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Abstract

New models of production-inventory environments are needed to reflect what
many industrial suppliers face today. We propose such a model, along with a
production and inventory strategy. Our strategy concentrates inventory in higher
demand items, while giving lower demand items priority in production, where
the partition of the items is similar to that given by Pareto analysis. We jus-
tify the strategy qualitatively and quantitatively, the latter using a simplified
queuing model of the production environment. In the process, we derive re-
cursive formulae for the probabilities of number in an M/D/1 system with two
priority classes, preemptive-resume discipline between priority classes and FCFS
discipline within a class.

Over the past 35 years, numerous models of production-inventory systems have been
proposed. There are deterministic models in which all the elements, such as demand,
leadtime, and rate of production, are known constants. Typically, all demand is met
on time in these models. The issues addressed using these models relate to batch
sizes, reorder points and where and how much inventory to hold. Solutions to these
models range from the EOQ formula for the single-stage, single-item problem with
constant demand, to the Wagner and Whitin [17] dynamic program for the single-stage,
single-item, multi-period problem, to Muckstadt and Roundy’s [9] nested power-of-two
policies for the multi-stage, multi-item problem with constant demand.

Other models exist in which one or more of the elements are stochastic, and often
demand is one of them. Typically, it is assumed that if demand is not met as soon
as it is known (i.e. the product isn’t “on the shelf”), then either that demand is
lost forever or it is backordered at some additional cost. “Fill rate” often refers to



the fraction of orders or units ordered that are not lost or backordered. Due to the
stochastic elements, it is often impossible or economically undesirable to provide a
fill rate of 100%. The randomness also makes these models much more difficult to
analyze than their deterministic counterparts. Analytic solutions range from the so-
called “newsboy” formula for the single-stage, single-item, single-period problem, to the
(s,.5) policy for the uncapacitated single-stage, single-item, infinite-horizon problem
with stationary demand. Solutions to multi-stage and/or multi-item problems usually
involve approximations. Both stochastic and deterministic models often fail to consider
capacity limitations.

The production-inventory environments these models attempt to capture have chang-
ed. Setup times and variability in processing times have been reduced substantially
In many companies. Production is more process-oriented, with “focused factories” or
“factories within factories” where products flow through dedicated serial production
lines. As a result, manufacturing flow times are shorter than before. Correspondingly,
the applicability of most inventory theory models and their solutions has been greatly
reduced, because production capacity is usually ignored in these models; that is, lead
times are assumed to be independent of the quantity on order, or capacity is assumed
to be infinite.

Furthermore, improved computer and communications technology has reduced the time
required to receive and process orders and to deliver the finished goods to the cus-
tomer. Consequently, in many instances the time between receipt of a customer order
and the customer receiving the order has been reduced from months to 1-15 days.
Manufacture-to-order (MTO) is now a viable option for many industrial suppliers,
since their customers often order some weeks ahead of when they need their order

filled.

Thus, models are needed that do not assume demand must be satisfied upon receipt
of an order. And these models must be stochastic, since, under MTO, the production
facility is more closely linked to the day-to-day fluctuations in customer demand.

Outline of Paper

In this paper, we propose and justify a production-inventory strategy we shall call the
“No B/C Stock” strategy. The No B/C strategy concentrates inventory in the higher
demand (A) items, while giving the lower demand (B/C) items priority in production,
where the partition of the items resembles that of the standard A/B/C classification
(an explanation of which can be found in Peterson & Silver [10]).

In Section 1, we present a model that we feel represents the environment faced by
today’s industrial suppliers. In Section 2, we propose a production-inventory strategy
for this environment: the No B/C Stock strategy. In Section 3, we present a simpler,
more tractable version of the model from Section 1. We derive exact expressions for



the cost of the strategy under the model in Section 4. In Section 5, we note models
from the literature that share some similarities with ours. In Section 6 we present
a lower bound on the cost of the system. In Section 7, we describe our method for
computing the solutions and their costs. We present our numerical results in Section
8, and summarize the paper in Section 9.

1 Our Model of the Manufacturing Environment

In this section, we describe a model of a manufacturing environment in a qualitative
manner. We propose a model which we feel represents industrial suppliers in many
industries. It is a composite and distillation of the various companies we have observed
through years of industrial consulting.

One of the characteristics of industrial suppliers that distinguishes them from mass
merchandisers is that off-the-shelf service is not always necessary. Demand arrives in
the form of orders with due dates. Much of the time, customers will order a week to a
month or more in advance of the time when they need the product. While the amount
of advance notice depends on the industry, it tends to be greater for larger orders.

In a typical industry, a production facility consists of one or more focused factories,
each of which is dedicated to a large (200+) group of products or items with similar
resource and manufacturing requirements. These items fall into an A/B/C categoriza-
tion according to [average] sales volume. That is to say, when the products are ranked
from highest to lowest sales volume, the top 20% of the products (A items) often ac-
count for roughly 80% of total sales, the next 30% (B items) account for roughly 15%
of total sales, and the remaining 50% (C items) account for some 5% of total sales.
While these percentages vary by company and industry, this basic type of segmentation
of products occurs in all of the many situations we have examined.

The demand patterns observed by industrial suppliers tend to be more variable than
those experienced by mass merchandisers. This is due, in part, to the fact that only
a few customers may account for most of the demand for an industrial item. This is
particularly evident in the historical demand data of a low demand rate item where
there are “spikes” corresponding to individual customer orders which are due to the
customers’ order/lot size rules. As a result, demand is more erratic for the lower
demand rate items. In such cases, providing reasonable off-the-shelf service would
require on-hand inventory to be roughly as high as the spikes. Maintaining inventory
at that level — which is usually not known — would be prohibitively expensive. Not

surprisingly, attempts to stock such items usually result in high holding costs and low
fill rates.

The sales volume ranking (from high to low) generally matches the ranking from low
to high according to relative variability (or coefficient of variation), so that the demand



process for a C item is relatively more variable than that of a B item, which is relatively
more variable than that of an A item. Consequently, a higher percentage of an item’s
average demand must be stocked for B and C items than for A items in order to
achieve the same off-the-shelf fill rate. In the companies we have seen, C items, while
only accounting for about 5% of demand, often account for 25% of total inventory.

