
May 22, 2008 11:7 WSPC/APJOR 00173.tex

Asia-Pacific Journal of Operational Research
Vol. 25, No. 2 (2008) 169–186
c© World Scientific Publishing Co. & Operational Research Society of Singapore

AN EXACT APPROACH FOR THE SINGLE MACHINE
SCHEDULING PROBLEM WITH LINEAR EARLY

AND QUADRATIC TARDY PENALTIES

JORGE M. S. VALENTE

LIAAD, Faculdade de Economia
Universidade do Porto, Portugal

jvalente@fep.up.pt

Received 29 December 2006
Accepted 11 March 2007

In this paper, we consider the single machine scheduling problem with linear earliness
and quadratic tardiness costs, and no machine idle time. We propose a lower bounding
procedure based on the relaxation of the jobs’ completion times. Optimal branch-and-
bound algorithms are then presented. These algorithms incorporate the proposed lower
bound, as well as an insertion-based dominance test.

The branch-and-bound procedures are tested on a wide set of randomly generated
problems. The computational results show that the branch-and-bound algorithms are
capable of optimally solving, within reasonable computation times, instances with up to
20 jobs.

Keywords: Scheduling; single machine; linear earliness; quadratic tardiness; lower bound;
branch-and-bound.

1. Introduction

In this paper, we consider a single machine scheduling problem with linear earliness
and quadratic tardiness costs, and no machine idle time. Single machine scheduling
environments actually occur in many practical operations (for a specific example in
the chemical industry, see Wagner et al. (2002)). Also, the performance of produc-
tion environments is frequently determined by a single bottleneck machine. Single
processor models are then quite useful for scheduling such a machine. Moreover,
results and insights obtained for single machine problems can often be applied to
more complex scheduling environments, such as flow shops or job shops.

Scheduling models with earliness and tardiness penalties are compatible with a
recent trend in industry, namely the adoption of supply chain management by many
organizations. In this approach, customers and suppliers try to integrate the flow
of materials, in order to improve the efficiency of the supply chain and provide a
better service to the end user. The adoption of supply chain management has caused

169



May 22, 2008 11:7 WSPC/APJOR 00173.tex

170 J. M. S. Valente

organizations to view both early and tardy deliveries as undesirable. Early/tardy
scheduling models are also suited to the philosophy of just-in-time (JIT) production.
In fact, the JIT production philosophy emphasizes producing goods only when they
are needed. Therefore, in a JIT setting an ideal schedule is one in which all jobs are
completed exactly on their due dates.

In this paper, we consider linear earliness and quadratic tardiness costs. On
the one hand, early deliveries or early completions of jobs result in unnecessary
inventory that ties up cash, as well as space and resources required to maintain
and manage the inventory. These costs tend to be proportional to the quantity of
inventory held, and therefore a linear penalty is used for early jobs.

Late deliveries, on the other hand, can result in lost sales and loss of customer
goodwill, and may also cause disruptions in stages further down the production line
or supply chain. We consider a quadratic tardiness penalty, instead of the more usual
linear tardiness or maximum tardiness functions. As described in Sun et al. (1999),
the quadratic penalty may be selected over these two other tardiness measures for
the following reasons.

First, the maximum tardiness performance measure does not distinguish between
schedules where tardiness occurs for all jobs, or only one, as long as the maximum
tardiness is the same. Second, when the linear tardiness function is used, it is pos-
sible that a single or only a few jobs contribute the majority of the cost, without
regard to how the overall tardiness is distributed. In fact, the linear tardiness crite-
rion does not differentiate between sequences where all jobs are only a little tardy,
or a single job is extremely late, providing the total cost is equal. The quadratic
penalty overcomes these problems, and provides a more robust performance mea-
sure. Moreover, a quadratic tardiness penalty is also appropriate in practice. In fact,
tardiness represents an important attribute of service quality. Also, as proposed in
the loss function of Taguchi (1986), a customer’s dissatisfaction tends to increase
quadratically with the tardiness.

We assume that no machine idle time is allowed. This assumption is actually
appropriate for many production settings. In fact, when the capacity of the machine
is limited when compared with the demand, the machine must indeed be kept
running in order to satisfy the customers’ orders. Also, the assumption of no idle
time is justified when the machines have high operating costs. Furthermore, idle
time must also be avoided when starting a new production run involves high setup
costs or times. Some specific examples of production settings where the no idle time
assumption is appropriate, have been given by Korman (1994) and Landis (1993).

Formally, the problem we consider can be stated as follows. A set of n indepen-
dent jobs {J1, J2, . . . , Jn} has to be scheduled on a single machine that can handle
at most one job at a time. The machine is assumed to be continuously available
from time zero onwards, and preemptions are not allowed. Job Jj , j = 1, 2, . . . , n,
requires a processing time pj and should ideally be completed on its due date dj .
For a given schedule, the earliness and tardiness of Jj are respectively defined as
Ej = max{0, dj − Cj} and Tj = max{0, Cj − dj}, where Cj is the completion time
of Jj . The objective is then to find a schedule that minimizes the sum of linear



May 22, 2008 11:7 WSPC/APJOR 00173.tex

An Exact Approach for the Single Machine Scheduling Problem 171

earliness and quadratic tardiness costs
∑n

j=1(Ej + T 2
j ), subject to the constraint

that no machine idle time is allowed.
This problem has been previously considered by Valente (2006). He presented

several dispatching heuristics, and analyzed their performance on a wide range
of instances. Schaller (2004) considered the corresponding problem with inserted
idle time. He presented a timetabling procedure to optimally insert idle time in a
given sequence, as well as a branch-and-bound procedure and simple and efficient
heuristics.

The single machine early/tardy problem with linear earliness and tardiness costs∑n
j=1(Ej +Tj) has also been previously considered by Garey et al. (1988) and Kim

and Yano (1994). Garey et al. (1988) showed that the problem is NP-hard, and
proposed a timetabling procedure. Kim and Yano (1994) presented some properties
of optimal solutions, and developed both optimal and heuristic algorithms.

The minimization of the quadratic lateness
∑n

j=1 L2
j , where the lateness of Jj is

defined as Lj = Cj −dj , has also been previously considered. Gupta and Sen (1983)
presented a branch-and-bound algorithm and a heuristic rule for the problem with
no idle time. Su and Chang (1998) and Schaller (2002) considered the insertion
of idle time, and proposed timetabling procedures and heuristic algorithms. Sen
et al. (1995) presented a branch-and-bound algorithm for the weighted problem∑n

j=1wjL
2
j where idle time is allowed only prior to the start of the first job. Baker

and Scudder (1990) provide an excellent survey of scheduling problems with ear-
liness and tardiness penalties, while Kanet and Sridharan (2000) give a review of
scheduling models with inserted idle time that complements our focus on a problem
with no machine idle time.

