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1. INTRODUCTION 

Design for testability has assumed increasinl urgency due to higher 
circuit densities. Concomitantly, the need for developing good 

measures of testability and for computins them efficiently with 

sufficient accuracy also becomes greater. Increased understanding of 

the limitations of the traditional deterministic measures [AGR82, 

GOLD791 has prompted recent efforts on improved measures based on 

applying random patterns to the circuit (SAV84, SET85). 

Random-pattern testability is shown to be effective not only in 

identifying areas of poor testability but also for simulation-free fault 
analysis and automatic teat-pattern generation [AGR8Sa, AGR85b, 

BRG84, WUN8SI. 

Both deterministic and probabilistic methods calculate, for each circuit 
node, values related to its controllability and observability. The 

deterministic measures, such as SCOAP (GOL791, are non-normalized 

and only intuitively justified. Probabilistic measures, on the otber 
hand, are signal probabilities which always lie in the (0.0, 1.0J ranae. 
For a line in a combinational circuit, these measures are related to the 

boolean function realized by the line. Thus, if all input patterns are 
cquiprobable, a line's one-controllability is identical to its syndrome 
[SAV80J; its observability at an output, can ,similarly be related to the 

boolean difference (SEL68J. 

This paper extends the supcrgate analysis oC PREDICT (SET8SJ for 

exact computation of observabilities. Also. sections 4 and S analyze 

the supergate structure of a circuit from a graph-theoretic viewpoint. 

Findins a supergate is related to determining the dominator tree in a 

modified circuit graph thus providing an exact bound on the 

complexity of this computation. Determination oC the maximal 

supergate cover avoids unne<:csS8.ry duplication in tbe computation of 

testability. 

0731·3071186/0000/0318$01.00 © 1986 IEEE 
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:I. BACKGROUND AND NOTATION 

SUfMrgat~r. In PREDICT, computation of controllability for a node 

(a primary input or a gate output) is carried out on a circuit subgrapb 

called the "supersate" oC that node. A graph-theoretic definition of 

superaate appears in Section 4. To determine the superpte of a node 

X in the circuit, one starts tracing tbe circuit back from X. It X is a 
primary input we are ,done. Otherwise, the signals on the inputs of 

gate X are compared pairwise. If tbe sipals are mutually 

indepcnclcnt. we are apin done. Otherwise. sucb signals as are not 

pairwise independent define a new "Crontier" for furtber backtracing. 

One of tbe frontier nodes is arbitrarily chosen for backtracing and a 
new "frontier" is defined after tracing signals at its input. The process 

stops as soon as tbe frontier becomes null. As an example, Fig. 1 

shows a NAND circuit with the supergate of primary output shown 

within the sbaded triangle. 

The inputs of a superlate are partitioned into two classes: fanout and 

nonCanout. The former are characterized by more tban one path to tbe 
superaate output. In the example, lines Co d, and e define IUpcrgate 

inputs witb d and e as the fanout inputs. It may be noted that a 
Canout input of a supergate might not fanout itself (e.g., line d) but 

may have multiple paths to the supcrgate output through an internal 

fanout. 

Conditional Computation within a Supergate: The computation 

within a supergate is carried out in the context of a fixed pattern of 

binary inputs applied to the fanout inputs of the supergate. Assume 

tbat all possible patterns on tbe fanout inputs are indexed in some 
arbitrary way and let At rcprcscnt the i-th pattern. Then C~(t) is tbe 

conditional zero-controllability of line k in the superpte when A; is 

applied to the fanout inputs. This is the probability of setting line It to 
zero wben a randomly selected input to the network. impresses the 

pattern Ai to the fanout inputs of tbe supergate. CondltloMI 
OM-comrollability is similarly defined and is denoted by CliCk). In 
(SET8S] it was shown how these conditional controllability values can 

be propagated forward in a supergate essentially by assuming tbem to 
be independent. For example, Cor a two.input AND pte with lines m 
and n as inputs and p as the output, we have: 

CO;(p) - CO,(m) + CO,(n) - CMm)COt(n), and 

Cl,(p) - CI;(mlCl,(n) 

The z~ro-conlrollability (OM-controllability) of line k is the 
probability of settins line k to zero (one) wben a randomly selected 

input pattern is, applied to the network. These arc denoted, 
respectively, as CO(k.) and Cl (k.) and can be computed Crom tbe 

conditional cootrollabilitics [SET8SJ. 

