+1, g —w) 2 2.

In performing recursion (25), the upper bound Z is ini-
tialized as z = UBI and dynamically updated, at the end of
stage r, as Zz=min{Z, h(r, q,,,)}-

4.3. Computing a Subgradient

Usual backtracking can be used to derive the RF solution
€ of cost h(|M], g,)- Given € and the sets V(r,w), as
d~eﬁned_ in §3.2, associated to ¢,,,, we derive the index sets
R, S R,, k € Ny, of the second-level routes in solution and
the index [(i, k) of the route in R, associated with 3;, as
follows: B
(i) Initialize X, = &, k € Ny, and I(i,k) =0, i € N,
k € N;.
(ii)) Repeat the following steps for each route r € M
such that {,, =1 for some load we W,:
(a) Compute k(i) = argming . {By}, i € V(r, w). Let
1(i, k(i)), i € V(r, w), be the index of the route in ﬁk asso-
ciated with Bz, in expressions (24).
(b) For each i € V(r,w), set ie,;o.) = jé,;(i) U
{1, k(). -
A subgradient to function z(RF(, N, p)), at point (N, p),
can be computed as follows. Let X be a vector whose com-
ponents are computed as

- Aix1 g
Tu= ’

le ﬁk, k € Ng.
ieNe: 1(i,k)=1 D iene Qi

Let
;= Z Z A X, 1€ Ne,
keNs 1,
8= Xy, keNs, and 8= 6.
leR, keNg

Then, penalty vectors N and g are modified as A; = A, —
€y(a;—1), i € N¢, p =min{0, w, — €y (8, —my)}, k € Ny,
and u, = min{0, u, — €y(8§, — m*)}, where € is a positive
constant and

0.2z(RF (B, N\, p))
ZieNC (a; = 1)+ ZkeNS (O —my)* + (8, — m?)? '

’y:

4.4. Generating the ng-Route Set V', for a
Given Satellite k

We describe the procedure to generate, for a given satellite
k € N, the set of ng-routes N, C X, that violate inequal-
ities (12) for given vectors B*, A*, and w*, when R, is
replaced by X,.

Define the modified edge costs d_,, =d; — (1/2)(B} +
Af —Hyq,) — (1/2)(B3 + A} — Hyq;) and the sets N; € N,
i € N, to contain the A(NN;) nearest customers to i accord-
ing to d;;.
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Let f(NG,k,q,i) be the cost of a least-cost ng-path
(NG, k,q,i) using the modified edge cost d_U Func-
tions f (NG, k, g, i) are computed using the DP recursions
described by Baldacci et al. (2011a) on the state-space

graph 7 = (V, V), defined for a given satellite k € N, as

V:{(NG7k7q’l)qz<qgQ2’ VNGQM

st NG>iand ) q;<q, VieNC},
JENG

v ={((NG.k,q.j),(NG,k,q,i): V(NG k,q, )
eV (NG, k,q,i), V(NG,k,q,i) € £},

where V~Y(NG, k,q,i)={(NG',k,q—gq;, j): YNG' C N;
st. NG'>j and NG'NN,=NG\{i}, j€ N. st. {i,j} € E
ifi<jor{j,i}eEif j<i}.

Let

r(l’k):( min f(NG,k,q’l)_Mz_MS+Csz}

NGk, q. i)eV{
be the cost of a least-cost ng-route visiting i € N imme-
diately before arriving at satellite k. The route set N, con-
tains the ng-routes corresponding to »(i, k) <0, i € N.

4.5. A Lagrangean Heuristic

Procedure DP' is interwoven with a heuristic algorithm that
produces a feasible 2E-CVRP solution of cost z(UB) using
the second-level route sets X, k € Ny, and vector X asso-
ciated with an RF solution (see §4.3). First, the routes in
R, k € Ng, are modified with the objective of obtaining a
solution vector x satisfying constraints (2)—(5). Then, the
solution vector x is used to derive solution vectors y and q
such that (x,y, q) represents a feasible 2E-CVRP solution.

Description of the Heuristic Algorithm

(1) [Initialization]. Let R = Ugen, Ry
SOL=@ and 6(i) =0, i € N,. _

(2) [Extract a subset of routes SOL C R]. Let I* be the
route of X, where X, ;. = max{x,;: [ € R}. Remove [*
from R. If 8(i) =0, for some i € R, then update SOL =
SOLU{/*} and 6(i) =06(i))+1,i€R Repeat Step 1
until R = @.

(3) [Modify the route set SOL]. Remove from SOL any
route / € SOL such that 6(i) > 1, i € R, and update 8(i) =
0(i) — 1. For each [ € SOL, compute the savings that can be
achieved by removing from route / every customer i € R,
having 6(i) > 1. Let [* € SOL be the route of maximum
saving. Remove from route [* every customer i € R,
with 6(i) > 1, and update 6(i) = 6(i) — 1. Repeat Step 3
until 6(i) < 1, for each i € N.

(4) [Insert unrouted customers). For each unrouted cus-
tomer i (i.e., (i) = 0) perform the following operations.
Compute the minimum extra-mileage exm(i, [) for insert-
ing i in route [ € SOL. We set exm(i,[) = oo if the total

Initialize

Tl

load of the resulting route [ exceeds the vehicle capac-
ity Q,. Let I* be such that exm(i, [*) = min, g, [exm(i, ])].
If exm(i, *) = oo, then set z(UB) = oo and stop; other-
wise, insert customer i in route [* in the position of cost
exm(i, [*) and set 6(i) = 1.

(5) [Define the F solution x]. Define x,, = 1, for each
l € SOL, and x,, =0, for each [ € R\SOL. If x does not
satisfy constraints (3)—(5), then set z(UB) = oo and the
algorithm terminates.

(6) [Improve the cost of the routes in SOL]. The post-
optimization procedure for improving the total cost of the
routes in SOL applies the following procedure in the order
specified below.

(a) [Exchange of one customer between two routes
of SOL]. For each customer i € N, compute the saving
move(i, [) achieved by removing i from its current route /;
and inserting i in the least-cost position of route [ € SOL.
Set move(i, I;) =0 and move(i, ) = —oo if the load of the
resulting route [ violates constraint (5) for satellite 7, or
if customer i cannot be inserted in route / without violat-
ing the vehicle capacity Q,. Let i* and [* be determined
such that move(i*, I*) = max[move(i,l): i € N., | € SOL].
If move(i*, I*) > 0, then remove customer i* from its cur-
rent route and insert it in the best position of route /*. This
procedure is repeated until move(i*, I*) < 0.

(b) [Exchange of two customers between two routes
of SOL]. For all pairs of routes /,!" € SOL and for each
pair of customers i € R, and j € R, ,, compute the sav-
ing sav(i, j) obtained by moving customer i from route /
to route [’ and customer j from route /' to route I. We set
sav(i, j) = —oo if the exchange violates constraint (5) for
one of the two satellites 7;, 7, or if the total load of
one of the two routes exceeds the vehicle capacity Q,.
The two customers i* and j* producing the maximum sav-
ing are then exchanged if sav(i*, j*) > 0. This procedure
is repeated until sav(i*, j*) < 0. Whenever this procedure
improves the solution, then the post-optimization routing is
restarted from the beginning.

(c) Optimize each route / € SOL using a three-optimal
method.

(7) [Constructing a feasible 2E-CVRP solution]. Let
W = Y jem, WXy k € Ny, be the total demand associated
with satellite & by the solution vector x defined above.
We solve to optimality the following problem F(x) with an
integer programming solver:

(F(x))  z(F(x))=min ) gy,

rem

st Y.y, <m',
rem

Z rr = Wi

reM;

Z q}cr < Qlyr’

keR,
vy, €{0,1}, reM,
keR,, reM.

k € Ng,

rem,

Gir > 0’
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Let (y,q) be the optimal F(x) solution (we assume
Z(F (x)) = oo if problem F(x) does not admit a feasible
solution). If problem F(x) admits a feasible solution, then
the vectors (X, Yy, q) represent a feasible 2E-CVRP solution

of cost z(UB) = z(F(X)) + X sen, Yie, Curir-

5. An Exact Method for
Solving the 2E-CVRP

The method for solving the 2E-CVRP is based on the fol-
lowing reformulation of problem F.

Let P ={M C M: [M|Q, > qu |M] < m'}. We call
configuration each element M of the set 2. For each con-
figuration M € P, let Ng(M) = U,y R,» My =M N M,
k€N, and UM)=3",. & An optimal 2E-CVRP solu-
tion can be computed as

z(F)= min{U(M) + Z2(F(M))}, (26)
where z(F(M)) is the optimal solution cost of the follow-
ing problem F(M):

(F(M)) z(F(M))=min

Z Z CriXki

keNg(M) IR,

st Y. > xy=1, ieNg,
keNg(M)IeR;;
> xu<my, keNy(M),
leR,
> Zxklgmz’
keNg(M)IeR,
Zwkzxk1<Bk’ keNg(M),
leRy
Z Grr = Z Wi Xgrs
reM; leR,

ke Ny(M),

qurng’ reM,
keR,
x,€{0,1}, keNy(M),leR,,
4,20, keR,.,reM.