Finally, as mentioned in the previous section, the length and variability of setup times
and order lead times have been greatly reduced in the past few years, as well as the
variability of processing times, so that MTO is becoming a more viable option.

2 The No B/C Stock Strategy

In this section we describe the No B/C Stock strategy (or “No B/C strategy”, for
short) by contrasting it with a more traditional production-inventory strategy. The
common or traditional strategy involves holding finished goods inventories (FGI) in
most, if not all, of the items and meeting demand from stock.

Under the No B/C Stock strategy, little, if any, inventory is held in some of the items,
typically the B/C items (hence the name of the strategy). Instead, demand for these
items is met primarily through MTO production. The strategy achieves reasonable
service levels for these items by giving them priority for production. From now on, we
refer to B/C items as the class of MTO items, which is not necessarily the same as the
corresponding class resulting from the standard A/B /C analysis. Thus, inventory will
be held primarily in the non-B/C, or A, items. In practice, the distinction between an
A and a B/C item may not be so clear. For example, if an item experiences slow but
steady demand, apart from the occasional spike, then the steady demand stream can
be satisfied from stock to save on setup costs, while the spikes are met through MTO
production.

The elimination of B/C safety stock is advantageous in many ways. Firstly, it obviates
the need to calculate the appropriate safety stock levels, which is problematic for the
low demand B/C items. Calculating safety stock levels requires the specification and
parameterization of a probability distribution of demand. How is one to choose the
correct distribution? There is seldom enough data to confidently reject one distribu-
tion in favor of another. So one often chooses a distribution on the basis of visually
recognizing the distributional shape from a plot of demand data. This is difficult to
do using the sparse and erratic historical data of a B/C item, as is recognizing the
presence of a trend factor in the historical data that distorts the distribution.

Secondly, the No B/C strategy frees up the capital that was invested in FGI of B/C
items and the storage space that they occupied. Thirdly, there are additional savings
in holding costs beyond the cost of capital invested in inventory, since slow moving
items suffer greater loss through damage and obsolescence as they spend longer on the



shelf.

The main point of the strategy is to meet the challenges of the more competitive
environment in which customers demand quicker response and expect lower prices.
Companies can provide quick response through increased inventories and capacity, but
both increase costs significantly. Instead, the No B/C strategy replaces the FGI of
B/C items with an increase (hopefully smaller) in the FGI of A items. This effectively
stores capacity in the form of quicker moving, and correspondingly cheaper, A item
FGI. And service levels may even improve under the strategy, particularly for B/C
items, which companies traditionally have had trouble stocking in the right quantities.
Often, there wasn’t sufficient FGI to satisfy an order, so that the customer order
became a production order, and, since production was geared to a long production

cycle of large batches, a small production order could have waited a long time before
being filled.

We have argued qualitatively that the No B/C strategy could be better than the
traditional FGI strategy, and many of the predicted benefits have been realized by the
companies where this strategy has been implemented. We now seek to demonstrate
the benefits of our strategy mathematically.

3 The Analytical Model

To analyze our strategy, we must specify the setting more precisely. For reasons of
tractability, we will consider a less general situation than that described in Section
2. The environment we will examine will also be less favorable to our strategy in
certain respects than environments we have found in practice. By performing well (see
Section 8) in this more demanding environment, the strategy is shown to have a certain
robustness.

We assume the production facility consists of a single constrained resource, which is
realistic if a production facility’s throughput is consistently limited by a single machine.
The capacity limitations of the machine are captured by modeling the machine as a
single-server queue, so that only one job is worked on at a time. We assume there
are N items produced at this facility and that it takes a constant amount of machine
time to produce one unit of any item. Furthermore, setup times are assumed to be
negligible and will be ignored in the analysis.

We assume unit demands, and that an (S; — 1, S;) control policy is used for each item
¢. That is, each demand is for exactly one unit of one of the items. Assuming the
inventory position of item : was S; before the demand occurred, it will be S; — 1 after
the demand. Thus, a production order for one unit of item : is immediately issued,
bringing the inventory position back up to S;. This makes things tractable, since
the number of units of item ¢ on the shelf is just S; less the number of outstanding



production orders for item .

The assumptions of no setups and unit production orders are extreme examples of low
setup times and small batch sizes, and they favor MTO in that there is less incentive
to hold inventory, because the inventory carried does not reduce setup times or cost.
Inventory is only needed to protect against the machine being busy, and the variability
in the delay in obtaining the server is reduced with smaller production orders and
constant production times. Other assumptions regarding the demand process could be
made that do not favor the MTO strategy.

For example, we further assume orders are due upon receipt (i.e. there is no advance
notice), and that they are penalized per time unit they are late. Thus, unless the item

is on the shelf, some backorder cost will be incurred while the corresponding production
order waits to be filled.

We assume the demands for an item arrive randomly; that is to say, the interarrival
times of the orders are independent and exponentially distributed. Thus, the items’
demand distributions have the desired property that the variability is inversely related
to the mean (i.e. the demand for item ¢ in one time unit is distributed as a Poisson
random variable with parameter and mean );, and coefficient of variation = ofpu =
1/+/Xi, where J; is the average arrival rate of orders for item t). The arrival processes of
orders for different items are independent. Thus, since the arrival process of production
orders is the same as the arrival process of customer orders, the production facility
becomes an M/D/1 queue.

3.1 Production Strategies

Traditionally, the processing of orders occurs on a first come, first served (FCFS) basis.
The No B/C strategy gives B/C items strict production priority over the A items, so
that there are two priority classes. For reasons of tractability, preemptive-resume
discipline is used between classes (i.e. a B/C item will bump an A item out of service;
the A item returns to service from the point it left off once all orders for B/C items
have been completed) and FCFS discipline is used within a priority class. Note that
FCFS within a priority class is probably inferior to a strategy that gives backorders
priority over stock replenishment orders.

