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Abstract

Developing scalable solution algorithms is one of the central problems in computational
game theory. We present an iterative algorithm for computing an exact Nash equilibrium
for two-player zero-sum extensive-form games with imperfect information. Our approach
combines two key elements: (1) the compact sequence-form representation of extensive-
form games and (2) the algorithmic framework of double-oracle methods. The main idea of
our algorithm is to restrict the game by allowing the players to play only selected sequences
of available actions. After solving the restricted game, new sequences are added by finding
best responses to the current solution using fast algorithms.

We experimentally evaluate our algorithm on a set of games inspired by patrolling
scenarios, board, and card games. The results show significant runtime improvements in
games admitting an equilibrium with small support, and substantial improvement in mem-
ory use even on games with large support. The improvement in memory use is particularly
important because it allows our algorithm to solve much larger game instances than existing
linear programming methods.

Our main contributions include (1) a generic sequence-form double-oracle algorithm for
solving zero-sum extensive-form games; (2) fast methods for maintaining a valid restricted
game model when adding new sequences; (3) a search algorithm and pruning methods for
computing best-response sequences; (4) theoretical guarantees about the convergence of
the algorithm to a Nash equilibrium; (5) experimental analysis of our algorithm on several
games, including an approximate version of the algorithm.

1. Introduction

Game theory is a widely used methodology for analyzing multi-agent systems by applying
formal mathematical models and solution concepts. One focus of computational game the-
ory is the development of scalable algorithms for reasoning about very large games. The
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need for continued algorithmic advances is driven by a growing number of applications of
game theory that require solving very large game instances. For example, several decision
support systems have recently been deployed in homeland security domains to recommend
policies based on game-theoretic models for placing checkpoints at airports (Pita, Jain,
Western, Portway, Tambe, Ordonez, Kraus, & Parachuri, 2008), scheduling Federal Air
Marshals (Tsai, Rathi, Kiekintveld, Ordóñez, & Tambe, 2009), and patrolling ports (Shieh,
An, Yang, Tambe, Baldwin, Direnzo, Meyer, Baldwin, Maule, & Meyer, 2012). The ca-
pabilities of these systems are based on a large amount of research in fast algorithms for
security games (Tambe, 2011). Another notable example is the algorithmic progress that
has led to game-theoretic Poker agents that are competitive with highly skilled human
opponents (e.g., see Zinkevich, Bowling, & Burch, 2007; Sandholm, 2010).

We focus on developing new algorithms for an important general class of games that
includes security games and Poker, as well as many other familiar games. More precisely, we
study two-player zero-sum extensive-form games (EFGs) with imperfect information. This
class of games captures sequential interactions between two strictly competitive players in
situations where they make decisions under uncertainty. Uncertainty can be caused either
by having a stochastic environment or by having opponent actions that are not directly
observable. We consider general models for both sequential interactions and uncertainty,
while many of the fast algorithms that have been developed for Poker and security domains
rely on more specific game structure.

We propose a new class of algorithms for finding exact (or approximate) Nash equi-
librium solutions for the class of EFGs with imperfect information. The leading exact
algorithm in the literature uses the compact sequence-form representation and linear pro-
gramming optimization techniques to solve games of this type (Koller, Megiddo, & von
Stengel, 1996; von Stengel, 1996). Our approach exploits the same compact representa-
tion, but we improve the solution methods by adopting the algorithmic framework based
on decompositions known in the computational game theory literature as oracle algorithms
(McMahan, Gordon, & Blum, 2003). Oracle algorithms are related to the methods of con-
straint/column generation used for solving large-scale optimization problems (Dantzig &
Wolfe, 1960; Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998) and exploit two
characteristics commonly found in games. First, in many cases finding a solution to a
game only requires using a small fraction of the possible strategies, so it is not necessary to
enumerate all of the strategies to find a solution (Wilson, 1972; Koller & Megiddo, 1996).
Second, finding a best response to a specific opponent strategy in a game is computationally
much less expensive than solving for an equilibrium. In addition, best response algorithms
can often make use of domain-specific knowledge or heuristics to speed up the calculations
even further.

Our sequence-form double-oracle algorithm integrates the decomposition ideas of oracle
algorithms with the compact sequence-form representation for EFGs with imperfect infor-
mation. This results in an iterative algorithm that does not always need to generate the
complete linear program for the game to find a Nash equilibrium solution. The main idea
of the algorithm is to create a restricted game in which the players choose from a limited
space of possible strategies (represented as sequences of actions). The algorithm solves
the restricted game and then uses a fast best-response algorithm to find strategies in the
original unrestricted game that perform well against the current solution of the restricted
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game. These strategies are added to the restricted game and the process iterates until no
best response can be found to improve the solution. In this case, the current solution is an
equilibrium of the original game. Typically, a solution can be found by adding only a small
fraction of the strategies to the restricted game.