In this paper, we first develop a lower bounding procedure. An optimal branch-
and-bound algorithm that incorporates this lower bound, as well as an insertion-
based fathoming test, is then proposed. The branch-and-bound procedure is then
tested on a wide set of randomly generated problems.

The remainder of this paper is organized as follows. The lower bounding proce-
dure is described in Sec. 2. In Sec. 3, we discuss the implementation details of the
branch-and-bound algorithm. The computational results are presented in Sec. 4.
Finally, some concluding remarks are given in Sec. 5.

2. Lower Bounding

In this section, we first propose a lower bounding procedure based on a relaxation
of the completion times. Then, we present special cases in which the lower bounding
procedure provides the optimum objective function value. Finally, we discuss the
generalization and applicability of the lower bounding technique to other objective
functions.

2.1. The lower bounding procedure

In this section, we propose a lower bound for the linear earliness/quadratic tardi-
ness problem. For convenience, and without loss of generality, it will be assumed



May 22, 2008 11:7 WSPC/APJOR 00173.tex

172 J. M. S. Valente

throughout this section that we wish to calculate a lower bound for a sequence that
starts at time t = 0. This makes the presentation of the lower bound easier and
clearer, and the extension of the lower bound to partial sequences that start at any
time t > 0 is straightforward.

Let Z denote the objective function of the considered problem, i.e. Z =∑n
j=1(Ej + T 2

j ) =
∑n

j=1 max(dj − Cj , 0) +
∑n

j=1[max(Cj − dj , 0)]2. Also, let [j]
denote the job in the jth position in a sequence. In order to derive the lower bound,
we consider a relaxation of the completion times Cj . Let CLPT

l be the sum of the
processing times of the first l jobs, when the jobs are ordered in longest processing
time (LPT) order (i.e. p[j] ≥ p[k] for j < k). Similarly, let CSPT

l be the sum of the
processing times of the first l jobs, when the jobs are ordered in shortest processing
time (SPT) order (i.e. p[j] ≤ p[k] for j < k).

We can now define a modified objective function Z ′ by replacing the completion
times Cj in Z with CLPT

l and CSPT
l . More precisely, the modified objective function

Z ′ is defined as Z ′ =
∑n

j=1 max(d[j] − CLPT
j , 0) +

∑n
j=1[max(CSPT

j − d[j], 0)]2. For
any given sequence, we have Z ′ ≤ Z, since CLPT

j ≥ C[j] and CSPT
j ≤ C[j]. Let dEDD

j

denote the due date of the jth job, when the jobs are ordered in earliest due date
(EDD) order (i.e. d[j] ≤ d[k] for j < k). Finally, let Z ′

EDD =
∑n

j=1 max(dEDD
j −

CLPT
j , 0) +

∑n
j=1[max(CSPT

j − dEDD
j , 0)]2.

Theorem 2.1. Z ′
EDD ≤ min Z, i.e. Z ′

EDD is a lower bound for the optimal objective
function value of the linear earliness/quadratic tardiness problem.

Proof. As previously mentioned, we have Z ′ ≤ Z for any specific sequence. There-
fore, it is sufficient to prove that Z ′

EDD = min Z ′, since we then have Z ′
EDD ≤ Z for

all possible sequences. This will be done by contradiction. Consider a schedule S in
which jobs j and i are scheduled in positions l1 and l2, respectively, with l1 < l2
and dj > di. Therefore, jobs i and j are not scheduled in EDD order. Also consider
a schedule S′ that is identical to S, except for the fact that the positions of jobs i

and j have been interchanged. We must show that Z ′(S′) ≤ Z ′(S).
Since only the positions of jobs i and j are different in schedules S and S′,

all other jobs k, with k �= i, j, occupy the same positions in both schedules. The
contribution of those jobs k to Z ′ is therefore identical in schedules S and S′. Hence,
it suffices to compare the contributions of jobs i and j to Z ′.

We first consider the change that may occur in the first part of Z ′, i.e. the
change in the term

∑n
j=1 max(d[j] − CLPT

j , 0). Let E(S) denote the sum of the
contributions of jobs i and j to the term

∑n
j=1 max(d[j] − CLPT

j , 0) in schedule S.
Therefore, we have E(S) = max(dj − CLPT

l1
, 0) + max(di − CLPT

l2
, 0) and E(S′) =

max(di−CLPT
l1

, 0)+max(dj −CLPT
l2

, 0). Also let ∆E = E(S′)−E(S). The following
three cases must then be considered.

Case 1. CLPT
l2

< di < dj . We have E(S) = dj − CLPT
l1

+ di − CLPT
l2

and E(S′) =
di − CLPT

l1
+ dj − CLPT

l2
. Therefore, ∆E = 0.



May 22, 2008 11:7 WSPC/APJOR 00173.tex

An Exact Approach for the Single Machine Scheduling Problem 173

Case 2. di ≤ CLPT
l2

≤ dj . In this case, we have E(S) = dj − CLPT
l1

and E(S′) =
max(di −CLPT

l1
, 0) + dj −CLPT

l2
. We then have ∆E = max(di −CLPT

l1
, 0) +

CLPT
l1

− CLPT
l2

= max(di, C
LPT
l1

) − CLPT
l2

. Therefore, ∆E ≤ 0, since di ≤
CLPT

l2
and CLPT

l1
< CLPT

l2
.

Case 3. di < dj < CLPT
l2

. We have E(S) = max(dj−CLPT
l1

, 0) and E(S′) = max(di−
CLPT

l1
, 0). Consequently, ∆E = max(di − CLPT

l1
, 0) − max(dj − CLPT

l1
, 0).

Therefore, we have ∆E ≤ 0, since di < dj .

We now consider the change in the second part of Z ′, i.e. the change in the
term

∑n
j=1[max(CSPT

j − d[j], 0)]2. Let T (S) denote the sum of the contributions of
jobs i and j to the term

∑n
j=1[max(CSPT

j − d[j], 0)]2 in schedule S. We then have
T (S) = [max(CSPT

l1
− dj , 0)]2 + [max(CSPT

l2
− di, 0)]2 and T (S′) = [max(CSPT

l1
−

di, 0)]2 + [max(CSPT
l2

− dj , 0)]2. Also let ∆T = T (S′) − T (S). The following three
cases must be considered.

Case 1. CSPT
l2

< di < dj . In this case, we have T (S′) = T (S) = 0, so ∆T = 0.
Case 2. di ≤ CSPT

l2
≤ dj . We have T (S) = (CSPT

l2
−di)2 and T (S′) = [max(CSPT

l1
−

di, 0)]2. Consequently, ∆T = [max(CSPT
l1

− di, 0)]2 − (CSPT
l2

− di)2. There-
fore, we have ∆T ≤ 0, since CSPT

l1
< CSPT

l2
and di ≤ CSPT

l2
.