Cl(k) - 2:' CI,(klP(A;) .. .. 
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Fig. I Supergate example. 

where, P(~) is the probability of AI apPearing at the fanout inputs 

when a random pattern is applied to the network. 

Example: For the circuit in Fig. 2(a), ass1;lme each input can be 
independently set to one with probability 1/2 and we want to compute 

the one-controllabHity of line g. The supergate of g is the whole 

circuit with the primary input 8 as a fanout input. Let Ao and AI 
represent the assignments 8-0 and B-1, respectively. Then, as shown 

in Figs. 2(b) and 2(e), CI.(g) - I and CI,(g) - 1/2. Thus, the above 

sum yields CI (g) - (I + 1/2)(1/2) - 3/4. 

The conditional zero-observability (conditional one-obsef'lJability) of 

line k is the probability of observing line k at the supergate output 

under the condition that Ai is applied to the fanout inputs and line k is 

set to zero (one). These are denoted, respectively, as BOi(k) and 

BI,O<l. 

The conditional zero-detectability (conditional one-detectability) of 
line k is the probability of simultaneously setting line k to zero (one) 

and observing it at the supergate output when a random input is 
applied to the network. Denoting these by DOi(k) and Dli(k), 

respectively, we write: 

DI,O<l - CI,(k)BI,O<l 

DOi(k) is the probability of detecting the fault "line k stuck-at-one" at 

the supergate output when a random input to the network applies Ai to 

the fanout inputs of the supergate. Since the observabilities, as defined 

above, are conditioned on setting the line being observed to a value. we 
avoid the anomaly, noted in [SA V83] that high values of a line's 

controllability and observability may not imply high testability. 

3, EXACT CALCULATION OF DETECTABIUTY 

We consider the problem of determining the detectability of a line in a 

supergate at its output. All the proposed solutions to this problem 

(based on the circuit structure) involve approximations and thus are 
inexact [JAI85, SET8S, BRG841. The errors arising in such 

computations can be attributed to two distinct classes of 

simplifications: (I) the observability of line through a chain of gates 
can be found by considering the gates one at, a time. and (2) the 

observability of a rccovergent fanout stem is a fixed function of its 

branch observabilities. The first simplification is, indeed, valid in the 
context of a pattern applied to fanout inputs. This leads to an efficient 

procedure for computing detectabilities for all lines which are not 

recovergent. 

Obsef'lJabilities of Non-recovergent Lines: Consider a two-input AND 
gate with input lines a and b and output line c. Observing a zero value 
on line a requires that line b should be sc;t to I and the 0 on line c 

should be observable. That is. 
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Fig. 2 

(a) 

: 'o/2~_~O __ L-_ 

L.f:>--J L}--1-
(b) 

(e) 

Conditional controllability and delectability computation 
for nonreconvergent lines. (a) Circuit. (b) One

controllabilities when B-O, and (c) One-controllabilities 
when B-1. 

BOla) - BO(e)Prob(b-1 I ,-0) 

- BO(e)[Prob(b-I, a-o)/Prob(,-o») 

- BO(e)[S(a) - Cl(e»)/CO(a) 

where, S(a) is the probability of sensitizing a path from a to c. For 
the two-input AND gate S(a) - CI (b). Similarly, 

81(a) - Bl(e)Prob(b-1 I a-I) - Bl(e)Cl(e)/Cl(a) 

Expressions for observabilities for other types of gates are derived in a 
similar manner [JA1851. Notice that in the above 81(a) is obtained by 

multiplying two probabilities. BHc) and Prob(b-I I a-I). This 

assumes that t~ese two probabilities correspond to independent events. 