Furthermore, under the No B/C strategy, we require that S; = 0 if i is a B/C item:;
that is, we do not hold any inventory in the B/C items. We impose this restriction to
strengthen the argument for the No B/C strategy, and to avoid the counter-intuitive
case of a production order for stock replenishment of a B/C item receiving service
ahead of a production order to meet a backorder of an A item. Note also that the
traditional strategy is just a special case of the No B/C strategy when all the items
are considered as 4 items. Thus, the optimal No B/C strategy cannot perform worse
than the traditional strategy in this model. The question is how much better can it
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be.

4 Cost Derivation of Analytical Model

In this section, we define the cost function for the analytical model. We derive an
expression for its minimum value under (S — 1, S) policies. In Section 4.1, we derive
the distribution of the steady-state number of outstanding production orders when
there are two priority classes, which we need in order to compute the optimal value for

Si.

We will first need some notation. Let

N = total number of items.

®n
il

order-up-to level of item .

I, = random variable denoting the steady-state on-hand inventory level
of item z, where a negative number represents the number of out-
standing backorders.

Q; = random variable denoting the steady-state number of outstanding
production orders for item ¢; that is, the number of item ¢’s in the
queue, plus one if the server is currently working on item z.

A; = average demand rate for item ¢.

= cost of carrying one item in inventory per unit time.

= backorder cost per item per unit time.

We use the following cost function to represent the steady-state expected cost per unit
time:

N

C =) _{RE[I}]+pE[]]}, (1)

=1
where I} = max{0, [}, and I7 = max{0,—1;}. Our method will not depend on
a common k and p, i.e. h; and p; could be used instead; however, the lower bound
described in Section 6 is only applicable for a common A and p. As explained in the
previous section, under an (S; — 1, 5;) policy, I; = S; — @i, in which case equation (1)
becomes

N

D {RE[(Si — Qi)T] + pE[(S: — Q)7]}

i=1

N
= >_4(S), (2)

=1

CS(SI’“'?SN)

i



where

9i(S:)) = RE[(Si — Q)]+ pE[(S: — Q)7,
= hE[(S{ - Qi)+] + P(EQi - Si+ E[(S, - Q1)+])
= p(EQi— Si)+ (h+p)E[(S; - Qi)*]

S5i-1

= p(EQi—S)+ (h+p) Y (Si — k)P[Q; = k], (3)

k=0

which is just the so-called newsboy problem. Since gi(Si) is convex in S;, a first
difference argument can be used to show that S* minimizes 9i(S;), where

. D
Sr = : PlO; < s] > —— 13, 4
= minfs: PlQi< 2 2] @
To compute S}, we need to know the distribution of @i, which will depend on the
queuing discipline used. In particular, we need to know the distribution when there
are two priority classes, which is the case under the No B /C strategy. The traditional

strategy involves a single priority class, which will just be a special case of our results
for two priority classes.

Since S; = 0 for all B/C items, the cost of the No B /C strategy is

CYPIES,4) = Y a(S)+ X w(0)

i€A i€B/C
= > 6(S)+ > pEQ.. )
i€A i€B/C

Note that CN°B/C(S {1,...,N}) = C5%(Si1,...,Sn). The problem, then, is to find the
partition of the items into the high and low priority classes (B/C and A, respectively),
and the values S7,Vi € A, that minimize expression (5).

4.1 Results for One and Two Priority Classes

In this section, we derive the distribution of the steady-state number in system for a
multi-item FCFS M/G/1 system with a single priority class (which is the same as no
priority classes), and a multi-item FCFS M/D /1 system with two priority classes with
preemptive-resume discipline.

More specifically, we derive recursive expressions for P [Qr = k] and P[Qy = k], where
QL and Qx denote the steady-state number in system for the low and high priority
classes, respectively. P[Q; = k], for an individual item i, is then expressed as a function
of item ’s class probabilities.



We need some additional notation. Define

L = the set of items in the low priority class.
H = the set of items in the high priority class.

For now, the distinctions between the items within a priority class will be unimportant,
so we define

AL = Tiec i QL = Yiec @
A = Yien M Qe = Lien@i
A = AL+ Ay p = pL+ pH,

where p;, and py denote the traffic intensity (mean arrival rate/mean service rate) of
~the low and high priority classes, respectively. (Note that in the case of unit service
times, p) = A(y.)

Let us define some terminology used in the context of priority queues. The busy period
is defined as the length of time that begins with a customer arriving into an empty
system and ends the next time the system becomes empty. Hence, it is the period over
which the server is continuously busy. The completion time of a unit is defined as the
period that begins the instant service begins on a unit and ends the instant the server
becomes free to take the next unit of that class. Of course, in a preemptive queuing
discipline, the completion time of a lower priority item can be much higher than the
unit’s service time, since the lower priority item may be preempted and have to wait
for several higher priority items to be serviced before completing its service.

Let II.(6) denote the probability generating function of the stationary number of low
priority items in the system. Then, by Jaiswal [8], we have, for p <1,

Ag1—b(AL(1 - 9))} {(1 — 0)c(Ar(l - 9))} ,

HL(0)=(1—P){1+-;; 1-9 c(AL(1-9)) -4

(6)

where c(f) and b(8) are the Laplace-Stieljes transforms (LSTs) for the completion
time of a low priority item, and the busy period if the low priority items are ignored,
respectively. It turns out that c(f) satisfies (see Jaiswal [8], p.85)

c(8) = Ur(Ma (1l —b(0)) +0),
and b(#) satisfies (see Jaiswal [8], p.10)
b(0) = Un(Au (1 — b(6)) + ), (7)

where Uy, and Uy are the LSTs of the service time distributions for low and high
priority items, respectively. Note that when the service time distributions are identical
for both priority classes, we obtain ¢(8) = 5(#). In our case of unit service times,

Up(z) = Un(z) = /0 T e dF(s) = e, (8)

9



where F' represents the service time distribution. However, we use the general U
whenever possible.