Case 3. di < dj < CSPT
l2

. In this case, we have T (S) = [max(CSPT
l1

− dj , 0)]2 +
(CSPT

l2
− di)2 and T (S′) = [max(CSPT

l1
− di, 0)]2 + (CSPT

l2
− dj)2. We then

have ∆T = [max(CSPT
l1

− di, 0)]2 + (CSPT
l2

− dj)2 − [max(CSPT
l1

− dj, 0)]2 −
(CSPT

l2
−di)2. In order to simplify the analysis, this case can now be divided

in three further subcases.
Case 3a. CSPT

l1
< di < dj < CSPT

l2
. In this situation, we have ∆T = 0 + (CSPT

l2
−

dj)2−0−(CSPT
l2

−di)2. Therefore, we have ∆T < 0, since di < dj < CSPT
l2

.
Case 3b. di ≤ CSPT

l1
≤ dj < CSPT

l2
. We now have ∆T = (CSPT

l1
−di)2+(CSPT

l2
−dj)2−

0− (CSPT
l2

−di)2. Let A = CSPT
l2

−dj , B = dj −CSPT
l1

and C = CSPT
l1

−di.
We then have ∆T = C2 + A2 − (A + B + C)2. Therefore, ∆T ≤ 0, since
with A, B, C ≥ 0 we have (A + B + C)2 ≥ C2 + A2.

Case 3c. di < dj < CSPT
l1

< CSPT
l2

. We now have ∆T = (CSPT
l1

−di)2+(CSPT
l2

−dj)2−
(CSPT

l1
− dj)2 − (CSPT

l2
− di)2. Let A = CSPT

l2
−CSPT

l1
, B = CSPT

l1
− dj and

C = dj −di. We then have ∆T = (B+C)2 +(A+B)2−B2−(A+B+C)2,
with A, B, C > 0. Expanding the squared terms and simplifying, we obtain
∆T = −2AC < 0.

For all the situations considered, we have ∆E ≤ 0 and ∆T ≤ 0. Hence, schedul-
ing jobs i and j in EDD order gives a lower value for Z ′. Consequently, we have
Z ′

EDD = min Z ′ and Z ′
EDD ≤ min Z, which concludes the proof.

2.2. Special cases

In this section, we present three special cases in which the lower bound is equal to
the optimum objective function value. Let C∗

j and d∗j denote the completion time



May 22, 2008 11:7 WSPC/APJOR 00173.tex

174 J. M. S. Valente

and the due date, respectively, of the job scheduled in the jth position in an optimal
sequence. Also, let Z∗ =

∑n
j=1 max(d∗j − C∗

j , 0) +
∑n

j=1[max(C∗
j − d∗j , 0)]2 denote

the optimum objective function value. The following theorem provides three cases
in which Z ′

EDD = Z∗.

Theorem 2.2. Z ′
EDD = Z∗, i.e. the lower bounding procedure gives the optimum

objective function value, for each of the following cases :

Case 1. the EDD sequence is optimal and pj = p, for all j;
Case 2. the EDD sequence is optimal, contains no tardy jobs, and is identical to

the LPT sequence;
Case 3. the EDD sequence is optimal, contains no early jobs, and is identical to the

SPT sequence.

Proof. For each of the three cases, we must show that the value provided by the
lower bounding procedure is indeed equal to the objective function value of the
optimal sequence.

Case 1. Given that the EDD sequence is optimal, we then have dEDD
j = d∗j , for all j.

Also, since the processing times are identical for all jobs, we have CLPT
j =

CSPT
j = C∗

j , for all j. Therefore, Z ′
EDD =

∑n
j=1 max(dEDD

j − CLPT
j , 0) +∑n

j=1[max(CSPT
j − dEDD

j , 0)]2 =
∑n

j=1 max(d∗j − C∗
j , 0) +

∑n
j=1[max(C∗

j −
d∗j , 0)]2 = Z∗, so the lower bound is equal to the optimum objective function
value.

Case 2. Since the EDD sequence is optimal, we again have dEDD
j = d∗j , for all

j. Furthermore, the EDD and LPT sequences are identical, so CLPT
j =

C∗
j . Given that the optimal sequence contains no tardy jobs, we then

have
∑n

j=1[max(C∗
j − d∗j , 0)]2 = 0 and Z∗ =

∑n
j=1 max(d∗j − C∗

j , 0) =∑n
j=1 max(dEDD

j −CLPT
j , 0). Also, we have

∑n
j=1[max(CSPT

j −dEDD
j , 0)]2 =∑n

j=1[max(CSPT
j − d∗j , 0)]2 = 0, since

∑n
j=1[max(C∗

j − d∗j , 0)]2 = 0 and
CSPT

j ≤ CLPT
j = C∗

j . Therefore, Z ′
EDD =

∑n
j=1 max(dEDD

j −CLPT
j , 0) = Z∗.

Case 3. The EDD sequence is once more optimal, so we have dEDD
j = d∗j , for all

j. Furthermore, since the EDD and SPT sequences are identical, we have
CSPT

j = C∗
j . Given that the optimal sequence contains no early jobs, we

then have
∑n

j=1 max(d∗j − C∗
j , 0) = 0 and Z∗ =

∑n
j=1[max(C∗

j − d∗j , 0)]2 =∑n
j=1[max(CSPT

j −dEDD
j , 0)]2. Also, we have

∑n
j=1 max(dEDD

j −CLPT
j , 0) =∑n

j=1 max(d∗j −CLPT
j , 0) = 0, since

∑n
j=1 max(d∗j −C∗

j , 0) = 0 and CLPT
j ≥

CSPT
j = C∗

j . Therefore, Z ′
EDD =

∑n
j=1[max(CSPT

j −dEDD
j , 0)]2 = Z∗, which

concludes the proof.

2.3. Applicability and extensions

The lower bounding procedure creates a modified objective function, based on a
relaxation of the completion times. For any specific sequence, the value of the modi-
fied objective function value is less than or equal to the value of the original function.



May 22, 2008 11:7 WSPC/APJOR 00173.tex

An Exact Approach for the Single Machine Scheduling Problem 175

The EDD ordering for the due dates is then shown to minimize the modified objec-
tive function, therefore providing a lower bound for the original objective. In this
section, we present previous applications of this technique, and its generalization
and applicability to other objective functions.

This lower bounding technique was previously used by Azizoglu et al. (1991)
and Valente (2007) for two other early/tardy scheduling problems with no idle
time. Azizoglu et al. (1991) applied this approach to derive a lower bound for the
problem

∑n
j=1[(1 − q)Ej + qTj ], with 0 < q < 1, which is equivalent to the linear

early/tardy problem with job-independent penalties
∑n

j=1(hEj + wTj). Valente
(2007) instead considered the problem with job-dependent penalties and quadratic
costs

∑n
j=1(hjE

2
j + wjT

2
j ). However, in order to derive a lower bound, the job

penalties were first relaxed, in order to obtain a modified problem
∑n

j=1(hminE2
j +

wminT 2
j ), with hmin = min{hj ; j = 1, . . . , n} and wmin = min{wj ; j = 1, . . . , n}.