We begin by presenting related work, technical background, and our notation. We then
describe our main algorithm in three parts: (1) methods for creating, solving, and expand-
ing a valid restricted game, (2) the algorithm for finding the best-response strategies to be
added to the restricted game, and (3) variants of the main loop controlling the iterative
process of solving restricted games and adding new strategies. We present a formal analysis
and prove that our algorithm converges to a Nash equilibrium of the original game. Fi-
nally, we provide an experimental evaluation of the runtime performance and convergence
behavior of our algorithm on several realistic games with different characteristics including
a border patrolling scenario, Phantom Tic-Tac-Toe, and a simplified variant of Poker. We
compare our results with state-of-the-art algorithms for finding both exact and approxi-
mate solutions: linear programming using the sequence form, and Counterfactual Regret
Minimization (CFR, Zinkevich, Johanson, Bowling, & Piccione, 2008; Lanctot, 2013).

The experimental results confirm that our algorithm requires only a fraction of all pos-
sible sequences to solve a game in practice and significantly reduces memory requirements
when solving large games. This advances the state of the art and allows us to exactly solve
much larger games compared to the existing algorithms. Moreover, in games admitting
an equilibrium with small support (i.e., only a few sequences have non-zero probability in
an equilibrium), our algorithm also achieves significant improvements in computation time
and finds an equilibrium after only few iterations. These result hold without using any
domain-specific knowledge, but we also show that incorporating domain-specific heuristics
and bounds into the algorithm in a straightforward way can lead to even more significant
performance improvements. Analysis of the convergence rate shows that the approximative
bounds on the value of the game are either similar or a bit worse during the early stages
compared to CFR. However, the convergence behavior of CFR algorithm has a very long
tail and our algorithm always finds an exact solution much faster than CFR.

2. Related Work

Solving imperfect-information EFGs is a computationally challenging task, primarily due
to uncertainty about the actions of the opponent and/or a stochastic environment. The
leading exact algorithm (Koller et al., 1996; von Stengel, 1996) is based on formulating the
problem of finding an optimal strategy to play as a linear program. This algorithm exploits
a compact representation of strategies as sequences of individual actions (called the sequence
form) and results in a linear program of linear size in the size of the game tree. However,
this approach has limited applicability since the game tree grows exponentially with the
number of sequential actions in the game. A common practice for overcoming the limited
scalability of sequence-form linear programming is to use an approximation method. The
best known approximative algorithms include counterfactual regret minimization (CFR,
Zinkevich et al., 2008), improved versions of CFR with sampling methods (Lanctot, Waugh,
Zinkevich, & Bowling, 2009; Gibson, Lanctot, Burch, Szafron, & Bowling, 2012); Nesterov’s
Excessive Gap Technique (EGT, Hoda, Gilpin, Peña, & Sandholm, 2010); and variants of
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Monte Carlo Tree Search (MCTS) algorithms applied to imperfect-information games (e.g.,
see Ponsen, de Jong, & Lanctot, 2011).

The family of counterfactual regret minimization algorithms is based on learning meth-
ods that can be informally described as follows. The algorithm repeatedly traverses the
game tree and learns a strategy to play by applying a no-regret learning rule that min-
imizes a specific variant of regret (counterfactual regret) in each information set. The
no-regret learning converges to an optimal strategy in each information set. The overall
regret is bounded by the sum of the regret in each information set; hence, the strategy
as a whole converges to a Nash equilibrium. The main benefits of this approach include
simplicity and robustness, as it can be adapted for more generic games (e.g., see Lanctot,
Gibson, Burch, Zinkevich, & Bowling, 2012, where CFR is applied on games with imperfect
recall). However, the algorithm operates on the complete game tree and therefore requires
convergence in all information sets, which can be very slow for large games when one desires
a solution with small error.

Another popular method is Excessive Gap Technique that exploits the convex properties
of the sequence-form representation and uses recent mathematical results on finding extreme
points of smooth functions (see Hoda et al., 2010, for the details). The main idea is to ap-
proximate the problem of finding a pair of equilibrium strategies by two smoothed functions
and guiding them to find an approximate solution. Although this approach achieves faster
convergence in comparison with CFR, the algorithm is less robust (it is not known whether
a similar approach can be used for more general classes of games) and less used in practice.
Like CFR, EGT also operates in the complete strategy space of all sequences.

Monte Carlo Tree Search (MCTS) is another family of methods that has shown promise
for solving very large games, in particular perfect information board games such as Go (e.g.,
Lee et al., 2009). While the CFR and EGT algorithms are guaranteed to find an ε-Nash
equilibrium, convergence to an equilibrium solution has not been formally shown for any of
the variants of MCTS in imperfect-information games. On the contrary, the most common
version of MCTS based on the Upper Confidence Bounds (UCB) selection function can
converge to incorrect solutions even in simultaneous-move games (Shafiei, Sturtevant, &
Schaeffer, 2009) that are the simplest class of imperfect-information EFGs. MCTS algo-
rithms therefore do not (in general) guarantee finding an (approximate) optimal solution in
imperfect-information games. One exception is the recent proof of convergence of MCTS
with certain selection methods for simultaneous-move games (Lisy, Kovarik, Lanctot, &
Bosansky, 2013). Still, using MCTS is sometimes a reasonable choice since it can produce
good strategies in practice (Ponsen et al., 2011).