Similarly, define IIg(f) to be the probability generating function of the stationary
number of high priority items in the system. It should be observed that under the
preemptive-resume discipline, the low priority items do not affect the high priority
items at all. Thus, IIg(0) is the probability generating function for the stationary
number in system for a FCFS M/G/1 queue with arrival rate Ay, traffic intensity
pH, and where the LST of the processing time distribution is Uy. We have (see, for
example, Cohen [2]), for py < 1,

_ (L= pm)(1 = )0 (1 = 0)
e e ) ©)

We derive the probability mass functions of Q;, and Qp from their generating functions
through differentiation. That is to say, if

then, forn =0,1,...,

1 d»
nl don
(See, for example, Resnick [12]). For the sake of brevity, we shall write f®(s) for
%S; (Z)|z=s. In the appendix, we derive the formulas for H(L")(H) and Hg)(é)) that were
used to prove the following propositions:

PIX = n] = ———TI(6)]s=o- (10)

Proposition 1 If py < 1,
PlQu=10]=1-pu,
and, fork =1,2,...,

PlQu = k] = Uxg(Ag)™"

(PIQu =k —1]
k .
= 3 ==XV U ) PIQu = & ]
22 [ P 0 - k=20 0w)). )

The above proposition holds for any M/G/1 queue with FCFS service, arrival rate
Am, traffic intensity pg, and LST of service time distribution Ug. However, the next
proposition only holds for an M/D/1 queue with unit service times, i.e. Ur(z) =
Un(z) = e™=.
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Proposition 2 Ifp <1,

PIQL=01=(1—p) (1 L b(ALn) , (12)
and, fork=1,2,...,
P[QL = K] = b(\p)™
(PlQz=k—1]

k-1
BAC ij)! (=A2)*7 6% (A1) PIQr = j]

(1= (M) @ = 0L + (2= A =P 0)] ), (13)
where, for k > 1,

i=1

—b(0) + hr Dt ()80 (0)
1 — Agb(0) '

bk)(9) =

(14)

Proof: The proofs for the propositions can be found in the Appendix. They involve
straightforward but messy algebra to establish, by induction, recursive formulas for the
derivatives of the generating functions IIz and IIx. O

Proposition 3

PQi=H=Y (’Z) (/\%)k (1 - -;—\;)mk P[QL = ml, (15)

m=k

fori € L. The same result is valid for any i € H with subscripts L replaced by H.

Proof: Fix: € L.

o0

PlQi=k = ) PlQi=kQr=m]

ma=k
0

= Y PlQ:=klQr=m] P[Qr = m].

m=k

Since the arrivals to the queuing system follow a Poisson process, and the customers
within the same priority class are treated on a FCFS basis, the [steady-state] probability
that any low priority item in the system is of type ¢ is A;/Ar. Let X; = 1 if the gt low
priority item in the system is of type ¢, where the items are ordered by their position
in the low priority queue, the head of which is the item in service if that item belongs

11



to L. Otherwise, let X; = 0. Then Q; = X; + X, + --- + Xgq,- Conditioned on
QL, the X;’s are i.i.d. Bernoulli random variables with mean AifAr, and so Q;|QL ~
Binomial(Qg, A\;/Ar). Thus,

PIQi = kQy = m] = ('}:) (fz) (1 _ f\‘z)m o

5 Literature Review

The integrated analysis of inventory and queuing models is not new (the reader is
referred to Prabhu [11] for a discussion of earlier models). We will just mention here a
few recent works that involve models similar to ours.

Zipkin [19] formulates a multi-item production problem in which the production facility
is represented by a network of queues. Through various approximations, he formulates
a convex program to determine optimal batch sizes. Zheng and Zipkin [20] consider
a production-inventory problem involving two items in which the production facility
is represented by an M/M/1 queue. They compare the performances of order-up-
to S policies under different priority rules: FCFS and Longest Queue First Served.
They show that the expected costs of holding and backorders are lower for the LQFS
discipline. ’

Perhaps closest to the spirit of our model is Williams (18], in which he considers a multi-
item production-inventory problem which he models as a multi-server, non-preemptive,
delay- and class-dependent priority queuing problem. He partitions the items into two
classes: Make-to-Stock (MTS) and MTO. The MTS items follow (@,r) policies. The
MTO items have a different cost function which penalizes backorders only when they
have been backordered beyond a certain amount of time. There are several differences in
our approach. By penalizing backorders immediately, we can use the same cost function
for an item independent of whether it is MTS or MTO. This allows meaningful cost
comparisons across different MTS/MTO partitions. By considering a simpler system,
we are able to obtain exact expressions for the cost of the system. Williams’ model
contains several desirable features that our analytical model does not; however, its
complexity results in the necessity for making approximations.

The lower bound we describe in Section 6 involves a single-item M/D/1 queue. For a
treatment of the finite capacity, single-item production/inventory problem in discrete
time, and for the other references, we refer the reader to Federgruen and Zipkin [3] &
(4], and Tayur [16]. For finite production rate problems in continuous time, Gilli and
Jackson [7] provide the related literature and some new results. Heyman [5] investigates
optimal operating policies for M/G/1 queuing systems with server start-up and shut-
down costs, and a cost per unit time spent in the system for each customer. Sobel [15]
considers a GI/G/1 queuing system operating under a very general cost structure. He

12



shows that almost any pure stationary policy is equal to that of an (M, m) policy: if
the queue length is less than or equal to m, then do not provide service until it increases
to M (where M > m), at which point service begins and continues until the queue
length drops to m again. An application of the (M, m) policy on an M/D/1 queuing
system integrated with an inventory model is performed by Gavish and Graves [6].
When there are no start-up and shut-down costs for the server, this policy corresponds
to an order-up-to S policy for the production-inventory problem.

G "i_‘he Lower Bound

The purpose of this section is to present a lower bound on the expected cost function,
(1), of the multi-item production-inventory system described in Section 3. In particular,
this lower bound applies to the cost of an optimal policy for the multi-item system,
which we denote by C?. Note that the optimal policy may not necessarily involve
priority classes or (S — 1,.5) policies.

Given an instance of the problem described in Section 3, a lower bound can be derived
from the following single item problem. The production facility is the same (with
unit processing times), and the demand process for the single item is given by the
superposition of the demand processes of all the items present in the original system.
The optimal policy of the single item system is a lower bound for any policy in the
multi-item system, since any policy from the latter can be implemented in the former
by randomly (but with the appropriate distribution) labeling demands 1,..., N, and
labeling inventory and production orders according to the multi-item policy.