We assume z(F (M )) = o0 if F(M) has no feasible solution
for configuration M € P.

Problem F(M) is an extension of the multidepot vehi-
cle routing problem considered by Baldacci and Mingozzi
(2009). The methods for generating the set P, solving
problems F(M) and (26) are described in §§5.1-5.3,
respectively.

5.1. Generating the Set of Configurations 7

The generation of the set P of configurations is based on
the following propositions.

Let LB, be a lower bound on the second-level routing
cost of any optimal solution computed as

LBe= Y min{B;}+ 3 A+ 3 mpy +m’u,
€Ng

i€N¢ ; ieNc keNg

and let LBW(M) be a lower bound on z(F(M)) com-
puted as
LBW(M)=Y" min {BL}

ieNe keNg(M)

N+ X mam At mug,
ieN¢ keNg(M)
ProPoSITION 1. Let z(UB) be a valid upper bound on the
2E-CVRP. A configuration M € P can belong to an optimal
2E-CVRP solution if and only if it satisfies the following
conditions:

IR,NR.|<1, r,rreM,r#r, (a)
Zmin{Ql, Z kaz} 2 i (b)
reM keR,

> 2 my = 4w/ Q0. ()
reM keR,

U(M) < z(UB) — LBy, (d)
U(M) < z(UB) —LBW(M). (e)

Condition (a) is a property of the feasible solutions of
the split delivery vehicle routing problem (see Dror and
Trudeau 1990). Conditions (b) and (c) are feasibility con-
ditions. Conditions (d) and (e) follow from the properties
of any optimal 2E-CVRP solution of cost less than z(UB).

PROPOSITION 2. For a given configuration M € P, let 0(k),
k € Ng(M), be a lower bound on the quantity that must
be supplied to satellite k in any feasible F(M) solution
by the first-level routes M, C M passing through satel-
lite k. Problem F(M) has no feasible solution if either

ZkeNs(M) [0(k)/Q,] > m* or [0(k)/Q,] > my, for some
k € N,. If so, M can be removed from P.

Lower bound 6(k) can be computed as the optimal solu-
tion cost of the following problem:

6(k)=min Y g, 27)
reMy
st. Y. g, <0, reM, (28)
heR,
Z Z 9nr = Giot> (29)
reM her,
Z Qhr 2 qmiﬂ’ h € NS(M)’ (30)
reM;,
Z G SMQy,  h € Ng(M), (31)
reM,
g, =21, heR,reM, (32)
where

g™ = maX{min{qi}, G — (m* — 1)Q2}-

ieN¢
We assume 6(k) = oo if problem (27)—(32) has no feasi-
ble solution. The set P is generated by pure enumeration
by using Propositions 1 and 2 to eliminate any configura-
tion M that cannot lead to an optimal 2E-CVRP solution.
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5.2. Solving Problem F (M)

Problem F(M) is solved with the following three-phase
method. In the first phase, bounding procedure DP' is used
to compute lower bound LD1(M) on z(F(M)) by replacing
M with M. In the second phase, a near-optimal dual solu-
tion of the LP-relaxation of F(M) strengthened by valid
inequalities, called problem F(M), is computed. In the
third phase, the F(M) dual solution is used to generate the
subsets R, € R, k € Ny(M), of all second-level routes of
any F(M) optimal solution. An F(M) optimal solution is
obtained by replacing, in F (M), each set R, with X}, k €
Ny(M), and solving the resulting problem, called F'(M),
with an integer programming solver.

5.2.1. Phase 1: Computing Lower Bound LDI(M).
We execute procedure DP', by replacing the set M
with M, to compute lower bound LD1(M) and upper bound
UB1(M) on F(M). If LD1(M) is greater than a known
upper bound on the 2E-CVRP, Phases 2 and 3 are skipped.

5.2.2. Phase 2: Solving F(M). Problem F(M) corre-
sponds to the LP-relaxation of problem F (M) strengthened
with the following valid inequalities:

(a) Capacity constraints. Let 8§ = {H: H C Ng,
|H| > 2}. The capacity constraints are

Z Z Xy 2 IVM—‘
0,

keNg(M) [eRy: RyNH#D

Hes. (33)

(b) Clique inequalities. Let R(M) = Uyengm) Ry» and
let G =(R(M), &) be the conflict graph associated with the
route set R(M), where the edge set £ contains every edge
{LI'}, ,I'e R(M), such that | <!" and R, "R, , # O.
Let € be the set of all cliques of graph §. The clique
inequalities are

Yx, <1, CeC. (34)

leC

Problem F(M) is solved with a column-and-cut genera-
tion procedure that starts by setting § = &, € = &. The
master problem is initialized with a set of elementary
routes obtained from the final set of ng-routes generated in
Phase 1 for computing lower bound LD1(M) by removing,
from each ng-route, the customers visited more than once.
At each iteration, a set of negative reduced cost routes are
generated and a set of violated inequalities (33) and (34)
are added as described in Baldacci and Mingozzi (2009).
The procedure ends when no negative reduced cost routes
exist and no inequalities (33) and (34) are violated and
provides an F (M) dual solution of cost z(F(M)).

5.2.3. Phase 3: Solving F(M) to Optimality. In
Phase 3, two steps are performed.

(1) Define the reduced problem F’(M) resulting from
F(M) by doing the following:

(i) Replace the route set R,, k € Ny(M), with the
largest subset R € R, of routes such that ¢}, < z(UB) —
(UM) + z(F(M))), € R}, k € Ng(M), where ¢, is the
reduced cost of route / € R} with respect to the F(M) dual
solution achieved at Phase 2 and z(UB) is the current best
upper bound on the 2E-CVRP.

(ii) Add all constraints (33) and (34) saturated by the
final F(M) solution.

(2) Solve problem F’(M) with a general purpose integer
programming solver.

5.3. Description of the Exact Method

The exact method we propose for solving the 2E-CVRP
can be described as follows:
(1) Generate the set M and compute a lower bound on
the 2E-CVRP.
(a) Generate the set M of first-level routes by pure
enumeration.
(b) Execute bounding procedure DP' to produce
lower and upper bounds LD1 and UBI.
(2) Generate the set P of configurations as described
in §5.1.
(3) Solve the 2E-CVRP.
_ (a) Initialize z(F) =UBI1, LB = UBI, z(UB) = UBI,
P=@ and r™ =0.
(b) If P = &, then stop. Let
M = argmin{LBW(M")}.

M'e?P
Remove M from P. If LBW (M) > z(F) then stop (z(F) is
the optimal 2E-CVRP solution cost).

(¢) Solve problem F(M).

(i) Execute Phase 1 (see §5.2.1) to compute
lower bound LDI(M) and upper bound UBI1(M) on
F(M). Update z(UB) = min{z(UB), UB1(M)}, z(F) =
min{z(F), UB1(M)}, and LB = min{LB,z(F)}. If
LD1(M) > z(F), go to Step 3.b.

(ii) Execute Phase 2 (see §5.2.2) to compute lower
bound z(F(M)), and update

LB = min{LB, max{LD1(M), U(M) +z(F(M))}}.
If UM) 4+ z(F(M)) > z(F), go to Step 3(b). If the

F (M) solution of cost z(F(M)) is integer, update z(F) =
U(M) +z(F(M)) and go to Step 3(b).

(iii) Execute Phase 3 (see §5.2.3) to solve prob-
lem F(M). Let z(F(M)) be the optimal solution cost
of F'(M). Update z(F) = min{z(F), U(M) + z(F(M))},
P=PU{M} and r™ = max{r™™, 3 v | R;[}. Go to
Step 3(b).

Notice that Step 3(c(iii)) is executed for any configura-
tion M € P such that U(M) + z(F(M)) < z(F) and the
F (M) solution is not integer. Thus, if Step 3(c(iii)) is never
executed, the algorithm terminates with P = &, implying
that LB = z(F) and the optimal 2E-CVRP solution corre-
sponds to either the initial upper bound UB1(M) computed
at Step 3(c(i)) or to the integer F(M) solution achieved at
Step 3(c(ii)) for some configuration M € P.
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At the end of the exact method, LB represents a valid
lower bound on the 2E-CVRP because it corresponds to
LB = min,,_,{max{LD1(M), U(M) + z(F(M))}}. Value
r™ is the maximum number of second-level routes gen-
erated, and set P contains the configurations for which
the corresponding problem F(M) was solved to optimal-
ity at Step 3(c(iii)). Value z(UB) is the cost of the best
upper bound computed at Step 1 or at Step 3(c(i)). Finally,
because we impose a limit A™* on the maximum num-
ber of second-level routes, UkeNS(M) R}, to generate at
Step 3(c(iii)), whenever such limit is reached for some con-
figuration M € P, at the end of the algorithm, the value
z(F) is an upper bound on the 2E-CVRP but is not neces-
sarily the optimal solution cost.