Contrary to the existing approximative approaches, our algorithm aims to find an ex-
act solution without explicitly considering the strategy in the complete game tree. Our
work combines the compact sequence-form representation and the double-oracle algorith-
mic framework. Previous work on the double-oracle framework has focused primarily on
applications in normal-form games, where the restricted game was expanded by adding pure
best-response strategies in each iteration. One of the first examples of solving games using
the double-oracle principle was by McMahan et al. (2003). They introduced the double-
oracle algorithm, proved the convergence to a Nash equilibrium, and experimentally verified
that the algorithm achieves computation time improvements on a search game where an
evader was trying to cross an environment without being detected by sensors placed by the
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opponent. The double-oracle algorithm reduced the computation time from several hours
to tens of seconds and allowed to solve much larger instances of this game. Similar success
with the domain-specific double-oracle methods has been demonstrated on a variety of dif-
ferent domains inspired by pursuit-evasion games (Halvorson, Conitzer, & Parr, 2009) and
security games played on a graph (Jain, Korzhyk, Vanek, Conitzer, Tambe, & Pechoucek,
2011; Letchford & Vorobeychik, 2013; Jain, Conitzer, & Tambe, 2013).

Only a few works have tried to apply the iterative framework of oracle algorithms to
EFGs, primarily using pure and mixed strategies in EFGs. The first work that exploited this
iterative principle is the predecessor of the sequence-form linear-program formulation (Koller
& Megiddo, 1992). In this algorithm, the authors use a representation similar to the se-
quence form only for a single player, while the strategies for the opponent are iteratively
added as constraints into the linear program (there is an exponential number of constraints
in their formulation). This approach can be seen as a specific variant of the oracle algo-
rithms, where the strategy space is expanded gradually for a single player. Our algorithm
is a generalization of this work, since our algorithm uses the sequence-form representation
for both players and it also incrementally expands the strategy space for both players.

More recent work has been done by McMahan in his thesis (McMahan, 2006) and follow-
up work (McMahan & Gordon, 2007). In these works the authors investigated an extension
of the double-oracle algorithm for normal-form games to the extensive-form case. Their
double-oracle algorithm for EFGs operates very similarly to the normal-form variant and
uses pure and mixed strategies defined for EFGs. The main disadvantage of this approach
is that in the basic version it still requires a large amount of memory since a pure strategy
for an EFG is large (one action needs to be specified for each information set), and there
is an exponential number of possible pure strategies. To overcome this disadvantage, the
authors propose a modification of the double-oracle algorithm that keeps the number of the
strategies in the restricted game bounded. The algorithm removes from the restricted game
those strategies that are the least used in the current solution of the restricted game. In
order to guarantee the convergence, the algorithm adds in each iteration into the restricted
game a mixed strategy representing the mean of all removed strategies; convergence is then
guaranteed similarly to fictitious play (see McMahan & Gordon, 2007, for the details).
Bounding the size of the restricted game results in low memory requirements. However, the
algorithm converges extremely slowly and it can take a very long time (several hours for a
small game) for the algorithm to achieve a small error (see the experimental evaluation in
McMahan, 2006; McMahan & Gordon, 2007).

A similar concept for using pure strategies in EFGs is used in an iterative algorithm
designed for Poker in the work of Zinkevich et al. (2007). The algorithm in this work
expands the restricted game with strategies found by a generalized best response instead of
using pure best response strategies. Generalized best response is a Nash equilibrium in a
partially restricted game – the player computing the best response can use any of the pure
strategies in the original unrestricted game, while the opponent is restricted to use only the
strategies from the restricted game. However, the main disadvantages of using pure and
mixed strategies in EFGs are still present and result in large memory requirements and an
exponential number of iterations.

In contrast, our algorithm directly uses the compact sequence-form representation of
EFGs and uses the sequences as the building blocks (i.e., the restricted game is expanded
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by allowing new sequences to be played in the next iteration). Using sequences and the
sequence form for solving the restricted game reduces the size of the restricted game and
the number of iterations, however, it also introduces new challenges when constructing and
maintaining the restricted game, and ensuring the convergence to a Nash equilibrium, which
we must solve for our algorithm to converge to a correct solution.

3. Technical Background

We begin by presenting the standard game-theoretic model of extensive-form games, fol-
lowed by a discussion of the most common solution concepts and the algorithms for comput-
ing these solutions. Then we present the sequence-form representation and the state-of-the-
art linear program for computing solutions using this representation. Finally, we describe
oracle algorithms as they are used for solving normal-form games. A summary of the most
common notation is provided in Table 1 for quick reference.

3.1 Extensive-Form Games

Extensive-form games (EFGs) model sequential interactions between players in a game.
Games in the extensive form are visually represented as game trees (e.g., see Figure 2).
Nodes in the game tree represent states of the game; each state of the game corresponds to
a sequence of moves executed by all players in the game. Each node is assigned to a player
that acts in the game state associated with this node. An edge in the game tree from a
node corresponds to an action that can be performed by the player who acts in this node.
Extensive-form games model limited observations of the players by grouping the nodes into
information sets, so that a given player cannot distinguish between nodes that belong to
the same information set when the player is choosing an action. The model also represents
uncertainty about the environment and stochastic events by using a special Nature player.