The optimal policy for the single-item system is just an (S — 1,.5) policy (see Gavish
and Graves [6]), in which case the production facility becomes an M /D/1 queue with
an arrival rate and traffic intensity of A. The cost of this system is:

Csingle item(S) = hE[I+]+pE[I—-] — hE{(s_Qsingle iiem)-{—] +pE[(S’-Q’mgh item)—]’ (16)
where Q"9 it*™ denotes the steady-state number of outstanding production orders. It
is minimized as expression (3) was, namely by

* e mi . P single item < > ___2__ )
S rnm{.s @ <s]> h+p}

The distribution of Q*"¥% #*¢™ can be computed using Proposition 1, where Ay = A,
pr = p, and Ug(z) = €%,

Thus, we have

C Z CO 2 Csingle itcm(S*),

which means that if C under the No B/C strategy is close to C*"% #™(S5*) then the
No B/C Strategy is close to optimal.
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7 Computational Method

In this section, we describe how we computed the cost of the No B /C strategy given by
expression (5), and how we tried to minimize it. There are two parameters over which
to minimize: the partition of the items into the priority classes, A and B/C, and the
vector S of order-up-to levels for the A items.

7.1 ~ Partitioning the Items

Minimization with respect to the partition was done by brute force enumeration. We
looked at various (A, B/C) partitions of the items and calculated the optimal cost
under each partition. We then took the lowest cost partition as our answer.

To ensure our answer minimized expression (5), we would have to consider all 2V
possible partitions. This number is prohibitively large for values of N in our region of
interest, i.e. N > 200. So we only considered partitions that were simple splits. That
is to say, we ranked the items by demand rate and only considered partitions of the
form where the A class consisted of the n highest demanded items, and the B /C class
of the remaining N — n lower demand items.

We chose to consider simple splits because we expected them to contain an optimal or
near-optimal solution to expression (5). We found that to be the case for small values
of N for which we could examine all possible subsets. When considering 15 values of
p between 0.5 and 1, with various demand profiles for 2, 3, 4, and 5 items, and with
h =1 and p =2,10,20, we found that a simple split was optimal in all cases.

Unfortunately, we have not been able to prove the optimality of simple splits, nor an
error bound resulting from the restriction to simple splits.

7.2 Computing the Cost

To find the value of expression (5), we need to compute g;(S;) for all the A items, and
EQ; for all the items. The latter is computed using the following lemma:

Lemma 4
Ai

EQ; = 2EQ. Vie A (17)
Ag

The same result holds with A replaced by B/C.

Proof: Without loss of generality, fix i € A.

BQi = Y kPIQi=#] (18)
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_ g;g;k(’;‘) (%)k(l—:\%)m—kP[QA=m] (20)
- Srec-af (D) (2) (-5 e
= ¥ PlQa=ming® (22)
- :\im:mp[m:m] (23)
- %EQA, (24)

where equation (19) follows from equation (15), and equation (20) from Tonelli’s Theo-
rem. The second sum in equation (21) is just the expected value of a binomial random
variable with mean mA;/A4. O

Jaiswal [8], p. 96, gives formulas for EQ4 and EQp/c. In our case of unit service times,
they reduce to:

1 1 AsA + A
EQ4s = —— )\A+_.__f‘_££9_.__é.]’
1 - pB/c 2 l—p
1 Aye

E = pmjotz .
@s/c LRl p—

Given a partition of the items into the two priority classes, expression (5) is minimized
by setting S; = S7 for all the A items, where Sf is given by equation (4). We need
to know only the first few values of the distribution of @; in order to compute Sr and
then to calculate g;(S}) as given by equation (3). Equation (15) gives a formula for
P[Q; = k], but it involves an infinite sum of P[Q4 = m] terms. We use Proposition 2
to calculate P[Q4 = m] in terms of P[Qa = 0], P[Q4 = 1],..., P[@4 = m — 1]. Since
we can only calculate a finite number of these terms, we approximate P[Q; = k] by
fitting a tail with geometric decay to the distribution of Q4:

prrtgioi = 2 (7)(2) (1) o=

m=k

> (1) (;{\—) (1-%)m_k PlQs =T} (25)

m=T+1
T-1 m /\i k )\i m—k
- 206 (-2)
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{PlQa =m] - PQ4 =TT}
LPRa=T] 1 )( ¥ ) (26)

rT 1——7‘(1——:\’%

where ' > k, and P[Q4 =0],..., P[Q4 = T] are known, and r = (1 + %)-1

so that these tail probabilities complete the distribution: i.e. YT oPlQs = m] +
m=T+1 Pl@4 = T]r™ T = 1. (See the appendix for the derivation of the last equality.)

When evaluating the quality of this approximation, we observed that the ratio of suc-
cessive probabilities of number in system for both the A and B/C classes quickly
converged to the value used as the ratio in the fitted tail, although the speed of conver-
gence appeared to be inversely related to p. Further empirical evidence of the accuracy

of this approximation was that the computed cost was insensitive to changes in T for
T >5.

In order to get a sense of how accurate our approximation was to P[Q; = k], we also
computed

o= = S (T)(2) (1-2) pea=m e

and B
S0 (-2) renen
= Z ™ (—’—\—) (1- ;(\—)m (P[Qa = m] - PQa =TI}
e (29)
4

(See the appendix for the derivation of the last equation). PLP is simply equation (15)
with the sum truncated at 7', while PUB involves replacing the tail probabilities (i.e.
PlQ4 =m], m > T) with P[Q4 = T). Thus, provided T is sufficiently large so that
PlQa=m]< P[Qa=T]forallm>T,

PU(Q4 = k] < P[Qa = K < PUB[Q, = K]. (29)
Note also that
P(Qa = K < Po™e(Q, = K] < PUP[Q, = ] (30)

16



Equation (29) implies that _

S; <87 <S5, (31)
where S is given by equation (4), and S; and S; are given by equation (4) with P
replaced by PUB and PL®, respectively. We would also like to replace P in equation
(3); the following definition replaces P with P*:

Si~1
gi(S)) = p(EQi—=S)+(h+p) 3 (Si—k)P'Q: = k.
N . k=0
Then,
. LB(G.) < gkB(S*) < ¢:;(S*) < gYB(SH) < UB(g.). 32
g M gi%(S) < 9 (S) S alSH) <0 (57) <  max g7(5) (32)

The outer inequalities follow from inequalities (31), while the inner inequalities follow
from inequalities (29).
Let us define several cost functions:

n

N
C¥mn) = Y min_g"2(S))+ Y pEQ;,

i=1 ;<SS fzn41
n N
UB = 'UB Si E iy
C%(n) ;ﬁigls?g_s_ig, ( )+i=§1p Q
n N
CNoBIC(n) = Y g:(S))+ Y pEQ;, (33)
=1 t=n+41
- n - N
CNeBIC(n) = g™ (S7)+ > pEQ:, (34)
1=1 t=n+41

where 5% is given by equation (4) with P*?™* in place of P. Note that CN°5/(n) =
ming CN°B/C(S, {1,...,n}), which is to say that CV°B/C(n) gives the minimum cost
of expression (5) for fixed A.

It then follows from inequalities (32) that
CLB(n) < CN°B/C(n) < CYB(n). (35)

Inequalities (31) also hold with 57 in place of S} (from inequalities (30)), so then the
relation analogous to inequalities (32) also holds:

min_ gF2(S:) < gF2(5}) < gi™7(57) < ¢P(5) < _max_ 6”%(S).

5,<8: <5 T 5,85
Thus,
CE8(n) < CN°BIC(n) < CVB(n). (36)
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We found we could make CL8 and C'UB arbitrarily close by increasing the cutoff point,
T. Hence, by inequalities (35) and (36), CN°B/C was arbitrarily close to CN°B/C 5o
our approximation was essentially exact to within the precision of the machine.

Thus, when the cost of the No B/C strategy is quoted, we are using CNoB/C Figure 1
gives some examples of CVB/C,

7.3 Summary of Computational Method

We compute C*"#% item(G*) ' the lower bound, and C~’N°B/C(n), forn =1,...,N, the
minimum of which we take as the cost of the No B/C strategy. (Note that CVoB/C(Q) >
5’N°B/C(N), since S = 0 is a possible solution to the latter. Thus, the n = 0 case need
not be considered.)

We calculate these costs by first computing the first few class probabilities. When
there is only a single priority class (which occurs in the single item situation and
when n = N), we use the formulas from Proposition 1. When there are two priority
classes (i.e.n = 1,..., N — 1), the formulas from Proposition 2 are used to compute
the class A probabilities. With both formulas, logarithms are used to control the size
of the factorial terms. Logarithms are also used to evaluate b®)(AL), since it would
increase roughly one thousand fold in absolute value with each higher derivative. b(AL)
is determined from equation (7) numerically, using the bisection method.

For each A item i, P*"™ is computed using equation (26), where the cutoff point, T,

is determined experimentally so that the cost is unchanged by further increases in 7.
Then S7, ¢/**"*(S7), and finally C¥°B/C(n) are computed.

The same formulae were used to calculate each item’s cost in the case of a single priority
class; only the computation of the class probabilities changed.

8 Results

In this section, we present numerical results for several cases and make some inferences
based on those results. The analytical model is parameterized by the number of items
(N), their arrival rates ();), and the holding and backorder costs (h and p).

Once again, we index the items from highest to lowest demand rate. We require the
capacity utilization or traffic intensity, p, to be less than 1 so that the steady-state is
meaningful and our formulas apply. Since we have unit service times,

1>/\12)\22"'2)\N>0
and

M+ A+ 4 Ay =p.
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Cost of No B/C Strategy vs. the Number of A ltems
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Figure 1: The above graphs give the cost of the No B/C strategy as a function of the
number of A items, n, where A always consists of the n highest demanded items (i.e.
A = {1,...,n}). In all the cases, there were 500 items (N = 500) and unit holding
costs (b = 1). This figure illustrates the three basic shapes we observed for the cost
function CN°B/C. The graph in (a) is monotone increasing, then monotone decreasing.
In this case, the minimum split was to have all the items in the A class, which is just
the FCFS solution. In some cases when we have this shape of graph, the first point has
been the minimum: i.e. A = {1}. The graphs in (b) and (d) are monotone decreasing,
then monotone increasing so that there is a local minimum. This is the more “typical”
case we observed. The graph in (c) is monotone decreasing, then monotone increasing,
then monotone decreasing again, so that it has both a local maximum and a local
minimum.
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No B/C Strategy FCFS Strategy

Lower Bound Cost Total Total Cost

p on Cost (1) |A]  Inventory Inventory (2) (1)/(2)
0.6 $2.72 $10.50 100% 0 0 $10.50 100%
0.65 $3.09 $12.54  100% 0 0 $12.54 100%
0.7 $3.68 $14.97 6% 2 0 $15.17 99%
0.75 $4.51 $17.48  12% 4 0 $18.75 93%
0.8 $5.65 $20.22  20% 7 0 $24.00 84%
0.85 " - $7.64 $23.81  28% 10 2 $32.52 73%
- 0.9 $11.62 $30.21  38% 15 15 $45.77 66%
0.95 $23.59 $45.83  36% 28 36 $72.73 63%
0.99 $119.50 $145.49 32% 126 156 $215.75 67%
0.995 $239.39 $265.96 32% 245 290 $358.99 74%
0.999 $1198.55 $1225.60 32% 1204 1281 $1374.96 89%

Table 1: N=250, h=1, p=10

So that the demand pattern follows the 80/20 rule of the standard A /B/C classification
described in Section 1, we require that

At+ A4+ Alozn) = 0.8p.

We wanted to automatically generate the items’ individual arrival rates given N and
p- So we added the following additional constraint to determine uniquely the arrival
rates: \ \
i+1 2 -
—/T,'— = -/-\—1- Vi= 1,2,...,N'—1.