To examine the validity of this assumption, consider again the circuit 

shown in Fig. 2(a). Line g is a primary output with observabilities set 

to unity. If the inputs A and B have equal probabilities of 0 and I, 

then the expressions of the above type give the following result: 

abe f g 

CO 112 112 3/4 1/2 1/4 

CI 112 112 114 112 3/4 

BO 1/6 1/3 112 III 

BI 112 III III 111 

Line b, a reconvergent stem, will be considered in the next section. 

Line a is observable at g whenever b is 1. Therefore, 
80(a) - 8Ha) - 1/2. However, our computation. in the above table, 

incorrectly gives BO(a) - 1/6. This is because the observability of e 
depends on f which is derived from b. Such situations arc common in 

the presense of reconvera:ent fanouts. The Stafan formulas take 

account of the correlation between the lines at the input of the same 
gate, e.g., e and f are correlated due to the common inftuence of b on 

them; their observabilities are correctly computed. However, 

correlations extending beyond the inputs of a sina:le gate are ignored 
by Stafan. 

Consider a two-input gate, with inputs a and b, and output. c, 
embedded in a supergate. Assume a pattern Ai on the fanout inputs of 
the supergate. Under these conditions, the signals on the two inputs of 

the AND gate indeed become independent, therefore, Stafan's 



assumption are true for conditional computation. In particular, to 

detect a 0 on line a (when Ai is applied to fanout inputs of the 

supergate), a 1 must be applied to line b and the resulting 0 on line c 

must be observed .. Similar arguments will apply to detection of 1 on 
line a. Thus, C 1 

DO,(a) - CI,(b)~'t(c) Oa) 

0Ii(a) - @ll~b)BII(c) Co- (.') 
'. 

Similarly, for a two-input OR gate: 
C 

DO,(a) - CO,(b),x>,(c) 

(Jb) 

(2a) 

(2b) 

These and similar equations for other elementary gates may be used to 
obtain conditional detectabilities of all lines up to (but not including) 
fanout stems. 

Theorem I: [SET861 Let k be a non-reconvergent line in a supergate 
and let DO(k) and Ot(k) represent, respectively, its zero and one 
detectabilities. Then 

(b) Dt(k) - :l: DI,(k)P(A,) 
all A; 

where, P(Ai) is the probability of applying pattern Ai to the fanout 
inputs of the supergate. 

Returning to our example of Fig. 2, the conditional detcctabilities can 

be computed from Figs. 2(b) and 2(e). Assuming again that line g is 

a primary output, using Eqns, (n and (2), the results are tabulated 
below. 

a b c f g 

CI ... 1/2 0 0 

C1b-l 112 112 0 112 

DO .... , 0 0 0 0 

OOb-l 112 112 114 1/2 

DI...., 0 0 0 0 

Olb-' 112 112 1/4 1/2 

From Theorem I, therefore, DO(a) - 01(a) - (1/2 + 0)(1/2) - 1/4, 
which is verified by noting that only one of the four input patterns 
detccts each of the faults: "a stuck-at-O" and "a stuck-at-!". Note 

that BO(a) - OO(a)/CO(a) - 1/2. Thus non-stem line observabilities 
can also be correctly computed, 

Detectabilities of Reconvergent Stems: It is attractive to think of 
extendir.g the above method to determine the observabilities of 

reconvergent stems. Then. all line detectabilities could be found in a 

single backward trace of the circuit. Unfortunately, a stem's 
detectability is not just a function of its branch detectabilities but also 

depends on the inversion parity of the branches along rcconvergent 

paths. The solution proposed in this paper gives. up the goal of 

determining all detectabilities in a single backward trace, Instead, 

reconvergent stem detectabilities are found in a forward trace 

combined with the computation of line controllabilitics. 

Let s be a recovergent fanout stem in a supergate and let Ai be applied 

to the fanout inputs of the supergate. Note that, from the definition of 

fanout' inputs to supergate, it follows that the value on stem s is 

uniquely detennined by AI, For an arbitrary line k in the supergate, 
we consider the probabilities of disjoint events of sensitizing k to 0' and 

I values from s, These will be called, respectively, conditional zero-
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sensitization and conditional one~sensitizaJion of k from s, 

symbolically written ~!'; S,(s. leo> afld Sj(s, k l ), If k has only 

even-parity or only odd-parity inversion paths from s, one of these 
probabilities will be zero but, in general, both probabilities must be 

considered. 