6. Computational Results

We report on the computational results of the exact
method (hereafter BMRW) described in §5.3 and its com-
parison with the methods of Perboli, Tadei, and Vigo
(2011) (PTV) and Jepsen, Spoorendonk, and Ropke (2013)
(JSR). BMRW was coded in Fortran 77. CPLEX 12.1 (see
CPLEX 2009) was used as the linear programming and
integer programming solver. All tests were run on an IBM
Intel Xeon X7350 Server (2.93 GHz—16 GB of RAM).
We considered four sets of instances from the literature:
set 2 and 3 (introduced by Feliu et al. 2007), set 4 (Crainic
et al. 2010), and set 5 (Hemmelmayr et al. 2012). In all
these instances, the handling costs are zero. We generated
another set of 54 instances introduced also to evaluate the
effectiveness of BMRW on instances with nonzero handling
costs. The instances are partitioned into two sets, called 6A
and 6B, corresponding to instances with zero and nonzero

handling costs, respectively. The details on the instances
can be found in §EC.3 of the online supplement.

In all instances the satellite capacities are unlimited (i.e.,
W, = o0, k € N;). Furthermore, in sets 2, 3, and 5 the max-
imum number of vehicles per satellite is unlimited (i.e.,
m, = oo, k € Ng). Set 4 was treated differently by Jepsen,
Spoorendonk, and Ropke (2013) who considered the given
upper bounds on the maximum number of vehicles per
satellite, m,, and Perboli, Tadei, and Vigo (2011) who
ignored such values. To compare BMRW with both JSR
and PTV, we considered two versions of set 4, namely, set
4A and set 4B, where set 4A corresponds to the original
set 4 whereas, in set 4B, m, is unbounded (i.e., m, = oo,
k € Ng). Perboli, Tadei, and Vigo (2011) solved to opti-
mality 66 instances with 12 customers and two satellites
(therein set 1). BMRW solved all these instances in a few
seconds, so corresponding results are not reported.

According to Standard Performance Evaluation Corpo-
ration (SPEC) (http://www.spec.org/benchmarks.html), our
machine is 10% faster than the Intel(R) Xeon X5550 2.67
GHz with 24 GB of memory and eight cores of JSR and
twice as fast as the 3 GHz Pentium PC with 1 Gb of RAM
of PTV. A time limit of 10,000 seconds was imposed on
PTV and JSR.

BMRW used the following parameter settings. In DP',
we set A(N;) = 12, and we set Maxitl = 25, € = 1.0,
Maxit2 = 200, at Step 1, and Maxitl = 10, € = 0.5,
Maxit2 =100 at Step 3(c(i)). Moreover, we set A™* = 10°
and imposed a time limit of 5,000 seconds to solve problem
F'(M).

Tables 1-7 report the results obtained by BMRW on
the seven sets of instances. The tables report the instance
name, the number 7, of satellites, the cost z(F) of the best

Table 1. Computational results on set 2 instances.

Name n, 2(F) %LD1 fip1 || %UB %LB hip || pmax fior
E-n22-k4-s6-17 2 417.07 99.9 0.4 1 100.0 100.0 0.5 0 0 0.5
E-n22-k4-s8-14 2 384.96 99.5 0.4 1 100.0 100.0 0.7 0 0 0.7
E-n22-k4-s9-19 2 470.60 95.4 0.5 1 100.0 100.0 1.2 0 0 1.2
E-n22-k4-s10-14 2 371.50 99.6 0.5 1 100.0 100.0 0.5 0 0 0.5
E-n22-k4-s11-12 2 427.22 96.5 0.4 2 100.5 100.0 1.3 0 0 1.3
E-n22-k4-s12-16 2 392.78 96.7 0.5 2 100.0 100.0 1.1 0 0 1.1
E-n33-k4-s1-9 2 730.16 97.9 25.1 1 100.0 100.0 37.6 0 0 37.6
E-n33-k4-s2-13 2 714.63 97.8 27.8 2 100.0 100.0 34.9 0 0 34.9
E-n33-k4-s3-17 2 707.48 95.0 28.9 3 105.8 100.0 48.1 0 0 48.1
E-n33-k4-s4-5 2 778.74 94.1 23.1 4 100.9 100.0 72.5 0 0 72.5
E-n33-k4-s7-25 2 756.85 96.8 27.4 3 101.0 100.0 47.1 0 0 47.1
E-n33-k4-s14-22 2 779.05 98.7 26.0 3 100.0 100.0 31.7 0 0 31.7
E-n51-k5-s3-18 2 597.49 93.5 3.0 5 100.0 99.8 23.7 1 33,547 25.8
E-n51-k5-s5-47 2 530.76 98.1 3.1 4 101.6 99.8 25.9 1 34,110 27.5
E-n51-k5-s7-13 2 554.81 94.6 33 6 100.2 98.9 37.3 2 42,075 55.1
E-n51-k5-s12-20 2 581.64 95.5 3.1 3 100.5 99.3 27.1 1 39,033 443
E-n51-k5-528-48 2 538.22 95.8 32 6 100.0 99.7 40.1 2 34,797 44.0
E-n51-k5-s33-38 2 552.28 95.4 3.8 3 100.0 100.0 13.6 0 0 13.6
E-n51-k5-s3-5-18-47 4 530.76 96.6 6.6 55 100.0 99.9 259.2 1 62,913 260.8
E-n51-k5-s7-13-33-38 4 531.92 94.7 7.6 68 100.0 99.4 263.6 1 68,796 266.6
E-n51-k5-s12-20-28-48 4 527.63 95.6 9.0 24 100.0 99.6 71.8 1 67,620 74.2
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Table 2. Computational results on set 3 instances.

Name n, Z(F) %LD1 . 1P| %UB %LB s |P| pmax fy
E-n22-k4-s13-14 2 526.15 96.4 0.4 4 100.0 100.0 2.1 0 0 2.1
E-n22-k4-s14-19 2 498.80 93.2 0.5 6 100.0 100.0 2.4 0 0 2.4
E-n22-k4-s13-16 2 521.09 94.9 0.4 4 100.0 100.0 2.8 0 0 2.8
E-n22-k4-s17-19 2 512.80 95.5 0.5 4 100.0 100.0 2.6 0 0 2.6
E-n22-k4-s13-17 2 496.38 96.8 0.5 1 100.0 100.0 1.2 0 0 1.2
E-n22-k4-s19-21 2 520.42 94.9 0.5 5 100.0 100.0 3.8 0 0 3.8
E-n33-k4-s22-26 2 680.37 94.7 28.2 3 100.1 99.8 71.8 1 23,690 73.3
E-n33-k4-516-22 2 672.17 92.0 32.6 5 102.0 99.4 115.4 1 26,474 127.5
E-n33-k4-s16-24 2 666.02 94.6 38.0 5 100.1 99.9 125.2 1 23,040 128.4
E-n33-k4-s24-28 2 670.43 95.6 31.0 3 100.0 100.0 73.1 1 24,266 78.8
E-n33-k4-s19-26 2 680.37 94.0 27.3 3 100.1 99.6 70.8 2 22,549 72.8
E-n33-k4-s25-28 2 650.58 95.7 30.7 3 100.3 100.0 56.0 0 0 56.0
E-n51-k5-s13-19 2 560.73 95.6 33 5 100.0 99.6 43.8 2 34,800 48.0
E-n51-k5-s13-42 2 564.45 97.8 3.6 1 100.3 99.1 18.3 1 44,083 50.1
E-n51-k5-s13-44 2 564.45 96.8 3.2 3 101.4 99.0 29.7 1 50,444 73.0
E-n51-k5-s40-42 2 746.31 91.2 3.6 5 102.6 99.0 34.8 1 53,016 107.2
E-n51-k5-s41-42 2 771.56 97.7 5.7 2 100.1 98.9 36.9 1 315,861 2,078.6
E-n51-k5-s41-44 2 802.91 91.8 4.1 4 101.2 99.6 39.8 1 39,979 59.4
Table 3. Computational results on set 4A instances.