Formally, a two-player EFG is defined as a tuple G = (N,H,Z,A, p, u, C, I): N is a set
of two players N = {1, 2}. We use i to refer to one of the two players (either 1 or 2), and −i
to refer to the opponent of i. H denotes a finite set of nodes in the game tree. Each node
corresponds to a unique history of actions taken by all players and Nature from the root of
the game; hence, we use the terms history and node interchangeably. We denote by Z ⊆ H
the set of all terminal nodes of the game. A denotes the set of all actions and we overload
the notation and use A(h) ⊆ A to represent the set of actions available to the player acting
in node h ∈ H. We specify ha = h′ ∈ H to be node h′ reached from node h by executing
action a ∈ A(h). We say that h is a prefix of h′ and denote it by h v h′. For each terminal
node z ∈ Z we define a utility function for each player i (ui : Z → R). We study zero-sum
games, so ui(z) = −u−i(z) holds for all z ∈ Z.

The function p : H → N ∪ {c} assigns each node to a player who takes an action in the
node, where c means that the Nature player selects an action in the node based on a fixed
probability distribution known to all players. We use function C : H → [0, 1] to denote
the probability of reaching node h due to Nature (i.e., assuming that both players play all
required actions to reach node h). The value of C(h) is the product of the probabilities
assigned to all actions taken by the Nature player in history h. Imperfect observation of
player i is modeled via information sets Ii that form a partition over the nodes assigned
to player i {h ∈ H : p(h) = i}. Every information set contains at least one node and each
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node belongs to exactly one information set. Nodes in an information set of a player are
indistinguishable to the player. All nodes h in a single information set Ii ∈ Ii have the
same set of possible actions A(h). Action a from A(h) uniquely identifies information set
Ii and there cannot exist any other node h′ ∈ H that does not belong to information set
Ii and for which a is allowed to be played (i.e., a ∈ A(h′)). Therefore we overload notation
and use A(Ii) to denote the set of actions defined for each node h in this information set.
We assume perfect recall, which means that players perfectly remember their own actions
and all information gained during the course of the game. As a result, all nodes in any
information set Ii have the same history of actions for player i.

3.2 Nash Equilibrium in Extensive-Form Games

Solving a game requires finding a strategy profile (i.e., one strategy for each player) that
satisfies conditions defined by a specific solution concept. Nash equilibrium (NE) is the
best known solution concept in game theory and it describes the behavior of players under
certain assumptions about their rationality. In a Nash equilibrium, every player plays a
best response to the strategies of the other players. Let Πi be the set of pure strategies for
player i. In EFGs, a pure strategy is an assignment of exactly one action to be played in
each information set. A mixed strategy is a probability distribution over the set of all pure
strategies of a player. We denote by ∆i the set of all mixed strategies of player i. For any
pair of strategies δ ∈ ∆ = (∆1,∆2) we use ui(δ) = ui(δi, δ−i) for the expected outcome
of the game for player i when players follow strategies δ. A best response of player i to
the opponent’s strategy δ−i is a strategy δBRi , for which ui(δ

BR
i , δ−i) ≥ ui(δ

′
i, δ−i) for all

strategies δ′i ∈ ∆i. A strategy profile δ = (δ1, δ2) is a NE if and only if for each player i
it holds that δi is a best response to δ−i. A game can have multiple NEs; in the zero-sum
setting, all of these equilibria have the same value (i.e., the expected utility for every player
is the same). This is called the value of the game, denoted V ∗. The problem of finding a
NE in a zero-sum game has a polynomial computational complexity in the size of the game.

The NE solution concept is somewhat weak for extensive-form games. Nash equilibrium
requires that both players act rationally. However, there can be irrational strategies selected
for the parts of the game tree that are not reachable when both players follow the NE
strategies (these parts are said to be off the equilibrium path). The reason is that NE does
not expect this part of the game to be played and therefore does not sufficiently restrict
strategies in these information sets. To overcome these drawbacks, a number of refinements
of NE have been introduced imposing further restrictions with the intention of describing
more sensible strategies. Examples include subgame-perfect equilibrium (Selten, 1965) used
in perfect-information EFGs. The subgame-perfect equilibrium forces the strategy profile
to be a Nash equilibrium in each sub-game (i.e., in each sub-tree rooted in some node h)
of the original game. Unfortunately, sub-games are not particularly useful in imperfect-
information EFGs; hence, here the refinements include strategic-from perfect equilibrium
(Selten, 1975), sequential equilibrium (Kreps & Wilson, 1982), or quasi-perfect equilibrium
(van Damme, 1984; Miltersen & Sørensen, 2010). The first refinement avoids using weakly
dominated strategies in equilibrium strategies for two-player games (van Damme, 1991,
p. 29) and it is also known as the undominated equilibrium. Sequential equilibrium tries
to exploit the mistakes of the opponent by using the notion of beliefs consistent with the
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strategy of the opponent even in information sets off the equilibrium path. The main
intuitions behind the first two refinements are combined in quasi-perfect equilibrium.