The conditional sensitizations of line k from stem s can be stated io 

functional terms, Let the vector X - h], X2 ..... l(n) be the inputs to 
the supergate and let· k(X) be the function realized on line k (we will 

abbreviate k(X) as k whenever there is no ambiguity). Denote: 

(a) the restriction of k(X) when AI is assigned to the fanout inputs as 
the function (k(X)]j, 

(b) the syndrome [SA V80] of k(X) (defined as the number of one's in 

the truth table of k(X) divided by 2n) as Ik(X)I. 

(c) k(X) considered as a function of the stem sand supergate inputs X 
as k(s. X), and 

(d) the boolean difference [SEL68J of k with respect to s as k'. 

Lemma 1: Under the assumption that all input patterns to a supergate 
arc equiprobable, 

(a) S,(s, k,) - ilkk'l;i 

(b) S,(s, ko) - i1kk'l;i 

Proof: The boolean difference k' represents the condition of sensitizing 

s to line k. Thus, the boolean function [kk'l; represents the condition 

of sensitizing a I to line k from s when Ai is applied to fanout inputs. 

The syndrome of this function is then equal to SiCS, k,) under the 

equiprobabte assumption as stated above. A similar proof can be,!iven 
for (b). 

Theorem 1: Let Si(S, kJ denote the conditional b-sensitization of a 
line k in the supergate from the stem s, where b is either 0 or 1. (a) 

For a two-input AND gate with inputs m and n and output p: 

SI(S. pb) - SI(S, mJ[Clj(n) - SiCS, nil 

+ S,(s, n"JICI,(m) - S,(s, m,)l 

+ SiCS, mJSi(s, nJ 

(b) For a two-input OR gate with inputs m and n and output p: 

S,(s, p"J - S,(s, m"JICO,(n) - S,(s, noll 

+ S,(s, n"JICO,(m) - S,(s, moll 

+ Sib, mh)Sj(s, nJ 

(c) For a NOT gate with input m and output p: 

S, (s, p"J- Sis, m;J 

Proof: (c) is trivial. The proofs of (a) and (b) are very similar, hence 

we will only prove (a). Consider the case when b-l. From Lemma 1 

S,(s, p,) - Ilpp'Jd 

where, p' is the boolean difference of p with respect to s. Now 
P - tri.n for an AND gate, therefore (BRE76, Section 2,1], 

p' - (mn)' - mn' E8 nm'" m'n' and 

pp' - mn(mn' E8 nm' " m'n') 

- mnmn' • mnnm' • mnm'n' 

- m(m' ED ffi)nn' • mm'n(n'. il) ED mnm'n' 

- mmnn' • mm'nii' .. mnm'n' 

Therefore, from Lemma 1, 

SiCs, PI) - Upp'l;! - Ummnn' ED mm'nii' " mom'n'J;! 

Since all tbe three terms are mutually disjoint on tbe right hand side, 

the syndrome is the sum of syndromes of each term, hence 



S,(s, p,T - Ilmin'nn'l'! + Ilmm'nD'I,1 + Ilmm'nnJ,l 

- Umin'I,l-llnn'U + Ilmm'I,l-UnD'l,! 

+ Ilmm'l;I'llnn'l 

Since Imm'J; and (nn']; do not involve any variables in common. 

CI,(m) -llml'! - Ilm(m' 81 in')J,I-I[mm'l,! + l[min'l,! 

Therefore, 

l[min'J;i - CI,(m) - S,(s, m,) 

When this substitution is made on the right hand side of (3) we get 
the desired result. A similar proof can be given for the case when 
b-O. 

