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The study deals with scheduling a set of independent jobs with unequal release dates to minimize total weighted tardiness on a
single machine. We propose new dominance properties that are incorporated in a branch and bound algorithm. The proposed
algorithm is tested on a set of randomly generated problems with 10, 15 and 20 jobs. To the best of our knowledge, this is the first

exact approach that attempts to solve the 1|r;| >~ w;T; problem.

1. Introduction

This study deals with scheduling a set of jobs with un-
equal release dates, 7;, on a single machine to minimize
the total weighted tardiness, (1|r;| > w;T;). There are n
independent jobs 1,...,n, each of which has an integer
processing time p;, a release date 7;, a due date d; and a
positive weight w;. Jobs are processed without interrup-
tion on a single machine that can handle only one job at a
time. The machine may be left idle while there are
available jobs in the queue. A tardiness penalty 7} is in-
curred for each time unit that job j exceeds its due date,
ie., T; =max{0,(C;—d,;)}, where C; and T; are the
completion time and the tardiness of job j, respectively.
The objective is to find a schedule that minimizes the total
weighted tardiness criterion of all jobs given that no job
can start processing before its release date.

Rinnooy Kan (1976) shows that the total tardiness
problem with unequal release dates, 1|r;[> 7; is
NP-hard. Lawler (1977) shows that the total weighted
tardiness problem, 1||Y w;T;, is strongly NP-hard,
implying that 1|r;|> w;T; is also strongly NP-hard.
Enumerative solution methods have been proposed for
both weighted and unweighted cases when all jobs are
simultaneously available. Emmons (1969) derives several
dominance rules for 1||)_ 7;. Rinnooy Kan et al. (1975)
and Rachamadugu (1987) extended these results to
1||>°w;T;. The Branch and Bound (BB) algorithm of
Potts and van Wassenhove (1985) can solve problem
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instances with up to 40 jobs. Vairaktarakis and Lee
(1995) present a BB algorithm to minimize the total
tardiness subject to a minimum number of tardy jobs.
Szwarc (1993) proves the existence of a special ordering
for the single machine Earliness-Tardiness (E/T) prob-
lem with job-independent penalties where the arrange-
ment of two adjacent jobs in an optimal schedule
depends on their start time. Recently, Akturk and
Yildirim (1998) proposed a new dominance rule and a
lower bounding scheme for the 1]|> w;7; problem
which can be used to reduce the number of alternatives
in any exact approach.

All the optimizing approaches discussed above assume
that the jobs have equal release dates. To the best of our
knowledge, we know of no exact algorithm for the
1|r;| >_w;T; problem. Unequal release dates have been
considered for other optimality criteria, by Chu (1992a)
and Chand et al. (1996) for 1|r;| > F;, by Hariri and Potts
(1983) and Beloudah et al. (1992) for 1|r;| > w;C;, and
Potts and van Wassenhove (1988) for 1|r;| > w;U;. Chu
(1992b) proves some dominance properties and provides
a lower bound for the 1|r;| ) T; problem. A BB algorithm
is then constructed using the previous results of Chu and
Portmann (1992) and problems with up to 30 jobs can be
solved for certain problem instances, even though
computational requirements for larger problems tend to
become prohibitive.

In the following section, we discuss the underlying as-
sumptions and present the proposed dominance rules.
Lower bounds for the problem are developed in Section 3.
We present a BB algorithm along with a numerical ex-
ample in Section 4. Computational analysis of the BB
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algorithm is reported in Section 5, and some concluding
remarks are provided in Section 6.

2. Dominance properties

In this section we present new dominance properties to
eliminate a number of dominated solutions in any exact
algorithm. We show that the arrangement of adjacent
jobs in an optimal schedule depends on their start times.
For each pair of jobs i and j that are adjacent in an
optimal schedule, there can be a critical value #; such that
i precedes j if processing of this pair starts earlier than ¢;
and j precedes i if processing of this pair starts after ;.
For convenience the jobs are indexed in EDD order such
that if d; < d;, or d; = d; then p; < p;, or if di = d; and
pi = p; then w; > w; or d; =d; and p; = p; and w; = w;
then r; < r; for all i and j such that i < ;.

To introduce the dominance rule, consider schedules
S1 = 01ij0O, and S, = Q1jiQ, where Q) and O, are two
disjoint subsequences of the remaining n — 2 jobs. Let ¢
be the completion time of the jobs in O; and jobs i and j
are available at ¢, such that , <t and r; <t.