Therefore, the lower bounding technique was used to derive a lower bound for this
modified problem with job-independent penalties. A somewhat similar approach
was also used by Schaller (2004) for the

∑n
j=1(Ej + T 2

j ) problem with inserted idle
time. Therefore, and even though we focus on problems with no idle time, the lower
bounding technique can also be extended to situations where the insertion of idle
time is allowed.

The results given in this paper, together with those presented by Azizoglu et al.
(1991) and Valente (2007), show that this technique provides a lower bound for each
of the terms

∑n
j=1 Ej ,

∑n
j=1 E2

j ,
∑n

j=1 Tj and
∑n

j=1 T 2
j . Therefore, this approach

can then be used to generate a lower bound for problems whose objective function is
a convex combination of any of these four terms. This includes scheduling problems
minimizing a sum of linear and/or quadratic earliness and tardiness, as well as
problems with job-independent penalties.

The lower bounding technique is actually even more general since it can be
used to obtain a lower bound for cubic and higher powers of the earliness and/or
tardiness. Indeed, this approach yields a lower bound for any power a ≥ 1. Let
Ea =

∑n
j=1 Ea

j and T a =
∑n

j=1 T a
j . Also, let Ea

EDD =
∑n

j=1[max(dEDD
j −CLPT

j , 0)]a

and T a
EDD =

∑n
j=1[max(CSPT

j −dEDD
j , 0)]a. Therefore, in the problem considered in

this paper we have Z = E1+ T 2 and Z ′
EDD = E1

EDD+ T 2
EDD. The following theorem

shows that the lower bounding technique can be generalized to all powers a ≥ 1.

Theorem 2.3. Ea
EDD ≤ min Ea and T a

EDD ≤ min T a for a ≥ 1, i.e. Ea
EDD and

T a
EDD provide a lower bound for the optimal objective function value of the

∑n
j=1 Ea

j

and
∑n

j=1 T a
j functions, respectively.

Proof. The results previously given in this paper, as well as those developed by
Azizoglu et al. (1991) and Valente (2007), have already showed that the theorem
is valid for a = 1, 2. A proof similar to those previously presented for these linear
and quadratic functions could also be used to show that the same applies to other
values of a. For brevity, however, we will remark that all the cases and subcases
that would have to be considered in the general proof can be classified into one of



May 22, 2008 11:7 WSPC/APJOR 00173.tex

176 J. M. S. Valente

three categories. In the remainder of this proof, we first illustrate these categories
with an example from the proof we previously presented for Theorem 2.1. More
specifically, we will use as examples some of the cases considered for the quadratic
tardiness component of our objective function. Then, we show that the proof given
for that case is also valid for a general power a ≥ 1.

Category 2.1. In this category, the proof of the case is obvious from the relations
between the due dates and the completion times. For example, consider the proof
of Case 2. In this case, we have di ≤ CSPT

l2
≤ dj , and the proof for a = 2 requires

that [max(CSPT
l1

− di, 0)]2 − (CSPT
l2

− di)2 ≤ 0. Therefore, the proof for a general
a ≥ 1 would require that [max(CSPT

l1
− di, 0)]a − (CSPT

l2
− di)a ≤ 0. This inequality

does hold, since CSPT
l1

< CSPT
l2

and di ≤ CSPT
l2

.

Category 2.2. In this category, the case can be proved by showing that Ca +Aa−
(A+B+C)a ≤ 0. Case 3b gives an example of this category, since its proof requires
that C2 + A2 − (A + B + C)2 ≤ 0. Since we have A, B, C ≥ 0, it is then clear that
we have Ca + Aa − (A + B + C)a ≤ 0.

Category 2.3. In this final category, the case can be proved by showing that
(B +C)a +(A+B)a −Ba − (A+B +C)a ≤ 0. Case 3c provides an example of this
category. We first recall that A, B, C ≥ 0. Newton’s binomial theorem can then be
used to expand the expression (B+C)a+(A+B)a−Ba−(A+B+C)a. It is then clear,
from the expanded expression, that we have (B+C)a+(A+B)a−Ba−(A+B+C)a ≤
0. For the sake of brevity, we omit the details.

The lower bounding technique, however, cannot be used to obtain a lower bound
for some other earliness and/or tardiness cost functions. In fact, simple counterex-
amples show that the approach fails for objective functions with powers 0 < a < 1.
Also, as previously mentioned, the technique is appropriate for objective functions
that minimize a simple sum of earliness and tardiness costs, as well as for problems
with job-independent penalties. However, this approach is not suited to the min-
imization of objective functions with job-dependent penalties, such as

∑n
j=1 hjE

2
j

or
∑n

j=1 wjTj . As described above, Valente (2007) considered the problem with
job-dependent penalties

∑n
j=1(hjE

2
j + wjT

2
j ). Nevertheless, a relaxation of the job

penalties was first performed, and the lower bounding technique was then applied
to a modified problem with job-independent penalties.

3. Branch-and-Bound Procedure

In this section, we discuss the implementation details of the branch-and-bound
algorithm. We use a forward-sequencing branching rule, where a node at level l

of the search tree corresponds to a sequence with l jobs fixed in the first l positions.
The depth-first strategy is used to search the tree, and ties are broken by selecting
the node with the smallest value of the associated partial schedule cost plus the
associated lower bound for the unscheduled jobs. The tie-breaking strategy therefore



May 22, 2008 11:7 WSPC/APJOR 00173.tex

An Exact Approach for the Single Machine Scheduling Problem 177

chooses the node that seems most promising, i.e. the node that will most likely lead
to a complete schedule with a lower objective function value.

The initial upper bound on the optimum schedule cost is calculated using the
EQTP–EXP dispatching rule. The EQTP–EXP heuristic calculates a priority index
for each remaining job every time the machine becomes available, and the job with
the highest priority is then selected to be processed next. Let Ij(t) denote the
priority index of job Jj at time t. The EQTP–EXP dispatching rule then uses the
following priority index Ij(t):

Ij(t) =




(1/pj)[p + 2(t + pj − dj)] if sj ≤ 0

(p/pj) exp[−(p + 1)sj/kp] if 0 < sj < [p/(p + 1)]kp

(1/pj)−2[(p/pj) − (1/pj)(p + 1)sj/kp]3 if [p/(p + 1)]kp ≤ sj < kp

−(1/pj) otherwise,

where sj = dj − t − pj is the slack of job Jj , p is the average processing time of
the remaining unscheduled jobs and k is a lookahead parameter. The EQTP EXP
procedure provided the best results among all the heuristics analyzed in Valente
(2006). The upper bound value is then updated whenever a feasible schedule with
a lower cost is found during the branching process.