Even though the solution described by NE does not always prescribe rational strategies
off the equilibrium path, it is still valuable to compute exact NE of large extensive-form
games for several reasons. We focus on zero-sum games, so the NE strategy guarantees
the value of the game even off the equilibrium path. In other words, the strategy off
the equilibrium path does not optimally exploit the mistakes of the opponent, but it still
guarantees an outcome of at least value gained by following the equilibrium path. Moreover,
a refined equilibrium is still a NE and calculating the value of the game is often a starting
point for many of the algorithms that compute these refinements – for example it is used
for computing undominated equilibrium (e.g., see Ganzfried & Sandholm, 2013; Cermak,
Bosansky, & Lisy, 2014) and normal-form proper equilibrium (Miltersen & Sørensen, 2008).

3.3 Sequence-Form Linear Program

Extensive-form games with perfect recall can be compactly represented using the sequence
form (Koller et al., 1996; von Stengel, 1996). A sequence σi is an ordered list of actions taken
by a single player i in a history h. The number of actions (i.e., the length of sequence σi)
is denoted by |σi| and the empty sequence (i.e., sequence with no actions) is denoted by ∅.
The set of all possible sequences for player i is denoted by Σi and the set of sequences for all
players is Σ = Σ1 × Σ2. A sequence σi ∈ Σi can be extended by a single action a taken by
player i, denoted by σia = σ′i (we use σi v σ′i to denote that σi is a prefix of σ′i). In games
with perfect recall, all nodes in an information set Ii share the same sequence of actions
for player i and we use seqi(Ii) to denote this sequence. We overload the notation and use
seqi(h) to denote the sequence of actions of player i leading to node h, and seqi(H

′) ⊆ Σi,
where seqi(H

′) =
⋃
h′∈H′ seqi(h

′) for some H ′ ⊆ H. Since action a uniquely identifies
information set Ii and all nodes in an information set share the same history of actions of
player i, each sequence uniquely identifies an information set. We use the function infi(σ

′
i)

to denote the information set in which the last action of the sequence σ′i is taken. For an
empty sequence, function infi(∅) is the information set of the root node.

Finally, we define the auxiliary payoff function gi : Σ → R that extends the utility
function to all nodes in the game tree. The payoff function gi represents the expected
utility of all nodes reachable by sequentially executing the actions specified in a pair of
sequences σ:

gi(σi, σ−i) =
∑

h∈Z : ∀j∈N σj=seqj(h)

ui(h) · C(h) (1)

The value of the payoff function is defined to be 0 if no leaf is reachable by sequentially ex-
ecuting all of the actions in the sequences σ – either all actions from the pair of sequences σ
are executed and an inner node (h ∈ H \ Z) is reached, or during the sequential execu-
tion of the actions node h is reached, for which the current action a to be executed from
sequence σρ(h) is not defined (i.e., a /∈ A(h)). Formally we define a pair of sequences σ to
be compatible if there exists node h ∈ H such that sequence σi of every player i equals to
seqi(h).

We can compute a Nash equilibrium of a two-player zero-sum extensive-form game
using a linear program (LP) of a polynomial size in the size of the game tree using the
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sequence form (Koller et al., 1996; von Stengel, 1996). The LP uses an equivalent compact
representation of mixed strategies of players in a form of realization plans. A realization
plan for a sequence σi is the probability that player i will play this sequence of actions
under the assumption that the opponent will choose compatible sequences of actions that
reach the information sets for which the actions specified in the sequence σi are defined. We
denote the realization plan for player i by ri : Σi → R. The equilibrium realization plans
can be computed using the following LP (e.g., see Shoham & Leyton-Brown, 2009, p. 135):

max
r,v

vinf−i(∅)

vinf−i(σ−i) −
∑

I′−i∈I−i:seq−i(I
′
−i)=σ−i

vI′−i
≤
∑
σi∈Σi

gi(σ−i, σi) · ri(σi) ∀σ−i ∈ Σ−i (2)

ri(∅) = 1 (3)∑
∀a∈A(Ii)

ri(σia) = ri(σi) ∀Ii ∈ Ii, σi = seqi(Ii) (4)

ri(σi) ≥ 0 ∀σi ∈ Σi (5)

Solving the LP yields a realization plan for player i using variables ri, and expected values
for the information sets of player −i (variables vI−i). The LP works as follows: player i
maximizes the expected utility value by selecting the values for the variables of realiza-
tion plan that is constrained by Equations (3–5). The probability of playing the empty
sequence is defined to be 1 (Equation 3), and the probability of playing a sequence σi is
equal to the sum of the probabilities of playing sequences extended by exactly one action
(Equation 4). Finding such a realization plan is also constrained by the best responding
opponent, player −i. This is ensured by Equation (2), where player −i selects in each
information set I−i such action that minimizes the expected utility value vI−i in this infor-
mation set. There is one constraint defined for each sequence σ−i, where the last action of
this sequence determines the best action to be played in information set inf−i(σ−i) = I−i.
The expected utility is composed of the expected utilities of the information sets reachable
after playing sequence σ−i (sum of v variables on the left side) and of the expected utilities
of leafs to which this sequence leads (sum of g values on the right side of the constraint).