Tables 1-4 present the results for 250 and 500 items at various traffic intensities with
two different backorder costs. Observe that the absolute difference between the cost
of the No B/C strategy and the lower bound seems relatively insensitive to changes in
the traffic intensity, which means that the relative difference gets smaller as the traffic
intensity increases (along with the cost). Thus, for high traffic intensities, the No B /C
strategy appears to be a “near-optimal” strategy.

The cost advantage of the No B/C strategy over the FCFS strategy improves with
higher traffic intensities, although the improvement begins to diminish at the highest
traffic intensities. The maximum advantage seems to occur around p = 0.95 where the
No B/C strategy cost is some 60% of the cost of the FCFS strategy.

As the traffic intensity increases, the maximum inventory level (i.e. the sum of the order-
up-to levels) tends to increase more slowly under No B/C than FCFS, although the No
B/C strategy sometimes carries more inventory than FCFS at low traffic intensities.
The percent of total demand accounted for by the A class under the No B /C strategy
(indicated by |A|) seems to increase somewhat with increasing traffic intensity, but
then begins to trail off for the highest traffic intensities.
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No B/C Strategy FCFS Strategy

Lower Bound Cost Total Total Cost
p on Cost (1) |A| Inventory  Inventory (2) (1)/(2)
0.6 $4.33 $39.42  42% 17 17 $47.32 83%
0.65 $4.99 $42.30 46% 19 22 $52.90 80%
0.7. - - $5.92 $45.29 51% 22 28 $59.00 7%
0.75 $7.26 $48.68  55% 25 34 $66.00 4%
0.8 $9.21 $53.09  59% 28 42 $74.61 1%
0.85 $12.50 $60.23  64% 32 52 $86.51 70%
0.9 $19.02 $74.02 67% 43 65 $107.16 - 69%
0.95 $38.67 $101.27 59% 66 106 $155.19 65%
0.99 $195.94 $269.63  54% 226 322 $392.11 69%
0.995 $392.53 $468.19 52% 423 547 $626.97 5%
0.999 $1965.26 $2042.56 51% 1994 2193 $2289.08 89%
Table 2: N=250, h=1, p=50
No B/C Strategy FCFS Strategy
Lower Bound Cost Total Total Cost
p on Cost (1) |A| Inventory  Inventory (2) (1)/(2)
0.6 $2.72 $10.50 100% 0 0 $10.50 100%
0.65 $3.09 $12.54  100% 0 0 $12.54 100%
0.7 $3.68 $15.17  100% 0 0 $15.17 100%
0.75 $4.51 $18.75  100% 0 0 $18.75 100%
0.8 $5.65 $23.21 6% 4 0 $24.00 97%
0.85 $7.64 $28.20 13% 9 0 $32.58 87%
0.9 $11.62 $35.33  21% 15 0 $49.50 1%
0.95 $23.59 $53.30 21% 30 30 $92.27 58%
0.99 $119.50 $156.02 24% 128 168 $269.11 58%
0.995 $239.39 $277.04 24% 248 314 $432.74 64%
0.999 $1198.55 $1237.15 23% 1207 1337 $1503.18 82%

Table 3: N=500, h=1, p=10
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No B/C Strategy

FCFS Strategy

Lower Bound Cost Total Total Cost

p on Cost (1) |A| Inventory  Inventory (2) (1)/(2)

0.6 $4.33 $49.01 18% 12 0 $52.50 93%
0.65 $4.99 $54.21 24% 17 1 $62.67 86%

0.7 $5.92 $59.23  30% 22 13 $74.46 80%
0.75 $7.26 $64.33  35% 27 26 $87.65 73%

0.8 . - %9.21 $69.99  40% 32 41 $103.20 68%
0.85 $12.50 $77.50  46% 38 60 $123.00 63%
0.9 $19.02 $91.59  53% 47 86 $152.19 60%
0.95 $38.67 $125.62 44% 72 130 $216.96 58%
0.99 $195.94 $301.11 41% 236 395 $517.17 58%
0.995 $392.53 $501.19 40% 435 645 $786.61 64%
0.999 $1965.26 $2076.65 39% 2005 2356 $2539.06 82%

Table 4: N=500, h=1, p=50

Demand and Inventory Profiles
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Percentage
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Figure 2: These graphs should be read in the following way. The cumulative demand
graph is 80% at 50, which means that the 50 highest demanded items account for 80%
of total demand. The cumulative inventory graphs have a similar interpretation, where
inventory is measured by the order-up-to levels. For example, the cumulative inventory
graph for the No B/C Strategy hits 100% at 24, which means that inventory is only
carried in the first 24 items (i.e. $; > 0fori =1,..., 24, and S; = 0 for the remaining
items, 7 = 25,..., N). The parameters in this case were N = 250, p=0.99, h = 1 and

p = 50.
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Figure 2 highlights how the inventory profile differs between the No B/C strategy and
the FCFS strategy. Under FCFS, the inventory profile mirrors the demand profile,
since each item is stocked independently. Under the No B/C strategy, inventory is
concentrated in the high demand items.

9 Summary

In this paper, we have described a production and inventory strategy that we feel
is a good and quite general approach in the context that many industrial suppliers
face. While we are just beginning our evaluation of this strategy, the basic idea of
giving production priority to the make-to-order, low demand items while concentrating
inventory in the high demand items has worked well in certain applications.

To examine the strategy more rigorously, we created a model of a manufacturing en-
vironment that was tractable and also somewhat disadvantageous to our strategy. We
were able to compute the exact cost under this model, as well as a lower bound on
the cost of the (unknown) optimal strategy. For higher traffic intensities, the No B/C
strategy was significantly cheaper than the more traditional FCFS strategy, and its
cost was relatively close to the lower bound. We feel this demonstrates the utility of
the No B/C strategy.