Name ng Z(F) % Lpi |P| %UB %LB [, |P| pmax Lot
Instance50-1 2 1,569.42 97.1 23.3 2 100.1 99.9 72.5 2 30,903 75.5
Instance50-2 2 1,438.33 95.8 14.6 3 100.9 99.6 110.7 2 44,411 161.9
Instance50-3 2 1,570.43 97.1 23.3 2 102.6 99.9 67.8 1 31,377 70.6
Instance50-4 2 1,424.04 96.4 20.2 2 101.7 99.4 59.6 1 44,211 101.8
Instance50-5 2 2,193.52 98.3 25.1 5 100.2 99.6 286.2 5 67,491 663.7
Instance50-6 2 1,279.87 95.2 18.5 2 100.0 100.0 42.7 0 0 42.7
Instance50-7 2 1,458.63 98.0 29.7 2 104.7 99.8 92.7 2 30,995 100.4
Instance50-8 2 1,363.74 95.5 20.8 3 100.1 99.5 199.2 2 404,659 2,261.9
Instance50-9 2 1,450.27 98.0 28.5 2 104.5 99.9 82.6 1 29,683 84.6
Instance50-10 2 1,407.65 92.9 22.9 2 100.3 99.6 71.9 1 52,513 112.9
Instance50-11 2 2,047.46 99.0 35.7 5 100.8 99.5 225.5 5 88,929 339.1
Instance50-12 2 1,209.42 93.1 25.0 2 100.1 100.0 69.4 0 0 69.4
Instance50-13 2 1,481.83 95.5 245 2 102.4 99.9 86.1 2 30,277 92.1
Instance50-14 2 1,393.61 93.6 21.8 3 100.9 99.4 126.2 2 181,889 1,188.3
Instance50-15 2 1,489.94 95.5 25.1 2 102.4 99.8 66.6 1 30,130 71.5
Instance50-16 2 1,389.17 95.0 16.1 2 101.1 99.8 56.0 1 36,097 62.6
Instance50-17 2 2,088.49 97.3 28.8 5 100.7 99.8 253.0 2 40,721 305.3
Instance50-18 2 1,227.61 93.1 16.9 2 100.0 99.3 60.5 1 49,390 117.2
Instance50-19 3 1,564.66 92.5 72.7 8 100.0 99.3 179.3 2 53,950 234.3
Instance50-20 3 1,272.97 93.7 245 8 101.3 99.1 59.4 1 84,784 140.1
Instance50-21 3 1,577.82 96.0 62.1 4 100.1 99.2 139.8 2 58,059 218.9
Instance50-22 3 1,281.83 95.1 33.9 8 101.4 100.0 76.2 1 50,177 79.2
Instance50-23 3 1,807.35 89.3 52.1 11 100.0 98.7 310.9 3 190,099 1,510.9
Instance50-24 3 1,282.68 95.1 28.6 14 100.0 100.0 80.0 0 0 80.0
Instance50-25 3 1,522.42 91.3 63.0 8 102.0 99.2 221.7 2 67,095 335.9
Instance50-26 3 1,167.46 97.2 27.1 1 100.2 99.9 51.9 1 49,094 54.0
Instance50-27 3 1,481.57 93.9 72.2 4 102.0 99.3 196.0 2 67,175 355.9
Instance50-28 3 1,210.44 93.2 38.3 10 100.0 100.0 279.5 1 55,285 295.6
Instance50-29 3 1,722.04 89.9 67.7 12 102.5 98.8 461.4 3 Amax 9,092.9
Instance50-30 3 1,211.59 93.5 32.8 13 100.5 100.0 243.1 0 0 243.1
Instance50-31 3 1,490.34 91.8 65.1 8 102.2 98.1 325.9 4 Amax 11,561.3
Instance50-32 3 1,199.00 94.1 25.9 7 100.1 98.7 262.7 1 619,322 4,009.4
Instance50-33 3 1,508.30 93.4 64.5 6 101.2 98.0 234.6 2 Amax 12,922.3
Instance50-34 3 1,233.92 93.2 30.7 10 100.0 99.0 130.8 1 85,850 207.0
Instance50-35 3 1,718.41 87.6 63.9 12 100.1 98.3 619.9 5 Amax 20,377.6
Instance50-36 3 1,228.89 93.3 28.6 14 100.0 99.3 121.6 1 59,745 154.1
Instance50-37 5 1,528.73 94.5 162.7 116 100.7 99.5 778.3 3 82,225 807.8
Instance50-38 5 1,169.20 93.9 52.5 134 100.9 99.0 429.3 1 253,662 1,648.2
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Table 3.  (Cont’d)

max

Name ng Z(F) %LD1 lipi 12| %UB  %LB s 1P| r fot
Instance50-39 5 1,520.92 94.6 168.0 63 100.6 99.8 688.0 2 78,320 695.0
Instance50-40 5 1,199.42 90.3 55.4 66 101.6 99.6 986.8 2 99,764 996.4
Instance50-41 5 1,667.96 95.3 195.4 64 100.3 99.6 1,302.9 4 79,889 1,344.7
Instance50-42 5 1,194.54 95.2 50.5 61 101.6 99.4 177.3 1 94,931 223.2
Instance50-43 5 1,439.67 95.4 175.5 56 101.3 99.5 1,032.2 3 87,237 1,095.7
Instance50-44 5 1,045.13 95.6 84.4 100 100.2 99.8 424.1 1 90,132 435.8
Instance50-45 5 1,450.96 94.9 160.9 34 101.7 99.2 577.7 2 135,411 774.0
Instance50-46 5 1,088.77 91.8 68.0 62 100.2 99.3 1,150.5 5 131,810 1,345.4
Instance50-47 5 1,587.29 96.2 205.5 62 102.1 99.4 1,470.7 2 98,905 1,566.3
Instance50-48 5 1,082.20 96.7 56.7 6 101.1 100.0 91.0 0 0 91.0
Instance50-49 5 1,434.88 95.0 164.3 74 102.3 100.0 714.8 0 0 714.8
Instance50-50 5 1,083.12 93.2 55.1 134 100.5 99.1 869.1 1 239,534 1,337.0
Instance50-51 5 1,398.05 94.6 179.6 64 101.0 100.0 744.0 1 73,279 748.4
Instance50-52 5 1,125.67 90.3 52.0 65 101.5 99.0 1,231.9 7 167,299 1,533.7
Instance50-53 5 1,567.77 95.0 211.4 63 100.1 98.7 1,712.0 2 268,139 4,223.3
Instance50-54 5 1,127.61 94.1 48.3 58 100.2 98.9 343.4 1 414,080 1,041.6
Table 4. Computational results on set 4B instances.