Two fathoming tests are used to reduce the number of nodes in the search tree.
In the first test, an insertion-based procedure is used to eliminate dominated nodes.
This procedure inserts the job most recently added to the node’s partial sequence
before a certain number of the previously scheduled jobs. If an improving sequence
is found, the node is then fathomed.

We considered six alternative versions of the branch-and-bound procedure.
These versions differ only in the number (denoted by INS) of previously scheduled
jobs that are considered in the insertion fathoming test. In the version INS = single,
only one insertion is performed. In the version INS = 0.10 (respectively, 0.25, 0.50,
0.75 and 1.00), on the other hand, the number of insertions that are considered is
equal to 10% (respectively, 25%, 50%, 75% and 100%) of the number of previously
scheduled jobs.

When the node is not eliminated by the previous test, a lower bound is then
calculated for the unscheduled jobs. If the lower bound plus the cost of the associated
partial schedule is larger than or equal to the current upper bound, the node is
discarded.

4. Computational Results

In this section, we first describe the set of test problems used in the computational
experiments. Then, we analyze the performance of the lower bounding procedure.
Finally, we present computational results for the branch-and-bound algorithms.
Throughout this section, and in order to avoid excessively large tables, we will
sometimes present results only for some representative cases.



May 22, 2008 11:7 WSPC/APJOR 00173.tex

178 J. M. S. Valente

4.1. Experimental design

The computational tests were performed on a set of problems with 7, 10, 12, 15, 17
and 20 jobs. These problems were randomly generated as follows. For each job Jj , an
integer processing time pj was generated from one of the two uniform distributions
[1, 10] and [1, 100], in order to obtain a low (L) and a high (H) range, respectively,
for the processing time values. For each job Jj , an integer due date dj is generated
from the uniform distribution [P (1 − T − R/2), P (1 − T + R/2)], where P is the
sum of the processing times of all jobs, T is the tardiness factor, set at 0.0, 0.2, 0.4,
0.6, 0.8 and 1.0, and R is the range of due dates, set at 0.2, 0.4, 0.6 and 0.8.

For each combination of problem size n, processing time range (rng), T and
R, 50 instances were randomly generated. Therefore, a total of 1200 instances was
generated for each combination of problem size and processing time range. All the
algorithms were coded in Visual C++6.0, and executed on a Pentium IV–2.8GHz
personal computer.

4.2. Lower bound results

In this section, we analyze the performance of the lower bound. In Table 1, we
present the average of the relative deviations from the optimum, calculated as
(O − LB)/O × 100, where O and LB represent the optimum objective function
value and the initial lower bound value (i.e. the lower bound at the root node),
respectively. From the results given in this table, we can see that the lower bound
value is, on average, 25% to 30% below the optimum. Also, the performance of the
lower bounding procedure is somewhat better when the range of processing times
is low.

The effect of the T and R parameters on the relative deviation from the optimum
is given in Table 2. The lower bound performs better when T = 0.0 or T = 1.0.
Therefore, the lower bound value is closer to the optimum when nearly all jobs
are early (T = 0.0) or tardy (T = 1.0). The performance of the lower bound is
particularly good for instances where most jobs are early. In fact, the lower bound
is usually quite close to the optimum for instances with T = 0.0, especially when
the range of the due dates R is low.

The lower bound’s relative deviation from the optimum then increases as the
tardiness factor T approaches its intermediate values. Therefore, the performance of

Table 1. Relative deviation from the optimum.

n Low rng High rng

7 24.63 25.01
10 26.41 27.58
12 26.87 27.64
15 27.14 28.97
17 26.92 28.57
20 27.58 29.22



May 22, 2008 11:7 WSPC/APJOR 00173.tex

An Exact Approach for the Single Machine Scheduling Problem 179

Table 2. Effect of the tardiness factor and the range of due dates on the relative deviation from
the optimum.

n T Low rng High rng

R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 0.2 R = 0.4 R = 0.6 R = 0.8

10 0.0 1.47 2.62 5.39 7.03 1.99 4.62 7.41 13.77
0.2 18.33 24.46 28.82 37.44 15.38 32.93 29.65 41.77
0.4 15.63 33.97 44.08 74.60 19.43 30.68 41.10 70.31
0.6 17.74 29.40 42.60 54.73 18.52 29.28 45.83 53.36
0.8 16.11 27.11 31.52 39.54 12.19 27.96 38.00 45.85
1.0 10.47 19.03 23.89 27.77 10.65 17.73 24.76 28.84

15 0.0 0.90 2.33 3.85 5.23 1.55 2.68 5.31 6.79
0.2 17.96 22.12 30.91 26.81 18.36 32.59 32.84 40.54
0.4 20.02 34.44 51.57 77.10 22.33 33.33 42.23 71.11
0.6 17.44 29.84 44.66 51.79 21.68 32.25 45.13 61.56
0.8 16.33 26.89 39.39 46.17 17.19 27.97 38.50 50.32
1.0 11.13 18.68 26.53 29.28 11.23 21.63 27.04 31.06

20 0.0 0.75 2.15 3.86 5.44 0.99 2.92 5.63 6.92
0.2 16.89 20.39 24.19 30.12 21.24 30.38 29.10 30.43
0.4 23.10 32.10 50.08 72.58 21.52 34.02 46.71 72.54
0.6 20.83 34.37 42.61 59.09 20.44 31.56 47.97 64.53
0.8 16.34 26.99 39.04 47.05 16.99 29.39 42.33 50.55
1.0 12.12 20.75 27.59 33.43 11.52 22.72 28.05 32.72

the lower bounding procedure deteriorates when there is a greater balance between
the number of early and tardy jobs.

The range of due dates parameter also has a noticeable impact on the effective-
ness of the lower bound. In fact, the relative deviation from the optimum becomes
higher as R increases. Consequently, the lower bound performs better when the
due dates are quite close, and its performance deteriorates as the due dates become
more widely spread.

4.3. Branch-and-bound results

The results for the branch-and-bound algorithms will be presented in this section.
In Table 3, we give the branch-and-bound average computation times, in seconds.
The branch-and-bound procedures are capable of solving, within reasonable compu-
tation times, problems with up to 20 jobs. The range of the processing times has a
significant effect on the runtimes since the branch-and-bound procedures are much
faster for instances with a high processing time range.