3.4 Double-Oracle Algorithm for Normal-Form Games

We now describe the concept of column/constraint generation techniques applied previously
in normal-form games and known as the double-oracle algorithm (McMahan et al., 2003).
Normal-form games are represented using game matrices; rows of the matrix correspond
to pure strategies of one player, columns correspond to pure strategies of the opponent,
and values in the matrix cells represent the expected outcome of the game when players
play corresponding pure strategies. Zero-sum normal-form games can be solved by linear
programming in polynomial time in the size of the matrix (e.g., see Shoham & Leyton-
Brown, 2009, p. 89).

Figure 1 shows the visualization of the main structure of the double-oracle algorithm for
normal-form games. The algorithm consists of the following three steps that repeat until
convergence:
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Bošanský, Kiekintveld, Lisý, & Pěchouček

Figure 1: Schematic of the double-oracle algorithm for a normal-form game.

1. create a restricted game by limiting the set of pure strategies that each player is
allowed to play

2. compute a pair of Nash equilibrium strategies in this restricted game using the LP for
solving normal-form games

3. for each player, compute a pure best response strategy against the equilibrium strategy
of the opponent found in the previous step; the best response may be any pure strategy
in the original unrestricted game

The best response strategies computed in step 3 are added to the restricted game, the game
matrix is expanded by adding new rows and columns, and the algorithm continues with the
next iteration. The algorithm terminates if neither of the players can improve the outcome
of the game by adding a new strategy to the restricted game. In this case both players
play a best response to the strategy of the opponent in the original unrestricted game.
The algorithm maintains the values of the expected utilities of the best-response strategies
throughout the iterations of the algorithm. These values provide bounds on the value of
the original unrestricted game V ∗ – from the perspective of player i, the minimal value
of all of her past best-response calculations represents an upper bound of the value of the
original game, V UB

i , and the maximal value of all of past best-response calculations of the
opponent represents the lower bound on the value of the original game, V LB

i . Note that for
the bounds it holds that the lower bound for player i is equal to the negative of the value
of the upper bound for the opponent:

V LB
i = −V UB

−i

In general, computing best responses is computationally less demanding than solving the
game, since the problem is reduced to a single-player optimization. Due to the fact that best-
response algorithms can operate very quickly (e.g., also by exploiting additional domain-
specific knowledge), they are called oracles in this context. If the algorithm incrementally
adds strategies only for one player, the algorithm is called a single-oracle algorithm, if
the algorithm incrementally adds the strategies for both players, the algorithm is called a
double-oracle algorithm. Double-oracle algorithms are typically initialized by an arbitrary
pair of strategies (one pure strategy for each player). However, we can also use a larger set
of initial strategies selected based on a domain-specific knowledge.

The double-oracle algorithm for zero-sum normal-form games runs in a polynomial time
in the size of the game matrix. Since each iteration adds at least one pure strategy to
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Figure 2: Example of a two-player extensive-form game visualized as a game tree. Circle
player aims to maximize the utility value, box aims to minimize the utility value. The bold
edges represent the sequences of actions added to the restricted game.

the restricted game and there are finite pure strategies, the algorithm stops after at most
|Πi| + |Π−i| iterations. Each iteration is also polynomial, since it consists of solving the
linear program and computing best responses. The relative performance of the double-
oracle algorithm compared to solving the linear program for the original unrestricted game
closely depends on the number of iterations required for convergence. In the worst case, the
algorithm adds all pure strategies and solves the original game, although this is rarely the
case in practice. Estimating the expected number of iterations needed for the double-oracle
algorithm to converge, however, remains an open problem.

3.4.1 Towards Extensive-Form Games

The straightforward method of applying the double-oracle algorithm for EFGs is to use pure
strategies defined in EFGs (i.e., assignments of action for each information set, or realization
plans) and apply exactly the algorithm described in this section – i.e., iteratively add
pure strategies from the unrestricted extensive-form game into the restricted game matrix.
However, this can result in an exponential number of iterations and an exponentially large
restricted game in the worst case. Our algorithm differs significantly from this idea since it
directly operates on (more compact) sequences instead of full strategies.

4. Sequence-Form Double-Oracle Algorithm for Extensive-Form Games

We now describe our sequence-form double-oracle algorithm for solving extensive-form
games with imperfect information. First, we give an informal overview of our algorithm.
We use an example game depicted in Figure 2 to illustrate some of the key concepts. Af-
terwards, we formally define the restricted game and describe the key components of the
algorithm, following by a full example run of our algorithm.

The overall scheme of our algorithm is based on the double-oracle framework described in
the previous section. The main difference is that our algorithm uses the sequences to define
the restrictions in the game tree. The restricted game in our model is defined by allowing
players to use (i.e., to play with non-zero probability) only a subset of the sequences from
the original unrestricted game. This restricted subset of sequences defines the subsets of
reachable actions, nodes, and information sets from the original game tree. Consider our ex-
ample in Figure 2. A restricted game can be defined by sequences ∅, A,AC,AD for the circle
player, and ∅, x for the box player. These sequences represent actions allowed in the game,
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they define reachable nodes (using history we can reference them as ∅, A,Ax,AxC,AxD),
and reachable information sets (I1, I2 for the circle player and the only information set I�
for the box player).