Name ng 2(F) %LD1 fipi 12| %UB  %LB s |2 e fit
Instance50-1 2 1,569.42 95.0 39.2 3 101.5 100.0 113.3 2 31,196 117.0
Instance50-2 2 1,438.33 95.8 14.7 5 101.0 99.7 129.8 2 42,949 188.5
Instance50-3 2 1,570.43 95.1 38.9 3 101.5 100.0 95.1 1 31,017 97.8
Instance50-4 2 1,424.04 96.3 21.9 3 101.2 99.3 69.3 1 48,595 115.6
Instance50-5 2 2,193.52 98.3 40.8 7 100.2 99.6 326.6 5 62,190 631.5
Instance50-6 2 1,279.87 95.1 17.4 3 102.9 99.9 49.1 1 34,244 52.6
Instance50-7 2 1,408.57 98.5 41.5 3 101.6 99.9 73.0 1 31,607 76.5
Instance50-8 2 1,360.32 95.7 17.3 5 100.2 99.6 222.8 3 604,910 3,293.6
Instance50-9 2 1,403.53 98.7 40.0 3 103.3 99.9 80.3 1 35,515 81.7
Instance50-10 2 1,360.56 96.1 20.8 3 100.0 100.0 46.3 0 0 46.3
Instance50-11 2 2,047.46 99.0 50.6 7 100.8 99.5 296.8 6 88,960 450.8
Instance50-12 2 1,209.42 93.0 22.1 3 100.0 99.9 106.9 1 48,537 111.9
Instance50-13 2 1,450.93 96.1 441 3 102.3 100.0 94.1 0 0 94.1
Instance50-14 2 1,393.61 93.6 20.6 5 101.1 99.4 147.4 2 175,756 1,069.7
Instance50-15 2 1,466.83 95.5 39.7 3 101.1 99.9 103.4 1 29,552 106.0
Instance50-16 2 1,387.83 95.1 16.4 3 100.1 99.8 76.7 2 43,428 99.0
Instance50-17 2 2,088.49 97.3 44.3 7 100.6 99.8 306.0 2 38,365 358.3
Instance50-18 2 1,227.61 93.1 17.0 3 100.0 99.2 69.7 1 51,842 127.8
Instance50-19 3 1,546.28 93.7 86.3 16 101.2 99.2 262.5 1 60,815 293.4
Instance50-20 3 1,272.97 93.8 24.3 9 101.3 99.0 59.7 1 107,430 170.9
Instance50-21 3 1,577.82 96.0 85.6 12 100.8 99.2 199.8 2 58,718 250.9
Instance50-22 3 1,281.83 95.2 31.2 9 103.0 100.0 68.9 0 0 68.9
Instance50-23 3 1,652.98 96.6 83.6 7 102.0 100.0 193.7 0 0 193.7
Instance50-24 3 1,282.68 95.2 29.1 16 100.0 100.0 79.7 0 0 79.7
Instance50-25 3 1,408.57 98.2 87.2 7 101.9 99.9 150.9 1 45,580 155.0
Instance50-26 3 1,167.46 97.2 27.1 2 100.2 99.9 52.6 1 48,772 559
Instance50-27 3 1,444.51 96.5 93.1 8 102.3 99.9 194.2 1 44,411 198.1
Instance50-28 3 1,210.44 92.9 349 11 100.9 100.0 249.6 0 0 249.6
Instance50-29 3 1,552.66 96.7 104.4 7 103.0 100.0 257.3 1 48,508 258.4
Instance50-30 3 1,211.59 93.2 38.6 16 100.5 99.9 239.9 1 61,768 245.9
Instance50-31 3 1,440.86 94.8 87.5 13 101.2 100.0 262.2 0 0 262.2
Instance50-32 3 1,199.00 94.1 31.1 8 100.1 98.7 116.9 1 579,861 3,812.3
Instance50-33 3 1,478.86 95.4 86.0 11 101.5 99.0 239.6 1 121,197 467.9
Instance50-34 3 1,233.92 93.1 27.6 11 101.1 99.1 166.6 1 131,443 287.7
Instance50-35 3 1,570.72 94.7 95.5 7 102.4 98.9 332.0 3 221,318 1,299.7
Instance50-36 3 1,228.89 93.1 26.8 16 100.0 99.2 126.2 1 72,167 180.1
Instance50-37 5 1,528.73 93.7 206.7 223 102.0 97.9 1,520.3 10 Amax 14,522.3
nstance50-38 5 1,163.07 94.6 78.8 153 100.0 99.1 485.7 3 229,650 1,163.0
Instance50-39 5 1,520.92 93.1 212.4 112 100.3 98.8 1,097.6 7 126,528 1,791.0
Instance50-40 5 1,163.04 93.0 59.2 82 101.3 99.6 312.8 1 96,251 348.0
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Table 4.  (Cont’d.)

Name ng Z(F) %LD1 fipi 12| %UB  %LB s |2 pmax ft
Instance50-41 5 1,652.98 95.3 266.4 117 101.0 99.6 2,229.6 14 153,550 2,370.6
Instance50-42 5 1,190.17 95.5 55.5 75 101.9 99.2 238.4 2 132,823 432.4
Instance50-43 5 1,406.11 95.2 210.3 79 101.3 99.6 1,065.4 1 94,023 1,098.4
Instance50-44 5 1,035.03 96.4 67.0 93 100.9 100.0 382.9 1 84,919 387.2
Instance50-45 5 1,401.87 95.3 187.3 55 102.7 99.6 464.7 1 82,077 484.7
Instance50-46 5 1,058.11 94.7 83.5 65 100.4 100.0 426.9 0 0 426.9
Instance50-47 5 1,552.66 95.8 260.8 103 103.0 100.0 1,220.1 2 146,044 1,227.0
Instance50-48 5 1,074.50 97.3 60.0 6 100.5 99.9 121.4 1 74,056 125.5
Instance50-49 5 1,434.88 94.4 2174 142 101.1 98.1 1,498.7 8 A 13,940.3
Instance50-50 5 1,065.25 94.8 89.2 126 100.0 99.9 500.7 1 83,400 508.0
Instance50-51 5 1,387.51 93.9 225.0 92 102.2 98.9 845.9 2 113,910 1,299.1
Instance50-52 5 1,103.42 92.0 56.0 81 100.1 99.4 788.8 1 109,254 846.0
Instance50-53 5 1,545.73 95.2 283.1 97 101.6 99.0 2,113.7 3 232,398 2,395.8
Instance50-54 5 1,113.62 95.2 51.4 36 100.8 99.0 232.0 2 222,523 1,027.9
Table 5. Computational results on set 5 instances.

Name ng 72(F) %LD1 D |2| %UB %L.B tip |2 rmax tiot
2eVRP_100-5-1 5 1,564.46 97.9 16.5 44 102.1 99.3 381.8 5 147,996 9,359.6
2eVRP_100-5-1b 5 1,142.53? 93.8 36.5 60 100.0 94.6 1,339.2 10 Amax 24,028.9
2eVRP_100-5-2 5 1,016.32 95.6 15.2 197 100.6 99.1 928.8 19 156,424 10,517.6
2eVRP_100-5-2b 5 796.53% 95.2 29.9 100 100.0 96.6 1,750.8 10 Amax 26,099.7
2eVRP_100-5-3 5 1,045.29 97.5 16.3 50 100.3 99.2 262.5 13 137,379 2,930.2
2eVRP_100-5-3b 5 833.94% 95.7 39.7 95 100.0 97.6 1,475.1 8 Amax 32,693.8

2Hemmelmayr et al. (2012) computed improved upper bounds for instances 2eVRP_100-5-1b, 2eVRP_100-5-2b and 2eVRP_100-5-3b of
values 1,111.34, 782.25 and 828.99, respectively.

Table 6. Computational results on set 6A (instances with zero handling costs).

Name ng Z(F) %LDl |2 %UB  %LB s |2 pmax for
A-n51-4 4 652.00 94.6 6.7 16 100.3 99.7 108.0 4 55,040 119.1
A-n51-5 5 663.41 95.7 10.4 81 100.3 99.7 149.8 2 64,146 154.8
A-n51-6 6 662.51 94.9 15.9 246 100.6 100.0 262.8 0 0 263.1
A-n76-4 4 985.95 95.9 16.1 71 101.9 99.4 267.6 2 78,465 343.7
A-n76-5 5 979.15 95.8 27.6 281 101.8 99.6 818.9 4 91,512 857.2
A-n76-6 6 970.20 95.8 46.0 1,391 101.8 99.5 3,215.2 8 108,558 3,327.4
A-n101-4 4 1,194.17 95.9 52.7 120 101.0 99.2 1,709.6 11 461,313 5,971.3
A-n101-5 5 1,211.38 96.6 43.7 647 102.5 99.4 3,540.3 4 234,285 4,823.3
A-n101-6 6 1,158.98 95.8 91.9 4,814 101.7 98.7 24,851.2 51 AT 118,077.4
B-n51-4 4 563.98 96.0 6.6 10 101.1 98.8 30.3 1 87,968 56.8
B-n51-5 5 549.23 94.8 9.7 64 101.0 99.0 105.8 1 100,364 130.9
B-n51-6 6 556.32 94.3 15.5 106 100.0 100.0 125.5 0 0 125.6
B-n76-4 4 792.73 94.5 12.4 23 102.1 99.3 257.9 2 119,142 333.7
B-n76-5 5 783.93 94.0 21.3 167 101.5 99.3 572.2 1 144,513 610.8
B-n76-6 6 774.17 94.4 32.6 877 102.2 99.6 2,023.2 2 164,489 2,075.0
B-n101-4 4 939.21 97.3 42.1 10 102.0 98.9 195.7 1 485,177 2,512.5
B-n101-5 5 967.82 94.8 37.3 587 102.1 99.1 4,772.3 7 331,423 7,058.8
B-n101-6 6 960.29 96.2 76.9 456 103.0 99.1 1,970.4 4 273,755 3,772.4
C-n51-4 4 689.18 95.5 6.7 26 100.3 99.4 54.2 1 51,909 78.3
C-n51-5 5 723.12 93.6 10.3 64 100.3 98.9 81.4 1 125,120 431.6
C-n51-6 6 697.00 94.4 16.3 126 101.1 99.4 145.8 1 76,426 166.0
C-n76-4 4 1,054.89 94.9 15.5 66 102.9 99.1 290.7 4 108,471 454.3
C-n76-5 5 1,115.32 92.5 21.6 303 103.0 99.2 1,089.2 6 136,054 1,817.0
C-n76-6 6 1,064.72 92.2 31.7 1,449 101.7 97.8 4,786.7 20 Amax 47,840.9
C-n101-4 4 1,305.68 95.0 49.3 116 101.7 98.4 1,392.8 10 AT 29,626.4
C-n101-5 5 1,309.42 96.4 84.4 206 101.6 98.6 1,203.2 2 Amax 10,865.1
C-n101-6 6 1,284.48 96.2 94.6 1,373 103.3 98.7 6,804.4 8 AT 27,969.4
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Table 7. Computational results on set 6B (instances with nonzero handling costs).