For the smaller instances, the computation times are similar for the various
INS values. The difference in the runtimes, however, becomes much clearer for
the larger instances with 17 and 20 jobs. For these instance sizes, the branch-
and-bound procedures with INS = single or INS = 0.10 require a substantially
higher computation time. The runtimes for the remaining INS values are somewhat
close even though the best performance is given by the INS = 0.50 and INS =
0.75 algorithms. When the INS parameter is higher, the insertion fathoming test



May 22, 2008 11:7 WSPC/APJOR 00173.tex

180 J. M. S. Valente

Table 3. Branch-and-bound runtimes (in seconds).

rng n INS

single 0.10 0.25 0.50 0.75 1.00

L 7 0.000 0.000 0.000 0.001 0.001 0.001
10 0.007 0.005 0.004 0.007 0.007 0.007
12 0.042 0.029 0.027 0.039 0.038 0.041
15 0.779 0.748 0.646 0.641 0.632 0.660
17 7.534 7.638 5.967 5.370 5.344 5.503
20 266.843 253.358 180.464 159.420 157.162 159.991

H 7 0.001 0.001 0.001 0.001 0.001 0.001
10 0.006 0.007 0.006 0.006 0.006 0.006
12 0.031 0.032 0.031 0.030 0.031 0.031
15 0.551 0.558 0.474 0.429 0.432 0.446
17 3.569 3.625 2.884 2.629 2.670 2.755
20 83.140 80.036 52.758 48.010 49.241 50.761

will usually eliminate more nodes, but it will also require additional computation
time. Therefore, increasing the number of insertions has two opposite effects on the
efficiency of the branch-and-bound algorithm. The best results were then achieved
when the number of insertions is relatively high (INS between 0.50 and 0.75), but
still below its maximum possible value.

In Table 4, we present several additional statistics for the computation times,
namely the minimum (min) and maximum (max) values, the coefficient of variation
(cov), and the percentiles 25, 50, 75, 95 and 99 (p25, p50, p75, p95 and p99, respec-
tively) of the distribution of the runtimes. The results in Table 4 once again show
that the procedures with INS = single or INS = 0.10 require higher computation
times. The remaining values of the INS parameter (particularly the values 0.50 and
0.75) provide superior results and are also significantly more consistent, since the
variability in their runtimes is lower, as indicated by the cov values.

The improvement in performance provided by the higher values of the parame-
ter INS becomes larger as the instance difficulty increases. For the easier instances
(min, p25 and p50), which require low computation times, the runtimes are close
for all INS values. As the instance difficulty, and correspondingly the runtime,
increase, the branch-and-bound procedures with INS equal or greater than 0.25
become increasingly more efficient, since the increase in the runtime is much slower
for these procedures. For the most difficult instances (p95, p99 and max), the com-
putation times are substantially lower for the algorithms with a INS value of at
least 0.25.

The effect of the T and R parameters on the computation times for instances
with 20 jobs is given in Table 5. The results presented in this table show that
the tardiness factor T has a clear and significant effect on the runtimes. Indeed, the
branch-and-bound procedures are quite fast when T = 0.0 or T = 1.0. The runtimes
increase significantly, however, as T approaches its intermediate values. Therefore,



May 22, 2008 11:7 WSPC/APJOR 00173.tex

An Exact Approach for the Single Machine Scheduling Problem 181

Table 4. Branch-and-bound runtimes statistics.

rng n INS min p25 p50 p75 p95 p99 max cov

L 15 single 0.000 0.063 0.187 0.735 3.578 8.227 16.375 208.0
0.10 0.000 0.062 0.172 0.705 3.495 8.087 15.674 206.9
0.25 0.000 0.061 0.170 0.629 3.044 6.399 11.729 193.0
0.50 0.000 0.078 0.187 0.594 2.774 6.187 13.516 192.1
0.75 0.000 0.075 0.186 0.589 2.660 6.189 13.527 191.1
1.00 0.000 0.078 0.203 0.617 2.937 6.438 14.672 190.7

20 single 0.000 2.672 10.196 96.945 1110.895 4408.280 22466.100 439.4
0.10 0.000 2.632 10.343 99.732 1084.160 4128.345 18986.600 418.6
0.25 0.000 2.562 8.693 76.031 770.061 3033.090 11926.600 402.0
0.50 0.000 2.687 8.555 68.478 669.931 2478.330 9360.400 388.0
0.75 0.000 2.812 9.166 66.734 703.789 2434.775 8724.430 372.2
1.00 0.000 2.867 9.352 69.101 727.679 2472.930 8913.630 368.2

H 15 single 0.000 0.047 0.172 0.547 2.429 4.834 14.421 193.6
0.10 0.000 0.047 0.172 0.562 2.470 5.001 14.953 194.6
0.25 0.000 0.047 0.172 0.516 1.992 3.711 12.609 181.0
0.50 0.000 0.047 0.157 0.469 1.758 3.406 12.516 181.1
0.75 0.000 0.047 0.172 0.484 1.688 3.493 12.875 182.3
1.00 0.000 0.062 0.172 0.500 1.758 3.626 13.328 182.4

20 single 0.000 1.188 7.734 53.453 372.126 1410.945 3184.880 305.5
0.10 0.000 1.196 7.742 52.624 384.672 1392.995 3135.770 297.0
0.25 0.000 1.188 6.336 39.687 223.420 841.878 2327.460 287.2
0.50 0.000 1.219 5.805 36.281 221.044 783.361 1779.420 287.7
0.75 0.000 1.281 5.898 36.562 224.779 811.123 1921.410 292.4
1.00 0.000 1.328 6.000 37.874 230.710 836.464 1980.080 292.8

Table 5. Branch-and-bound runtimes (in seconds) for instances with 20 jobs.

INS T Low rng High rng

R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 0.2 R = 0.4 R = 0.6 R = 0.8

single 0.0 1.379 2.968 7.181 7.834 0.046 0.178 0.469 0.667
0.2 144.480 54.097 14.172 10.206 19.489 10.494 2.346 2.020
0.4 1675.648 602.005 257.300 108.419 63.151 157.273 206.859 63.196
0.6 1815.821 1149.630 137.527 39.781 447.947 370.219 196.340 62.631
0.8 266.418 45.660 17.196 16.536 232.023 81.376 34.557 12.363
1.0 3.905 7.627 10.898 7.535 3.268 12.396 9.107 6.941

0.10 0.0 1.626 2.966 7.384 7.936 0.048 0.181 0.475 0.671
0.2 143.606 53.186 14.338 10.307 19.284 10.128 2.336 2.020
0.4 1509.562 588.645 258.094 108.411 60.043 148.263 191.502 62.291
0.6 1706.668 1110.604 135.878 39.939 416.307 358.686 192.187 62.343
0.8 271.429 46.051 17.221 16.463 235.718 80.196 33.937 12.219
1.0 3.950 7.774 10.977 7.573 3.275 12.588 9.236 6.935