The interchange function A;;(¢) gives the cost of inter-
changing adjacent jobs i and j whose processing starts at
time ¢, where

A1) = fis(t) = fu(),
0 max{r,»,rj,t}gdi— (pl+pj)’
wi(t+ pi +pj — d;) r; <t and
di — (pi+p;) <t <di—pi

=
I

W,'(I"j+pj—1) dj_pi§t<rj,
wi(rj+pi+pjfdi) tSd,-fp,-andt<rj,
wip;j max{r;,d; — p;} <t.

A;j(t) does not depend on how the jobs are arranged in
0; and O, but on the start time ¢ of the pair,

e if Aj;(¢#) < 0 then, j should precede i at time £

e if A;;(z) > 0 then, i should precede j at time ¢

e if A;;(¢) = 0 then, it is indifferent to whether i or j is
scheduled first.

There are five conditions for the computation of f;;.
For the first condition, both jobs i and j finish on time, so
it is indifferent on whether i or j is scheduled first. In the
second condition, job i will become tardy if it is not
scheduled first. In the third condition, job j arrives after
time ¢ and job i will be tardy if it is scheduled after job j
(there is also an idle time on the machine before the be-
ginning of job j). In the fourth condition, if job i is
scheduled before job j then it can be finished on time,
otherwise it will be tardy. In the last condition, job j
arrives before time ¢, and job i will be tardy even if it is
scheduled before job ;.

The time dependent dominance properties of the
1|rj| > w;T; problem can be determined by looking at
points where the piecewise linear and continuous
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functions f;;(¢) and fj;(¢) intersect. When all possible cases
are studied, it can be seen that there are at most seven
possible points where functions f;;(z) and fj;(¢) intersect.
These cases and the following propositions are included
here without proof and are described in detail in Akturk
and Ozdemir (1998).

ty = [(wid; — wyd;) /(i —

= w))l — (i +p)),

ty; = dj — pi — p;(1 — wi/w)),

ty = wy/wi(ri + pi + p; — dj) — (i + p; — o),

o = (W — wi)pi + wiri + wi(d; — p))]/ (wi + wy),

ij =

(
(
6 = di = pj — pi(1 — wj/wy), (3
(
t (
(

tiy=wi/wj(r; +pi+py = di) = (pi + py — dy),

5= [wi = wj)pj + wirj + wid; — pi)l/ (wi + w)).

tij =

As a result, we can state a general rule that provides a
sufficient condition for schedules that cannot be im-
proved by adjacent job interchanges. We show that if any
sequence violates the proposed dominance rule, then
switching these jobs either lowers the total weighted tar-
diness or leaves it unchanged as stated below in Propo-
sition 1. In this rule, there are two possibilities for each
pair of jobs. Either there is at least one breakpoint or an
unconditional ordering. A breakpoint is a critical start
time for each pair of adjacent jobs after which the or-
dering changes direction such that if ¢ < breakpoint, i
precedes j, denoted by i < j, (or j precedes i) and then j
precedes i, denoted by j < i, (or i precedes j). If i un-
conditionally precedes j, denoted by i — j, then the or-
dering does not change, i.e., i always precedes j when they
are adjacent, but this does not imply that an optimal
sequence exists in which i precedes j.

Before defining the new dominance properties, we will
present some definitions. Let J be the set of all jobs to be
scheduled, S(¢) the set of jobs scheduled before time ¢,
A(t) the set of available unscheduled jobs at time ¢, i.e.,
A(t) = {i|r; <t} — S(¢), B(¢) the set of unavailable and
unscheduled jobs at time ¢, i.e., B(¢) = {k|ry > ¢}, and
U(t) the set of unscheduled jobs at time ¢, i.e.,
U(t) = (A(t) UB(1)).

Proposition 1. Let job k be the last scheduled job in the
sequence at time t given that processing of job k starts at
time t — pi. For all unscheduled jobs i € U(t), if scheduling
job i at time t violates the proposed dominance rule, i.e.,
i < k at time t — py, then scheduling job i right after job k at
time t will not lead to an optimal schedule.

It is well-known that the Shortest Weighted Processing
Time (SWPT) rule gives an optimal sequence for the
1||>° w;T; problem when either all due dates are zero or
all jobs are tardy, i.e., t > max;c;{d; — p;}. Under this
situation the problem reduces to the total weighted