The algorithm iteratively adds new sequences of allowed actions into the restricted
game, similarly to the double-oracle algorithm for normal-form games. The restricted game
is solved as a standard zero-sum extensive-form game using the sequence-form linear pro-
gram. Then a best response algorithm searches the original unrestricted game to find new
sequences to add to the restricted game. When the sequences are added, the restricted
game tree is expanded by adding all new actions, nodes, and information sets that are now
reachable based on the new sets of allowed sequences. The process of solving the restricted
game and adding new sequences iterates until no new sequences that improve the solution
can be added.

There are two primary complications that arise when we use sequences instead of full
strategies in the double-oracle algorithm, both due to the fact that sequences do not neces-
sarily define actions in all information sets: (1) a strategy computed in the restricted game
may not be a complete strategy in the original game, because it does not define behavior
for information sets that are not in the restricted game, and (2) it may not be possible to
play every action from a sequence that is allowed in the restricted game, because playing
a sequence can depend on having a compatible sequence of actions for the opponent. In
our example game tree in Figure 2, no strategy of the circle player in the restricted game
specifies what to play in information sets I3 and I4. The consequence of the second issue
is that some inner nodes of the original unrestricted game can (temporarily) become leafs
in the restricted game. For example, the box player can add sequence y into the restricted
game making node Ay a leaf in the restricted game, since there are no other actions of the
circle player in the restricted game applicable in this node.

Our algorithm solves these complications using two novel ideas. The first idea is the
concept of a default pure strategy (denoted πDef

i ∈ Πi). Informally speaking, the algorithm
assumes that each player has a fixed implicit behavior that defines what the player does by
default in any information set that is not part of the restricted game. This is described by
the default strategy πDef

i , which specifies an action for every information set. Note that this
default strategy does not need to be represented explicitly (which could use a large amount
of memory). Instead, it can be defined implicitly using rules, such as selecting the first action
from a deterministic method for generating the ordered set of actions A(h) in node h. We
use the default pure strategies to map every strategy from the restricted game into a valid
strategy in the full game. Specifically, the strategy in the original unrestricted game selects
actions according to the probabilities specified by a strategy for the restricted game in
every information set that is part of the restricted game, and for all other information sets
it plays according to the default pure strategy. Recall our example in Figure 2, where the
pure default strategy for the circle player can be 〈A,C,E,G〉 (i.e., selecting the leftmost
action in each information set). Hence, a strategy in the original unrestricted game can use
a strategy from the restricted game in information sets I1 and I2, and select pure actions
in E, G in information sets I3 and I4 respectively.

The second key idea is to use temporary utility values for cases where there are no
allowed actions that can be played in some node in the restricted game that is an inner
node in the original game (so called temporary leaf ). To ensure the correct convergence of
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H game-tree nodes / histories
Z ⊆ H leafs / terminal states
πDef
i implicit default pure strategy for player i
ri : Σi 7→ R realization plan of player i for a sequence
C : H 7→ R probability of reaching a node due to Nature play
gi : H 7→ R extension of the utility function to all nodes;

gi(h) = ui(h) · C(h) if h ∈ Z and gi(h) = 0 if h is not a terminal node (h /∈ Z)
seqi sequence(s) of actions of player i leading to a node / a set of nodes /

/ an information set
infi : Σi 7→ Ii an information set in which the last action of the sequence was executed

Table 1: An outline of the main symbols used in the paper.

the algorithm these temporary utilities must be assigned so that they provide a bound on
the expected value gained by continuing the play from the given node. Our algorithm uses
a value that corresponds to the expected outcome of continuing the game play, assuming
the player making the choice in the temporary leaf uses the default strategy, while the
opponent plays a best response. Assume we add sequence y for the box player into the
restricted game in our example tree in Figure 2. The temporary utility value for node Ay
would correspond to value −2, since the default strategy in information set I3 is to play E
for the circle player. In the next section we formally describe this method and prove the
correctness of the algorithm given these temporary values.

We now describe in detail the key parts of our method. We first formally define the
restricted game and methods for expanding the restricted game, including the details of
both of the key ideas introduced above. Then we describe the algorithm for selecting the
new sequences that are allowed in the next iteration. The decision of which sequences to add
is based on calculating a best response in the original unrestricted game using game-tree
search improved with additional pruning techniques. Finally, we discuss different variations
of the main logic of the double-oracle algorithm that determines for which player(s) the
algorithm adds new best-response sequences in the current iteration.

4.1 Restricted Game

This section formally defines the restricted game as a subset of the original unrestricted
game. A restricted game can be fully specified by the set of allowed sequences. We define
the sets of nodes, actions, and information sets as subsets of the original unrestricted sets
based on the allowed sequences. We denote the original unrestricted game by a tuple
G = (N,H,Z,A, p, u, C, I) and the restricted game by G′ = (N,H ′, Z ′, A′, p, u′, C, I ′). All
sets and functions associated with the restricted game use prime in the notation; the set of
players, and the functions p and C remain the same.