0.25 0.0 1.450 2.707 7.557 8.120 0.047 0.184 0.495 0.679
0.2 145.280 50.477 14.465 10.295 19.351 9.500 2.198 1.984
0.4 1160.361 499.310 205.845 90.866 54.412 118.689 158.936 50.635
0.6 1047.229 740.272 88.983 32.016 263.000 224.767 117.488 39.794
0.8 152.211 26.654 11.991 11.869 111.886 45.393 16.974 8.455
1.0 3.803 5.856 6.976 6.541 3.018 7.893 5.755 4.659



May 22, 2008 11:7 WSPC/APJOR 00173.tex

182 J. M. S. Valente

Table 5. (Continued)

INS T Low rng High rng

R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 0.2 R = 0.4 R = 0.6 R = 0.8

0.50 0.0 2.317 3.811 8.472 8.709 0.048 0.188 0.499 0.702
0.2 158.499 50.847 15.077 10.809 19.619 9.753 2.241 2.039
0.4 1045.781 486.379 187.088 77.886 54.738 117.973 160.013 47.774
0.6 876.977 617.390 74.817 26.632 253.962 201.571 100.069 30.670
0.8 116.064 19.067 9.257 9.953 80.746 34.797 11.159 6.872
1.0 3.343 4.807 5.969 6.138 2.223 5.632 4.641 4.303

0.75 0.0 2.575 4.188 9.186 9.340 0.054 0.202 0.530 0.743
0.2 176.349 53.486 15.972 11.474 20.361 10.243 2.357 2.154
0.4 1040.547 502.557 190.703 77.972 56.982 123.203 169.323 49.786
0.6 845.262 573.299 73.784 23.989 262.623 211.588 101.038 28.623
0.8 103.792 17.531 9.053 9.396 75.960 30.699 11.193 6.868
1.0 3.562 5.101 6.247 6.532 2.292 5.634 4.854 4.470

1.00 0.0 1.847 3.741 9.361 9.710 0.057 0.208 0.559 0.778
0.2 184.757 56.006 16.632 11.913 20.876 10.627 2.432 2.219
0.4 1067.915 518.150 196.666 79.596 59.031 127.459 175.826 51.451
0.6 852.607 567.286 74.987 24.976 269.587 217.613 104.450 29.956
0.8 103.458 18.285 9.472 9.747 76.624 31.253 11.803 7.235
1.0 3.821 5.406 6.556 6.895 2.437 5.953 5.120 4.716

the problem becomes harder to solve when there is a greater balance between the
number of early and tardy jobs.

In Table 6, we present the average number of nodes generated by the branch-
and-bound algorithm (NG), as well as the average percentage of these nodes that
were eliminated by the two fathoming tests (%EL). We also provide some data on
the relative importance of these tests, namely the average percentage of nodes fath-
omed by the lower bound test (%LB) and the insertion-based procedure (%INS).
The number of nodes generated is higher for the instances with a low processing
time range. Additionally, this number decreases with the value of the INS param-
eter. These results are in line with the computation times previously presented
in Table 3.

The proportion of nodes eliminated by the fathoming tests increases with the
instance size, and is marginally higher for instances with a high processing time
range. Also, the percentage of eliminated nodes increases very slightly with the INS
parameter. The relative importance of the lower bound fathoming test is lower for
the instances with a high processing time range, and decreases with the instance size,
while the proportion of nodes eliminated by the insertion procedure correspondingly
increases. The relative importance of the insertion-based test also increases with the
INS parameter. This is to be expected since more insertions are performed for the
higher INS values.

In Table 7, we present the effect of the T and R parameters on the average
number of nodes generated and the percentage of nodes eliminated by the lower



May 22, 2008 11:7 WSPC/APJOR 00173.tex

An Exact Approach for the Single Machine Scheduling Problem 183

Table 6. Average number of nodes and relative importance of the fathoming tests.

n INS Low rng High rng

NG %EL %LB %INS NG %EL %LB %INS

10 single 1683 83.08 49.65 50.35 1635 83.25 44.29 55.71
0.10 1683 83.08 49.65 50.35 1635 83.25 44.29 55.71
0.25 1667 83.14 49.01 50.99 1620 83.31 43.69 56.31
0.50 1596 83.27 47.56 52.44 1554 83.44 42.39 57.61
0.75 1555 83.32 46.89 53.11 1516 83.50 41.81 58.19
1.00 1552 83.33 46.83 53.17 1515 83.50 41.78 58.22

15 single 202219 87.78 43.61 56.39 143699 88.19 38.12 61.88
0.10 202171 87.78 43.58 56.42 143633 88.20 38.08 61.92
0.25 176435 87.96 41.44 58.56 122348 88.42 35.73 64.27
0.50 157738 88.07 40.04 59.96 107782 88.52 34.47 65.53
0.75 151430 88.09 39.60 60.40 103124 88.55 34.12 65.88
1.00 150659 88.09 39.54 60.46 102803 88.55 34.08 65.92

20 single 64614975 90.27 40.55 59.45 19979272 90.76 35.24 64.76
0.10 60581125 90.32 39.90 60.10 19039709 90.81 34.59 65.41
0.25 43370259 90.51 37.13 62.87 12725387 91.05 31.64 68.36
0.50 36809014 90.56 36.05 63.95 10986024 91.11 30.72 69.28
0.75 34645609 90.58 35.74 64.26 10590399 91.12 30.52 69.48
1.00 34182075 90.58 35.69 64.31 10550631 91.12 30.50 69.50

Table 7. Nodes generated and importance of lower bound test for INS = 0.50.

rng n T R = 0.2 R = 0.4 R = 0.6 R = 0.8

NG %LB NG %LB NG %LB NG %LB

L 10 0.0 215 87.49 383 84.78 533 78.35 603 75.06
0.2 1654 43.57 1287 53.34 1101 56.82 958 59.17
0.4 3683 27.19 3263 32.10 2318 39.38 1091 43.37
0.6 3545 38.60 2931 38.10 2390 35.81 1479 37.27
0.8 2136 43.84 1688 36.88 1217 41.45 1124 39.54
1.0 1018 53.57 1128 43.61 1271 41.61 1294 37.67

15 0.0 15432 84.81 17071 78.77 20627 75.11 17329 69.79
0.2 347280 29.02 70254 45.58 70331 45.82 52411 55.71
0.4 565606 20.75 515549 26.11 263003 33.89 117987 37.20
0.6 457500 36.42 423822 32.64 262144 28.06 56996 29.07
0.8 134916 36.42 113028 29.74 75948 24.28 53906 24.43
1.0 22164 42.18 37504 31.97 39427 29.89 35472 29.84

20 0.0 440300 82.77 770813 75.06 1948321 68.64 2003348 61.48
0.2 48999699 23.65 13395740 44.10 4097621 46.52 2565839 45.50
0.4 258166460 23.26 111282106 26.91 44457661 30.37 18573874 38.23
0.6 169508421 34.51 145896177 25.25 19655283 23.54 7054485 22.41
0.8 20650575 33.20 4317269 24.21 2415883 21.04 2693626 20.63
1.0 610871 34.08 1000351 26.66 1376567 22.48 1535043 19.82