Name ng Z(F) Z(HC)  %LDl 1, 12| %UB  %LB s |2 pmax ft
A-n51-4 4 744.24 81.24 98.2 6.8 2 100.0 99.4 44.4 2 54,769 88.7
A-n51-5 5 811.52 104.91 97.2 9.4 45 100.0 99.9 83.3 1 60,674 86.8
A-n51-6 6 930.11 235.76 96.7 15.8 174 100.0 99.5 345.2 6 79,716 383.5
A-n76-4 4 1,385.51 351.52 97.6 13.6 69 100.4 99.4 407.8 6 100,182 666.2
A-n76-5 5 1,519.86  485.90 98.8 21.5 162 101.8 99.8 469.5 2 89,793 497.0
A-n76-6 6 1,666.06  622.02 98.1 27.4 395 100.8 99.7 634.4 4 110,043 687.7
A-n101-4 4 1,881.44  597.69 97.9 48.9 117 101.3 99.5 1,147.5 8 318,548 3,359.3
A-n101-5 5 1,709.06 364.08 98.7 60.5 304 102.3 99.4 2,012.1 8 A 11,084.6
A-n101-6 6 1,777.69  491.05 97.3 79.8 5,767 102.9 99.6 32,9757 66 AmH 38,316.8
B-n51-4 4 653.09 54.39 98.3 7.9 3 100.7 99.5 242 1 51,627 31.6
B-n51-5 5 672.10 89.37 97.1 18.7 11 100.7 99.9 41.2 1 61,785 43.3
B-n51-6 6 767.13 165.15 97.0 17.2 23 100.2 99.0 57.6 1 96,049 123.5
B-n76-4 4 1,094.52  275.22 97.9 17.3 9 101.0 99.3 60.0 1 92,311 127.0
B-n76-5 5 1,218.13  396.14 98.6 19.8 16 101.0 99.7 110.9 1 92,539 131.7
B-n76-6 6 1,326.76  489.99 98.0 30.7 92 101.3 99.7 212.8 1 107,631 228.3
B-n101-4 4 1,505.68  552.06 97.7 38.4 38 100.8 98.9 412.5 1 AmE 5,876.8
B-n101-5 5 1,400.62 385.16 97.1 52.3 797 101.1 98.7 6,473.5 19 A 32,302.1
B-n101-6 6 1,450.39  394.75 97.8 54.4 87 101.3 99.1 802.7 3 AmH 6,352.4
C-n51-4 4 866.58 84.00 96.4 6.7 23 100.3 99.3 70.8 3 69,690 120.7
C-n51-5 5 943.12 168.59 95.4 10.3 62 101.0 99.2 132.5 3 86,225 238.8
C-n51-6 6 1,050.42  246.72 97.2 16.5 105 100.0 99.7 232.2 4 76,281 291.2
C-n76-4 4 1,438.96 369.94 98.2 17.1 22 102.0 99.5 124.7 1 89,304 182.0
C-n76-5 5 1,745.39  581.31 96.4 19.3 108 100.9 99.5 354.4 2 173,901 840.6
C-n76-6 6 1,756.54  671.27 98.4 29.7 256 101.2 99.5 698.2 2 158,988 1,442.6
C-n101-4 4 2,070.27  735.09 97.5 30.0 131 101.1 99.1 766.3 2 AmH 12,080.4
C-n101-5 5 1,967.80  521.89 97.0 60.2 240 101.6 99.1 1,689.9 4 A 12,419.1
C-n101-6 6 1,869.29  546.57 97.6 65.7 352 101.6 98.8 1,933.8 5 AmH 23,285.2

solution found, the percentage ratio %LD1 of lower bound
LDI1 over z(F) (i.e., %LD1 = 100 LD1/z(F)), the time ¢,
in seconds for computing LD1, the cardinality |P| of the
set P at the beginning of Step 3, the percentage ratio %UB
of upper bound z(UB) over z(F), the percentage ratio %LB
of lower bound LB over z(F), the total time ¢ 5 in sec-
onds for computing LD1 and LB, the cardinality |P| of
the set P, the value of r™*, and finally, the total comput-
ing time ¢, in seconds. Table 7 also shows column z(HC)
reporting the total handling cost. Whenever |P| > 0, the
difference ¢, — ;5 is the time spent by CPLEX for solving
the problems F’(M), for all configurations M € P.

Tables 8—10 compare BMRW with PTV and JSR. Under
the headings “PTV” and “JSR,” we report the percentage
ratio, over z(F'), of the upper bound (%UB) and of the lower
bound (%LB) achieved at the root node, the percentage gap
(%gap) between the best lower and upper bound computed,
and the total computing time (f,,) in seconds. The values
in columns z(F) are in bold whenever the instances were
open before BMRW. The last lines of the tables report, for
each method, the number of instances solved to optimality
(in columns %gap), and, for JSR and BMRW, the aver-
age percentage deviation of the upper and lower bounds
(in columns %UB and %LB) and the average computing

Table 8. Comparison with the exact methods PTV and JSR on set 2 instances.
PTV JSR BMRW

Name Z2(F) %UB  %gap  %UB  %LB  %gap tiot %UB %LB tp Yogap ot
E-n22-k4-s6-17 417.07 100.0 0.0 100.0 96.7 0.0 0.2 100.0  100.0 0.5 0.0 0.5
E-n22-k4-s8-14 384.96 106.0 0.0 100.0 98.0 0.0 1.0 100.0 100.0 0.7 0.0 0.7
E-n22-k4-s9-19 470.60 100.0 0.0 113.1 90.4 0.0 12.4 100.0  100.0 1.2 0.0 1.2
E-n22-k4-s10-14 371.50 117.3 0.0 100.0 96.8 0.0 1.2 100.0 100.0 0.5 0.0 0.5
E-n22-k4-s11-12  427.22 100.0 0.0 104.1 94.7 0.0 32 100.5 100.0 1.3 0.0 1.3
E-n22-k4-s12-16 392.78 108.4 0.0 100.0 95.9 0.0 2.0 100.0 100.0 1.0 0.0 1.1
E-n33-k4-s1-9 730.16 100.9 0.0 100.0 87.3 0.0 49.4 100.0 100.0 37.6 0.0 37.6
E-n33-k4-s2-13 714.63 103.0 1.5 100.0 89.4 0.0 342 100.0  100.0 34.9 0.0 34.9
E-n33-k4-s3-17 707.48 104.5 1.7 113.2 91.0 0.0 1,126.8 105.8 100.0 48.1 0.0 48.1
E-n33-k4-s4-5 778.74 104.9 1.5 100.0 87.6 0.0 54.9 100.9 100.0 72.5 0.0 72.5
E-n33-k4-s7-25 756.85 100.0 1.6 100.0 86.0 0.0 87.5 101.0 100.0 47.1 0.0 47.1
E-n33-k4-s14-22  779.05 100.0 1.6 105.9 88.0 0.0 24 100.0  100.0 31.7 0.0 31.7
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Table 8.  (Cont’d)
PTV JSR BMRW

Name z(F) %UB  %gap %UB  %LB  %gap tior %UB  %LB g %gap tot
E-n51-k5-s3-18 597.49 100.0 2.6 100.0  92.6 4.5 — 100.0 99.8 23.7 0.0 25.8
E-n51-k5-s5-47 530.76  102.3 1.8 1024  97.0 0.0 13.3  101.6 99.8 25.9 0.0 27.5
E-n51-k5-s7-13 554.81 100.0 4.1 100.0 944 1.6 — 100.2 98.9 37.3 0.0 55.1
E-n51-k5-s12-20 581.64 100.4 3.7 1042 942 0.0 213.6  100.5 99.3 27.1 0.0 443
E-n51-k5-s28-48 538.22 100.0 2.0 100.0  95.5 0.8 — 100.0 99.7 40.1 0.0 44.0
E-n51-k5-s33-38 552.28  104.7 0.7 100.0 95.8 0.0 2,114.0 100.0 100.0 13.6 0.0 13.6
E-n51-k5-s3-5-18-47 530.76  102.2 2.8 103.3 94.4 0.0 84.0 100.0 99.9 259.2 0.0 260.8
E-n51-k5-s7-13-33-38 531.92  107.5 3.6 102.7  94.6 0.0 3,642.8 100.0 994  263.6 0.0  266.6
E-n51-k5-s12-20-28-48  527.63 113.8 1.5 109.4 955 0.0 798.7 100.0 99.6 71.8 0.0 74.2
Avg./solved 103.6 7 102.8  93.1 18 4579 100.5 99.8 21 53.6
Table 9. Comparison with the exact methods PTV and JSR on set 3 instances.