Next, suppose the output line of a supergate is x. For a stem s, it is 
possible to determine its conditional sensitizations to line x by 
Theorem 2. The stem's observabilities at X arc obtained by 
appropriately combining these conditional sensitizations as indicated in 
the following theorem: 

Theorem 3: [SET86] Let s be a reconvergent stem in a supergate and 
let Z. (N J be the subset of patterns on the fanout inputs of the 
supergate which cause a zero (one) to appear on s. Then 

(a) 00(,) - ~ [S,(s, xol + S,(s, x,)IP(A~ 
..... z, 

(b) Dl(s) - ~ IS,(s, x"J + si(s, x,)IP(A,) 
AjlN, 

Example: Consider the carry-logic circuit of Fig.3(a). It is easily 
verified that the supergate of the carry output is the whole circuit with 
A and B as the fanout inputs. For each line k in the network, we show 
the sensitizations SiCS, to) and Sj(s, k1} as an ordered pair within 
square brackets. Also shown for line k is CliCk). Stem s is I for three 
combinations of values on A and B: 00. 01. and 10. Figures 3(a)-3(c) 
show the conditional sensitizations (obtained from Theorem 2) and 
one-controllabilities (as derived in PREDICT) for the three cases. 
Each of these combinations occurs with probability. P(A i) - 1/4, 
therefore 

Dl(s) - [0+0) + 0/2+0) + 0/2+0)10/4) - 1/2 

4, SUPERGATE STRUcruRE AND ACCELERATION OF 
TESTABILITY ANALYSIS 

As we saw in Section 2. informally, the supergate of a line X in the 
circuit is the smallest predecessor subnetwork feeding X whose inputs 
are logically independent, j,e" have no signal correlation. We now 
introduce a formal definition. 

For simplicity, consider first a single-output combinational network N. 
The structure of N has an equivalent representation in the form of a 
directed graph G(V, E), called the circuit graph, whose oodes are the 
primary inputs, the primary outputs, and the gates in N, and whose 
edges represent the connections in N, oriented in the direction of signal 
flow (see Figs. 4(a) and 4(b». A fanout in N is represented by a node 
with outdegree greater than one in G; a primary input (output> 
becomes a node whose indegree (outdegree) is zero. Two distinct 
directed paths PI and P2 in G are said to be reconvergent if they 
emanate from a common vertex (say A) and terminate at another 
common vertex (say B). Node B' is called a reconvergent node. 
Obviously, A is a fanout node. 

Let R(X) denote the set of all nodes in G, from which node X is 
reachable by a directed path. Then, the co,", oj influence C(X) of 
node X is a proper subgraph G'(V', E,) of G, such that V' - R(X). 

The ,fupergate of a node X in a circuit graph G, denoted by SG(X), is 
a proper subgrapb (V", E") of the cone of influence C(X), such that 
the following conditions hold: 
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A-O 
(0,0) 0-0 

to,') o (i,O) 

la) 

e 

'-0 
(,/2,01 0-' 

(O,'l liZ 

(lI2,0) 
Ibl 

e~-----~ 

(112,0) 

(o,n 1IZ 

(112., OJ 

Ie) 

Fig. 3 Detectability computation for reconvergent stems. 

(j) X and all its predecessor nodes n.e., those with edges directed 
towards X) are in SG(X). 
(ii) Let v be a node in SG(X) such that a predecessor of v is also in 
SG(X). Then, all predecessors of v are in SG(X). 
(iii) For every pair of nodes Vj. Vk in SG(X), each with indegree zero, 
R(vj) is disjoint from R(Vk). 
Gv) V" is a minimum vertex set satisfying the above properties. 

From the definition it is obvious that the supergate of every node in G 
is unique. As an example, tbe vertex set of the supergate of node 16 in 
Fig. 4(b) is given by (J6, 13, 12, 111. 

The set of input nodes I<X) of a supergate SG(X) is the Set of nodes 
in SG(X) with in degree zero. These are further partitioned into two 
groups: 

(j) IN F(X), the non·Janoul inputs, are those with a unique directed 
patb to X, and 
Gj) IF(X), the Janoul inputs. are those inputs each of whicb has at 
least two distinct direct patbs to X (tbis does not imply that these 
nodes have an outdegree greater than one. since two distinct paths may 
have a common initial segment). 

The output node of a supergate SG(X) is the node X itself. 