May 22, 2008 11:7 WSPC/APJOR 00173.tex

184 J. M. S. Valente

Table 7. (Continued)

rng n T R = 0.2 R = 0.4 R = 0.6 R = 0.8

NG %LB NG %LB NG %LB NG %LB

H 10 0.0 164 81.35 340 74.08 446 66.35 632 60.62
0.2 1822 25.68 1398 37.18 790 50.20 1079 46.81
0.4 3163 21.12 3033 24.80 2420 28.55 1839 34.62
0.6 3163 37.22 2806 34.04 2416 33.87 1456 33.71
0.8 1424 48.41 1960 37.22 1592 33.26 1441 33.82
1.0 652 55.12 940 47.24 1217 43.53 1092 42.30

15 0.0 2229 78.74 2236 73.81 7031 63.58 9086 58.15
0.2 128102 8.94 67324 25.97 28272 34.16 37252 38.71
0.4 231050 19.04 245601 23.92 213025 23.60 109675 29.95
0.6 336058 34.21 339098 28.52 218147 23.63 87756 20.93
0.8 167745 35.67 84906 28.25 78040 26.37 68863 23.18
1.0 17755 43.53 37175 31.47 36066 28.50 34288 29.33

20 0.0 10327 79.53 43650 65.55 131308 56.71 185452 52.43
0.2 8320655 5.26 3078434 22.36 658317 33.89 561120 35.87
0.4 13618711 20.48 28010326 24.62 39339572 22.61 12955845 24.55
0.6 47595664 33.30 44118348 27.65 25162764 21.68 7908324 19.16
0.8 15643648 31.26 7958865 22.42 2802132 20.04 1887911 17.22
1.0 398030 37.00 1218970 23.40 1049279 23.28 1006924 21.30

bound test for INS = 0.50. The tardiness factor T has a clear and significant effect
on the number of nodes generated. In fact, this number is much lower when T = 0.0
or T = 1.0, and then increases significantly as T approaches its intermediate values.
Once more, this result is in accordance with the runtimes previously given in Table 5.
The lower bound test eliminates a large percentage of nodes for instances with
T = 0.0. This is to be expected since the lower bound performs particularly well
when most jobs are early, as mentioned before. For the remaining parameter values,
however, the insertion-based test usually fathoms a larger proportion of the nodes.

5. Conclusion

In this paper, we considered the single machine scheduling problem with linear
earliness and quadratic tardiness costs, and no machine idle time. We developed
a lower bound based on the relaxation of the jobs’ completion times. An optimal
branch-and-bound algorithm was then presented. This algorithm incorporates the
proposed lower bound, as well as an insertion-based fathoming test.

The branch-and-bound procedures were tested on a wide set of randomly gener-
ated problems. These algorithms were capable of solving, within reasonable compu-
tation times, instances with up to 20 jobs. The best results were obtained by setting
the INS parameter required by the insertion dominance procedure to 0.50 or 0.75.
In fact, these values not only provided the lowest average computation times, but
were also more consistent. Also, as the instance difficulty, and correspondingly the
runtime, increased, the branch-and-bound procedures with INS equal to 0.50 or



May 22, 2008 11:7 WSPC/APJOR 00173.tex

An Exact Approach for the Single Machine Scheduling Problem 185

0.75 became increasingly more efficient, since the increase in the runtime was much
slower for these procedures.

Acknowledgment

The author would like to thank the anonymous referees and an associate editor for
several, and most useful, comments and suggestions that were used to improve this
paper.

References

Azizoglu, M, S Kondakci and O Kirca (1991). Bicriteria scheduling problem involving
total tardiness and total earliness penalties. International Journal of Production
Economics, 23, 17–24.

Baker, KR and GD Scudder (1990). Sequencing with earliness and tardiness penalties:
A review. Operations Research, 38, 22–36.

Garey, MR, RE Tarjan and GT Wilfong (1988). One-processor scheduling with symmetric
earliness and tardiness penalties. Mathematics of Operations Research, 13, 330–348.

Gupta, SK and T Sen (1983). Minimizing a quadratic function of job lateness on a single
machine. Engineering Costs and Production Economics, 7, 187–194.

Kanet, JJ and V Sridharan (2000). Scheduling with inserted idle time: Problem taxonomy
and literature review. Operations Research, 48, 99–110.

Kim, YD and CA Yano (1994). Minimizing mean tardiness and earliness in single-machine
scheduling problems with unequal due dates. Naval Research Logistics, 41, 913–933.

Korman, K (1994). A pressing matter. Video, 46–50.
Landis, K (1993). Group technology and cellular manufacturing in the Westvaco Los Ange-

les VH department. Project report in IOM 581, School of Business, University of
Southern California.

Schaller, J (2002). Minimizing the sum of squares lateness on a single machine. European
Journal of Operational Research, 143, 64–79.

Schaller, J (2004). Single machine scheduling with early and quadratic tardy penalties.
Computers & Industrial Engineering, 46, 511–532.

Sen, T, P Dileepan and MR Lind (1995). Minimizing a weighted quadratic function of
job lateness in the single machine system. International Journal of Production Eco-
nomics, 42, 237–243.

Su, L-H and P-C Chang (1998). A heuristic to minimize a quadratic function of job lateness
on a single machine. International Journal of Production Economics, 55, 169–175.

Sun, X, JS Noble and CM Klein (1999). Single-machine scheduling with sequence depen-
dent setup to minimize total weighted squared tardiness. IIE Transactions, 31,
113–124.

Taguchi, G (1986). Introduction to Quality Engineering. Asian Productivity Organization,
Tokyo, Japan.

Valente, JMS (2006). Heuristics for the single machine scheduling problem with early and
quadratic tardy penalties. European Journal of Industrial Engineering, 1, 431–448.

Valente, JMS (2007). An exact approach for single machine scheduling with quadratic
earliness and tardiness penalties. Working Paper 238, Faculdade de Economia, Uni-
versidade do Porto, Portugal.

Wagner, BJ, DJ Davis and H Kher (2002). The production of several items in a single
facility with linearly changing demand rates. Decision Sciences, 33, 317–346.



May 22, 2008 11:7 WSPC/APJOR 00173.tex

186 J. M. S. Valente

Jorge M. S. Valente is Assistant Professor in the Management Department
of the Faculty of Economics, University of Porto (Portugal). He holds a Ph.D.
degree in Management Science from the University of Porto. He has published in
Asia-Pacific Journal of Operational Research, Computers & Industrial Engineering,
Computers & Operations Research, International Journal of Production Economics,
Journal of Manufacturing Systems and in the Journal of the Operational Research
Society, among others. His current research interests include production scheduling,
combinatorial optimization, heuristic techniques and agent-based computational
economics.