10 Future Research

The analytical model could be extended in several ways. Other service time distribu-
tions should be considered, as well as different arrival processes, such as batch arrivals.
We ultimately want to study our more realistic model, which includes setups and due
dates. As such models are likely to be intractable analytically, we intend to perform
simulation experiments.
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A Proofs of the Propositions

A.1 Proofs of Equations (26) and (28)

The second sum in equation (25) can be written in terms of sums beginning at k:
e Comeri1 = ek — Lom=k- The T _, term, when combined with the first sum in
equation (25), gives the first sum of equation (26). Note that the upper limit of the
sum is-now T — 1, because the term for m = T is zero. It remains to show that the
2m=k term equals the last term of equation (26):

£ 0) () (-2) " nes-re

SO (o)

mz==k

Nk
() PlQa=T) K
- T~k N1 k+1

N )

A k

_ PlQa=T] 1 3

rf I=r(l=g) \r =142 )

The middle equality is an application of the identity

gn(n—l) “(n—k+1)a" a—_—_—%-)—a;,k 0,1,2,. (37)

whlch follows from the Corollary on p. 173 of Rudin [13] for the power series % ; a™ =
1=, for |a| < 1. Note that r and —3— are both less than 1.

Equatlon (28) is derived in exactly the same way (i.e. by applying equation (37) again).

A.2 Proof of Proposition 2
A.2.1 Proof of (14)
Note that b(8) satisfies

b(0) = Un(Au(1l-5(0))+96)

e—(Am(1-5(6))+6)
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The first equality is just equation (7), and the second is due to the unit processing
times which result in Ug(z) = e™®. Clearly, 5(6) > 0 for all 8 since e® > 0 for all z.
Taking logarithms of both sides yields

In(b(0)) = —(Ag(1 — b(0)) + 9).
Taking derivatives of both sides with respect to 8 yields

—b(9)

b0O) = = Arb(0)’

(38)

which proves equation (14) for ¥ = 1. Assume equation (14) is true for some k£ > 1,
and thus

(1= Ab(0))6(6) = ~b+=(6) + A }: ( )b(’) ()69 (0).
Differentiating both sides with respect to 8 yields
(1= XbO)B+(0) = At ()50
= —b®)(g) + ’\HZ (k 1){5(.7-1-1)( )b(k-j)(g) + b(i)(g)b(k—j+1)(g)}

= —bW(0) + Ay 5_: { (f : i) + (k 'J’ 1)} b ()31 (9) +

j=2

A { (: ~ i) + (’“ ‘1' 1) } 5D (9)6(4)(9).

The last equality follows by writing the sum as two sums and replacing the index j of
the first sum with j — 1, then recombining the sums. Using the identity

o)+ (5 -6) o

the previous equation can be rewritten as

(1= Amb(8))5*D(9) = ~b(’°)(9)+

An { bW (6)6%) () + }: (J)b(” 0)btk+1=1)(9) + b(l)(())b(")(e)} ,

which is just equation (14) with k+1 in place of k and some terms slightly rearranged.
Thus, by induction, equation (14) holds for all ¥ > 1. O

Equation (14) can be made computationally more efficient by grouping like terms:
i.e. grouping 5 (8)6*~1)(9) and 6%~ (9)bl9)(6) terms. That, along with the identity
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(:) = (nfk> and equation (39), yields
69(0) = (1~ Anb(6))"-

(= 6%=9(0) + T ()6D(0)6%9 () + 1 eveg (") 2 (0)]"),

where 1 even} 18 1 if k is even and 0 otherwise. It is this form of 5*) that was used
in our computations.

A.2.2 Proof of Equations (12) and (13)

For a more compact notation, define 5(*) = 6B (AL(1 —0)) and b = b©®. Now we show
that, for £ =1,2,...,

112 (6)(b — )

(1-0p)
1 B0 gy _ = (B y yems pb-s)yrs
T (kn,; Q Z(])( At HL(e))
+ (=) (2= B)b*D 4 (2 — A — A(1 - 9))b*)) (40)

Note that equation (13) follows from equation (40) by equation (10): i.e. by solving
for H(Lk)(O) in equation (40), letting = 0 and dividing by &!. Similarly, equation (12)
follows when 6 is set to 0 in equation (6).

Using ¢(§) = b(0) and rearranging terms in equation (6), we obtain

Io(0)(b~6) _ e
T, = (1= 0)b+ T (1= 0

Differentiating both sides with respect to ¢ yields

IP6)(6—60) _ (1+AbM)II(0)

~b=A(1-0+ -}*i)b“) + 2AgbbV)
L

(1-p) 1—=p
1
_ (4 Afli 2HL(0) b+ (2= An(1 = 0) — Ag)bD, (41)

where the second line follows from the fact that A gbb1) = b4+b1) which can be checked
using equation (38). This proves equation (40) for k& = 1. Assume equation (40) holds
for some k > 1. Define

A(k) = (=A0)* 7 (2 = F)B*D 4 (2= Ag — Ap(1 - 9))6)) .
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Then equation (40) can be rewritten as

(1-p)A(k) = TPO)(b—0) - kIEF ()

+ Z( ) =2 bE=I11) (9).

7=0

Take the derivative with respect to 8 of both sides. The derivative of the RHS is just
the RHS with k£ + 1 in place of k; the required steps are similar to those used to prove
the formula for 5(*)(6). For the LHS:
- dA(k
—(% (=20) =A(2 = B)6® + ApbF) — AL(2 — Ay — AL(1 — 6))p*+Y)]
= (=) 12 = B)6® —b®) + (2 — Ay — A (1 - 0))p+Y)]
A(k +1).
Thus equation (40) holds for k£ + 1 and hence, by induction, for all ¥ > 1. Thus,
equation (13) holds.

A.3 Proof of Proposition 1

The formula for P[Qy = 0] follows from equation (9) by setting § = 0. The formula
for the Qg probabilities, equation (11), is proved the same way as the formula for the
@ probabilities — by proving by induction the following recursive formula for the
generating function for £ > 1:

(1= pa)(=2m)* (RUS™ + Au(1 - )P} =

—11%(0)(Un — 6) + kIS (6) — i ('“) (= ey USTE(9),

=1 \J

where U( )= U(k)()\ (1—0)) and Uy = U(O).

The case k = 1 follows by differentiating equation (9) with respect to . For the
inductive step, one will find each side of the formula is self-differentiable; i.e. that
the derivative of a side yields the same expression but with k£ + 1 in place of k. The

derivative of the right hand side uses steps similar to those used in the proof of the
formula for 5()(9).
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