Remark I: For every node Y in SG(X) which is not an input node, 
SG(Y) is a proper subgraph of SG(X), i.e., supergates of interior 
nodes in SG(X) are contained within SG(X). 

A supergate is said to be maximal if it is not properly contained in a 
larger supergate. As an example, for the network of Fig. 4(a), the 
circuit graph and the maximal supergates (shown within dotted lines) 
are given in Fig. 4(b). 

ReQUlrk 2: From the previous remark and the definition of maximal 
supergates, it follows immediately that the partitioning of the circuit 
graph affected by maximal supergates is unique. 

For a single.autput combinational circuit, there exists an interesting 
topological relationship amongst the maximal supergates. We define a 
reduced circuit graph (RCG) as a directed graph (VI. El ), where VI 
denotes the set of supergates and a directed edge (i, j) exists if tbe· 
output node of som is an input node of SG(p. 



Fig. 4 

, 
• 
• • 

'" 

"'''9 SGCIt) 

SG(a) SO,,,) 
SGlll!l 

'" (a) Example Circuit, (b) Circuit graph and maximal 
supergates, and (d Reduced circuit graph. 

Remark 3: The RCG is a tree, Le., for every pair of nodes in RCG 
there is no more than ODC directed path. 

For the circuit in Fig. 4(a), RCG is shown in Fig. 4(c}. 

Identification of Maximal Supergates: Intuitively, each supergate 
represents a minimum subcircuit with logically independent inputs. A 

more precise statement of the same idea is that for every interior node 

i in a supergate SO(X), there exists another interior node j in SO(X>, 
such that RG) and R(j) both include at least one common (fanout) 

input of SO(X). Clearly, there is an oncwto·one correspondence 
between the notions of supergate and dominance in How graph 

[TAR741 We will use the concept of flow dominance for identifying 
the set of maximal supergates in a combinational circuit. 

Given a directed graph G(V, E) with a distinguished source vertex s of 

indegree zero, we say that a node Vi dominates a node Vj if all directed 
paths from s to Vj also pass through VI ITAR741. It is known that the 

dominance relation induces a partial order and that the set of nodes 

which dominate a given vertex is linearly ordered [AH074). Because 

of this linear ordering, the immediate dominator of a node n can be 

uniquely defined as the dominator that is closest to n on any path from 
the source s to n. This allows depiction of dominance relationship 

amongst vertices using a tree called the dominator tree [TAR74] in 

which the source vertex is the root and the predecessor of every other 

node is its immediate dominator. 

Algoritbm: To find all maximal supergates in a circuit graph of a 

single·output combinational network, proceed as follows: 

8tep I: Oiven the circuit graph G, construct a directed How graph FG 

as follows: (i) Delete the primary-output node and its incident edge. 
(ii) Reverse the directions on the edges which are incident on the node 

corresponding to the output gat,e and make all other edges bidirectional 

Step 2: Construct the dominato." tree of FG. 

Step 3: Start from the root node of the tree and collect all the nodes 
(including the root) which are children of the root. Include also all 

single successors of these children, if any. (This set gives the maximal 

supergate corresponding to the output node.) Remove all the edges so 

far covered and iterate the process until the tree is empty. 

Example: Consider the circuit graph in Fig. 4(b). The dominator tree 
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corresponding to its flow graph FG is shown in Fig. 5. The maximal 
sup .. gatcs are SG(J9), SG(J Il, SG(I2), SG (7) , and SG(8), the 
vertex sets of which are given by: 

Y"[SG(19)[ - (19, 18, 17, 16, 15, 14, 13, II, 12) 

Y"[SG(J Il] - [11,7, 8} 

Y"[SG(J2)]- [12, 9, 10,6, 5} 

Y"[SG(7)) - [7, I, 2} and 

Y"[SG(8)) - [8, 3, 4} 

Remark 4: Clearly, the complexity of the above algorithm is dominated 

by that of Step 2, which can be implemented with a space complexity 

of O(IYI + lEI) and with time complexity O«Y(logIYI + IEIl, by 
using an efficient depth·first search technique [TAR74], where V and 

E denote the vertex and edge sets of the circuit graph. 