PTV BMRW
Name z2(F) %UB Yogap %UB %LB Yogap tot %UB %LB s Yogap ot
E-n22-k4-s13-14  526.15 100.1 0.0 102.2 98.2 0.0 3.2 100.0 100.0 2.1 0.0 2.1
E-n22-k4-s14-19 498.80 105.0 0.0 105.0 91.1 0.0 61.2 100.0 100.0 2.4 0.0 2.4
E-n22-k4-s13-16 521.09 100.0 0.0 101.0 98.2 0.0 2.3 100.0 100.0 2.8 0.0 2.8
E-n22-k4-s17-19 512.80 100.0 0.0 104.8 93.8 0.0 8.0 100.0 100.0 2.6 0.0 2.6
E-n22-k4-s13-17 496.38 100.0 0.0 100.0 93.4 0.0 1.1 100.0 100.0 1.2 0.0 1.2
E-n22-k4-s19-21 520.42 101.4 0.0 101.4 95.4 0.0 5.5 100.0 100.0 3.8 0.0 3.8
E-n33-k4-522-26 680.37 100.0 4.2 101.5 91.0 0.0 6.3 100.1 99.8 71.8 0.0 73.3
E-n33-k4-s16-22 672.17 100.0 5.7 113.2 93.0 2.1 — 102.0 99.4 115.4 0.0 127.5
E-n33-k4-s16-24 666.02 100.4 6.0 100.0 96.4 0.0 747.4 100.1 99.9 125.2 0.0 128.4
E-n33-k4-s24-28 670.43 103.3 5.6 100.0 94.8 0.0 17.6 100.0 100.0 73.1 0.0 78.8
E-n33-k4-s19-26 680.37 100.0 4.7 109.2 89.4 0.0 26.4 100.1 99.6 70.8 0.0 72.8
E-n33-k4-525-28 650.58 100.0 5.3 100.0 92.6 0.0 158.2 100.3 100.0 56.0 0.0 56.0
E-n51-k5-s13-19 560.73 100.0 95.5 0.0 1,007.9 100.0 99.6 43.8 0.0 48.0
E-n51-k5-s13-42 564.45 106.1 96.6 0.0 208.3 100.3 99.1 18.3 0.0 50.1
E-n51-k5-s13-44 564.45 107.6 96.8 0.0 288.5 101.4 99.0 29.7 0.0 73.0
E-n51-k5-s40-42 746.31 100.9 88.9 7.5 — 102.6 99.0 34.8 0.0 107.2
E-n51-k5-s41-42 771.56 100.5 95.1 0.6 — 100.1 98.9 36.9 0.0 2,078.6
E-n51-k5-s41-44 802.91 100.0 89.7 7.0 — 101.2 99.6 39.8 0.0 59.4
Avg./solved 100.8 6 103.0 93.9 14 181.6 100.5 99.7 18 42.5

time (in columns 7,,), computed over all instances solved
by JSR, that are a subset of the instances solved by BMRW.
The results on sets 6A and 6B show that BMRW behave
similarly with zero and nonzero handling costs.

On the sets 2 and 3 (see Tables 8 and 9), BMRWsolved
to optimality all 39 instances, whereas PTV and JSR solved
to optimality 13 and 32 instances, respectively. Of the
54 instances of the set 4A, BMRWand JSR solved 50

and 15 of them, respectively. None of the 18 instances
considered by PTV of set 4B were solved to optimality,
whereas 52 instances out of 54 were solved to optimal-
ity by BMRW. Tables 8-10 show that BMRW outperforms
both PTV and JSR.

Tables 1-7 show that BMRW solved 185 out of
207 instances to optimality. Columns |P| and |P| show
the effectiveness of both the procedure applied at Step 2

Table 10. Comparison with the exact method JSR on set 4A instances.
JSR BMRW

Name ng Z(F) %UB %LB %gap tiot %UB %LB g Yogap tiot
Instance50-1 2 1,569.42 112.9 91.2 1.7 — 100.1 99.9 72.5 0.0 75.5
Instance50-2 2 1,438.33 100.0 91.5 0.0 1,146.7 100.9 99.6 110.7 0.0 161.9
Instance50-3 2 1,570.43 112.7 88.7 1.6 — 102.6 99.9 67.8 0.0 70.6
Instance50-4 2 1,424.04 100.0 90.1 0.9 — 101.7 99.4 59.6 0.0 101.8
Instance50-5 2 2,193.52 100.3 85.6 0.4 — 100.2 99.6 286.2 0.0 663.7
Instance50-6 2 1,279.87 100.0 97.2 0.0 4,463.4 100.0 100.0 42.6 0.0 42.7
Instance50-7 2 1,458.63 114.2 89.9 1.5 — 104.7 99.8 92.7 0.0 100.4
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Table 10.  (Cont’d)
JSR BMRW

Name ng z(F) %UB %1LB % gap Lot %UB %1LB tg %ogap Lot
Instance50-8 2 1,363.74 100.0 91.8 0.0 1,164.5 100.1 99.5 199.2 0.0 2,261.9
Instance50-9 2 1,450.27 113.9 89.8 1.3 — 104.5 99.9 82.6 0.0 84.6
Instance50-10 2 1,407.65 101.0 98.4 0.0 3,933.1 100.3 99.6 71.9 0.0 112.9
Instance50-11 2 2,047.46 100.9 89.7 0.6 — 100.8 99.5 225.5 0.0 339.1
Instance50-12 2 1,209.42 100.0 95.7 0.0 22.3 100.1 100.0 69.4 0.0 69.4
Instance50-13 2 1,481.83 111.9 91.7 1.2 — 102.4 99.9 86.1 0.0 92.1
Instance50-14 2 1,393.61 101.6 91.2 0.1 — 100.9 99.4 126.2 0.0 1,188.3
Instance50-15 2 1,489.94 111.8 91.7 1.1 — 102.4 99.8 66.6 0.0 71.5
Instance50-16 2 1,389.17 100.0 91.0 0.0 1,045.1 101.1 99.8 56.0 0.0 62.6
Instance50-17 2 2,088.49 100.4 85.7 0.1 — 100.7 99.8 253.0 0.0 305.3
Instance50-18 2 1,227.61 100.0 96.5 0.0 8,130.1 100.0 99.3 60.5 0.0 117.2
Instance50-19 3 1,564.66 109.8 82.2 0.5 — 100.0 99.3 179.3 0.0 2343
Instance50-20 3 1,272.97 116.6 93.2 0.6 — 101.3 99.1 59.4 0.0 140.1
Instance50-21 3 1,577.82 106.8 88.5 0.4 — 100.1 99.2 139.8 0.0 218.9
Instance50-22 3 1,281.83 105.1 86.2 0.0 8,636.7 101.4 100.0 76.2 0.0 79.2
Instance50-23 3 1,807.35 100.0 83.2 10.0 — 100.0 98.7 310.9 0.0 1,510.9
Instance50-24 3 1,282.68 101.8 93.9 0.0 6,559.9 100.0 100.0 79.9 0.0 80.0
Instance50-25 3 1,522.42 100.8 83.7 1.2 — 102.0 99.2 221.7 0.0 335.9
Instance50-26 3 1,167.46 113.4 95.1 0.0 66.4 100.2 99.9 51.9 0.0 54.0
Instance50-27 3 1,481.57 107.0 86.4 1.0 — 102.0 99.3 196.0 0.0 355.9
Instance50-28 3 1,210.44 104.1 86.7 0.0 2,046.0 100.0 100.0 279.5 0.0 295.6
Instance50-29 3 1,722.04 100.9 80.5 0.8 — 102.5 98.8 461.4 1.2 9,092.9
Instance50-30 3 1,211.59 101.8 92.1 0.0 17.4 100.5 100.0 243.1 0.0 243.1
Instance50-31 3 1,490.34 109.7 90.3 1.5 — 102.2 98.1 325.9 1.9 11,561.3
Instance50-32 3 1,199.00 104.8 86.9 0.5 — 100.1 98.7 262.7 0.0 4,009.4
Instance50-33 3 1,508.30 105.3 82.7 1.3 — 101.2 98.0 234.6 2.0 12,922.3
Instance50-34 3 1,233.92 102.5 85.6 0.1 — 100.0 99.0 130.8 0.0 207.0
Instance50-35 3 1,718.41 100.3 79.3 1.2 — 100.1 98.3 619.9 1.7 20,377.6
Instance50-36 3 1,228.89 100.1 85.8 0.0 2,038.2 100.0 99.3 121.6 0.0 154.1
Instance50-37 5 1,528.73 108.7 82.6 2.9 — 100.7 99.5 778.3 0.0 807.8
Instance50-38 5 1,169.20 108.2 82.6 0.2 — 100.9 99.0 4293 0.0 1,648.2
Instance50-39 5 1,520.92 106.4 84.6 0.4 — 100.6 99.8 688.0 0.0 695.0
Instance50-40 5 1,199.42 101.0 81.5 2.6 — 101.6 99.6 986.8 0.0 996.4
Instance50-41 5 1,667.96 108.1 86.6 1.4 — 100.3 99.6 1,302.9 0.0 1,344.7
Instance50-42 5 1,194.54 112.8 83.3 1.2 — 101.6 99.4 177.3 0.0 2232
Instance50-43 5 1,439.67 113.3 87.4 1.7 — 101.3 99.5 1,032.2 0.0 1,095.7
Instance50-44 5 1,045.13 109.5 80.4 0.0 144.0 100.2 99.8 424.1 0.0 435.8
Instance50-45 5 1,450.96 108.5 82.1 1.0 — 101.7 99.2 577.7 0.0 774.0
Instance50-46 5 1,088.77 101.7 77.4 1.0 — 100.2 99.3 1,150.5 0.0 1,345.4
Instance50-47 5 1,587.29 109.7 83.5 1.0 — 102.1 99.4 1,470.7 0.0 1,566.3
Instance50-48 5 1,082.20 115.8 86.1 0.0 133.4 101.1 100.0 91.0 0.0 91.0
Instance50-49 5 1,434.88 108.4 84.3 2.1 — 102.3 100.0 714.7 0.0 714.8
Instance50-50 5 1,083.12 105.4 77.9 1.7 — 100.5 99.1 869.1 0.0 1,337.0
Instance50-51 5 1,398.05 106.6 82.3 4.6 — 101.0 100.0 744.0 0.0 748.4
Instance50-52 5 1,125.67 100.2 81.0 1.1 — 101.5 99.0 1,231.9 0.0 1,533.7
Instance50-53 5 1,567.77 109.4 83.8 1.3 — 100.1 98.7 1,712.0 0.0 4,223.3
Instance50-54 5 1,127.61 110.6 88.2 0.9 — 100.2 98.9 3434 0.0 1,041.6
Avg./solved 105.9 87.1 15 2,599.1 101.0 99.4 50 276.0