5, SUPERGATE SfRUC!1JRE OF MULTIOUfPUTS 

Fo'r a multioutput circuit all maximal supergates can be easily found 

by using the earlier dominance algorithm for each output individually. 

Obviously, the computational effort required to evaluate the 

delectability of the lines in the circuit depends strongly on the 
complexity of maximal supergates, determined by their size and the 
number of fanout inputs. For a multioutput circuit, a maximal 

supergate of a primary output might partially or fully overlap a 

maximal supergate of another primary output. To avoid computation 

of testability parameters for overlapping nodes/edges more than once 
we require a minimum covering of all the circuit nodes with maximal 

supergates. We will show that because of certain structural relations 
amongst the supergates, such a minimum cover is unique and can be 
found in polynomial time. 

Example: Fig. 6 shows a NAND realization of a full·adder circuit and 

its circuit graph. The vertex sets of the maximal supergates 
corresponding to the sum output are: 

V"[SG(II)) - [II, 10,9,8,7, II and 

Y'!SG(7)]- [7, 6, 5, 4, 3, 2} 

and for the carry output 

V"[SG(J3)]- [13, 8, 1,7,5,6,4,3, 2}. 

Note that 80(13) properly includes 80(7). Clearly, the computation 

of controllability and detectability for the nodes in SO(l3) obviates the 
need to recompute these parameters for the nodes in SG(7). In a 

multioutput circuit, such a redundant computation can be eliminated 
by finding a minimum set of maximal supergates which cover all the 
nodes in the circuit graph. 

Lemma 1: [SET86J In the graph of a multioutput circuit, every 

maximal supergate SO(X) corresponding to a primary output is either 
properly contained within another maximal supergate SO(Y) 

(corresponding to another primary output), or has at least one node 
which is not covered by any other maximal supergate. 

Corollary: In a multioutput circuit graph, no maximal supergate can 
be completely covered by the union of aLI other supergates, unless it is 
totally covered by one maximal supergate alone. 

Theorem 4: The minimum cover of all nodes in a multioutput circuit 
graph with maximal supergates is unique. 

Example: In Fig. 6, the minimum cover consists of (SOO 0, SO(3)}. 
[Nodes 12 and 14 can be ignored without loss of information'] 

Remark 5: From the uniqueness of the cover, it follows that once 

maximal supergates for individual primary outputs are determined by 
the algorithm in the last section, finding the minimum cover in a 

circuit graph having !VI nodes is at most O(jv1j). Since this dominates 

the complexity of finding maximal supergates (Remark 4) for 



Fig. 5 

Fig. 6 

Dominattll' t~ and maximal supergate partitioning. 
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The full-adder circuit and its circuit sraph with the 

maximal supergates. 

individual Erimary outputs, the unique cover can be identified in at 

moo' o<lv I>. 
If so identified in a preprocessing step, the minimum cover of a 

multioutput circuit graph will help accelerate computation. 

6. CONCLUSION 

We have introduced a modeJ for exact computation of line 
obscrvabilities but, in order to do so it is necessary to handle 

non-reconvergent lines in a supergate differently from reconvergent 

stems. The observabilities of the latter are computed in a forward 

trace through the circuit alons with all the line controUabilities. Then, 
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the primary output obscrvabilities are initialized and a backward trace 
determines the obscrvabilities of non-reconvergent lines. Whenever a 
rcconvergent stem is encountered, the backward trace restarts with its 

obscrvability value computed earlier. PREDICT-like approximations 
are easily extended to include this more accurate method for 

obscrvability computation. For multiple output circuits, the order in 
which the supergatcs arc considered, affects the efficiency of 

computation. We have analyzed the supergale structure of sinsle and 
multiple output circuits and shown that the covering of the circuit in 

terms of maximal supcrgatcs is unique in both cascs. Further, finding 

such cover has the worst-case time complexity that is quadratic in the 

number of nodes in the circuit graph. 

Aclutowtedpnent: - Authors tbank F. Brglez for technical discussions 

and M. Pashan for comments on manuscript. 
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