for generating the set P and the procedures applied at
Steps 3(c(i)) and 3(c(ii)) for computing valid lower bounds
on z(F(M)). Notice that few problems F(M) required to
be solved by CPLEX (see columns |P|). BMRW was able
to solve 44 out of 60 instances of the sets 5, 6A, and 6B
(see Tables 5-7). On the other 16 instances, BMRW could
not generate all second-level routes required to solve some
problems F(M) to optimality because of the gap between
the computed lower and upper bounds.

Tables 8 and 9 indicate that the heuristic algorithm
described in §4.5 provided better solutions, on average,

than the heuristic algorithms of PTV and JSR. Finally,
the results obtained by Hemmelmayr et al. (2012) are bet-
ter than the results obtained by our heuristic, being their
average percentage ratios equal to 100.0, 100.0, 100.3, and
100.0 on instance sets 2, 3, 4B, and 5, respectively.

7. Conclusions

In this paper, we have proposed a new exact method for
solving the two-echelon capacitated vehicle routing prob-
lem. We have described a bounding procedure that is used
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by the exact algorithm to decompose the 2E-CVRP into a
limited set of multidepot capacitated vehicle routing prob-
lems with side constraints. The optimal 2E-CVRP solution
is obtained by solving the set of MDCVRPs generated. The
proposed method was tested on 207 instances, taken both
from the literature and newly generated, with up to 100 cus-
tomers and six satellites. The new exact algorithm solved
to optimality 144 out of the 153 instances from literature
and closed 97 of them for the first time. The comparison
with the state-of-the-art exact methods shows that the new
exact method outperforms the other exact methods in terms
of size, number of problems solved to optimality, and com-
puting time.
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Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.1120.1153.

Acknowledgments

The authors thank two anonymous referees for helpful comments.

References

Akca Z, Berger RT, Ralphs TK (2009) A branch-and-price algorithm
for combined location and routing problems under capacity restric-
tions. Chinneck JW, Kristjansson B, Saltzman MJ, eds. Operations
Research and Cyber-Infrastructure, Vol. 47 (Springer, New York),
309-330.

Baldacci R, Mingozzi A (2009) A unified exact method for solving differ-
ent classes of vehicle routing problems. Math. Programming Ser. A
120(2):347-380.

Baldacci R, Mingozzi A, Roberti R (2011a) New route relaxation and
pricing strategies for the vehicle routing problem. Oper. Res. 59(5):
1269-1283.

Baldacci R, Mingozzi A, Wolfler Calvo R (2011b) An exact
method for the capacitated location-routing problem. Oper. Res.
59(5):1284-1296.

Belenguer J-M, Benavent E, Prins C, Prodhon C, Wolfler Calvo R (2011)
A branch-and-cut method for the capacitated location-routing prob-
lem. Comput. Oper. Res. 38(6):931-941.

CPLEX (2009) IBM ILOG CPLEX 12.1 callable library. ILOG.

Crainic TG, Mancini S, Perboli G, Tadei R (2008) Clustering-based
heuristics for the two-echelon vehicle routing problem. Technical
Report CIRRELT-2008-46, CIRRELT, Montreal, Quebec, Canada.

Crainic TG, Mancini S, Perboli G, Tadei R (2010) Two-echelon vehicle
routing problem: A satellite location analysis. Procedia Soc. Behav.
Sci. 2(3):5944-5955.

Crainic TG, Mancini S, Perboli G, Tadei R (2011) Multi-start heuris-
tics for the two-echelon vehicle routing problem. Merz P, Hao JK,
eds. Proc. 11th Eur. Conf. Evolutionary Comput. Combin. Optim.
EvoCOP’11 (Springer-Verlag, Berlin), 179-190.

Dror M, Trudeau P (1990) Split delivery routing. Naval Res. Logist.
37:383-402.

Feliu JG, Perboli G, Tadei R, Vigo D (2007) The two-echelon capac-
itated vehicle routing problem. Technical report DEIS OR.INGCE
2007/2(R), Department of Electronics, Computer Science, and Sys-
tems, University of Bologna, Bologna, Italy.

Hemmelmayr VC, Cordeau J-F, Crainic TG (2012) An adaptive large
neighborhood search heuristic for two-echelon vehicle routing prob-
lems arising in city logistics. Comput. Oper. Res. 39(12):3215-3228.

Jepsen M, Spoorendonk S, Ropke S (2013) A branch-and-cut algorithm
for the symmetric two-echelon capacitated vehicle routing problem.
Transportation Sci. 47(1):23-37.

Laporte G, Norbert Y, Arpin D (1986) An exact algorithm for solving a
capacitated location-routing problem. Ann. Oper. Res. 6(9):291-310.

Nguyen V, Prins C, Prodhon C (2010) A multi-start evolutionary local
search for the two-echelon location routing problem. Hybrid Meta-
heuristics. Lecture Notes in Computer Science, Vol. 6373 (Springer,
Berlin), 88-102.

Perboli G, Tadei R, Masoero F (2010) New families of valid inequali-
ties for the two-echelon vehicle routing problem. Electronic Notes
Discrete Math. 36:639-646.

Perboli G, Tadei R, Vigo D (2011) The two-echelon capacitated vehicle
routing problem: Models and math-based heuristics. Transportation
Sci. 45(3):364-380.

Tan KC, Chew YH, Lee LH (2006) A hybrid multi-objective evolutionary
algorithm for solving truck and trailer vehicle routing problems. Eur.
J. Oper. Res. 172(3):855-885.

Roberto Baldacci is an associate professor of operations
research in the Department of Electronics, Computer Science, and
Systems (DEIS) at the University of Bologna, Italy. His major
research interests are in the area of transportation planning, logis-
tics and distribution, and the solution of vehicle routing and
scheduling problems over street networks. His research activities
are in the theory and applications of mathematical programming.
He has worked in the design of new heuristic and exact methods
for solving combinatorial problems, such as routing and location
problems.

Aristide Mingozzi is a professor of operations research in the
Department of Mathematics at the University of Bologna, Italy.
His main interests include mathematical programming, combina-
torial optimization, graph theory, dynamic programming, and the
development of exact and heuristic algorithms for the solution of
real-life problems in distribution and scheduling.

Roberto Roberti is a postdoc at the University of Bologna. His
research activity concerns the study and development of heuristic
and exact algorithms for solving combinatorial optimization prob-
lems, such as traveling salesman problems, routing problems, and
timetabling problems.

Roberto Wolfler Calvo is a professor of operations research
in the Laboratoire d’Informatique de Paris Nord at the Univer-
sit€ de Paris 13. His main research interests include combinato-
rial optimization, mathematical programming, reformulation and
decomposition methods, reoptimization, and environmental deci-
sion support systems. He is interested in academic research as
well as industrial applications.