The restricted game is defined by a set of allowed sequences (denoted by Φ′ ⊆ Σ) that
are returned by the best response algorithms. As indicated above, even an allowed sequence
σi ∈ Φ′ might not be playable to the full length due to missing compatible sequences of the
opponent. Therefore, the restricted game is defined using the maximal compatible set of
sequences Σ′ ⊆ Φ′ for a given set of allowed sequences Φ′. We define Σ′ as the maximal
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subset of the sequences from Φ′ such that:

Σ′i ← {σi ∈ Φ′i : ∃σ−i ∈ Φ′−i∃h ∈ H ∀j ∈ N seqj(h) = σj} ∀i ∈ N (6)

Equation (6) means that for each player i and every sequence σi in Σ′i, there exists a
compatible sequence of the opponent σ−i that allows the sequence σi to be executed in full
(i.e., by sequentially executing of all the actions in these sequences σ some node h can be
reached such that seqj(h) = σj for all players j ∈ N).

The set of sequences Σ′ fully defines the restricted game, because all other sets in the
tuple G′ can be derived from Σ′. A node h is in the restricted game if and only if the
sequences that must be played to reach h are in the set Σ′ for both players:

H ′ ← {h ∈ H : ∀i ∈ N seqi(h) ∈ Σ′} (7)

If a pair of sequences is in Σ′, then all nodes reachable by executing this pair of sequences
are included in H ′. Actions defined for a node h are in the restricted game if and only if
playing the action in this node leads to a node that is in the restricted game:

A′(h)← {a ∈ A(h) : ha ∈ H ′} ∀h ∈ H ′ (8)

Nodes from the restricted game corresponding to inner nodes in the original unrestricted
game may not be inner nodes in the restricted game. Therefore, the set of leaves in the
restricted game is a union of leaf nodes of the original game and inner nodes from the
original game that currently do not have a valid continuation in the restricted game, based
on the allowed sequences:

Z ′ ←
(
Z ∩H ′

)
∪ {h ∈ H ′ \ Z : A′(h) = ∅} (9)

We explicitly differentiate between leaves in the restricted game that correspond to leaves in
the original unrestricted game (i.e., Z ′∩Z) and leaves in the restricted game that correspond
to inner nodes in the original unrestricted game (i.e., Z ′ \ Z), since the algorithm assigns
temporary utility values to nodes in the latter case.

The information sets in the restricted game correspond to information sets in the original
unrestricted game. If some node h belongs to an information set Ip(h) in the original game,
then the same holds in the restricted game. We define an information set to be a part of
the restricted game if and only if at least one inner node that belongs to this information
set is included in the restricted game:

I ′i ← {Ii ∈ Ii : ∃h ∈ Ii h ∈ H ′ \ Z ′} (10)

An information set in the restricted game Ii ∈ I ′i consists only of nodes that are in the
restricted game – i.e., ∀h ∈ Ii : h ∈ H ′.

Finally, we define the modified utility function u′ for the restricted game. The primary
reason for the modified utility function is to define the temporary utility values for leaves in
the set Z ′\Z. Consider h ∈ Z ′\Z to be a temporary leaf and player i to be the player acting
in this node (i = p(h)). Moreover, let u∗i (h) be the expected outcome of the game starting
from this node assuming both players are playing NE strategies in the original unrestricted
game. The modified utility function u′i for this leaf must return a value that is a lower bound
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on value u∗i (h). Due to the zero-sum assumption, this value represents an upper bound on
value for the opponent −i. Setting the value this way ensures two things: (1) player −i is
likely to use sequences leading to node h in optimal strategies in the restricted game (since
the modified utility value is an upper bound of an actual value), and (2) player i adds new
sequences using best-response algorithms that prolong sequence seqi(h) leading to node h
if there are sequences that would yield better expected value than u′i. Later we show a
counterexample where setting the value otherwise can cause the algorithm to converge to
an incorrect solution. We calculate the lower bound by setting the utility value so that it
corresponds to the outcome in the original game if the player i continues by playing the
default strategy πDef

i and the opponent plays a best response δBR−i to this default strategy.
This is a valid lower bound since we consider only a single strategy for the player acting in
node h, which correspond to the default strategy; considering other strategies could allow
this player to improve the value of continuing from the node h. For all other leaf nodes
h ∈ Z ′ ∩ Z we set u′i(h)← ui(h).

4.1.1 Solving the Restricted Game

The restricted game defined in this section is a valid zero-sum extensive-form game and
it can be solved using the sequence-form linear programming described in Section 3. The
algorithm computes a NE of the restricted game by solving a pair of linear programs using
the restricted sets Σ′, H ′, Z ′, I ′, and the modified utility function u′.

Each strategy from the restricted game can be translated to the original game by using
the pure default strategy to extend the restricted strategy where it is not defined. Formally,
if r′i is a mixed strategy represented as a realization plan of player i in the restricted
game, then we define the extended strategy r′i to be a strategy identical to the strategy in
the restricted game for sequences included in the restricted game, and correspond to the
default strategy πDef

i if a sequence is not included in the restricted game:

r′i(σi)←

{
r′i(σi) σi ∈ Σ′i
r′i(σ

′
i) · πDef

i (σi \ σ′i) σi /∈ Σ′i; σ
′
i = arg maxσ′′i ∈Σ′i; σ

′′
i vσi |σ

′′
i |

(11)

The realization plan of a sequence σi not allowed in the restricted game (i.e., σi /∈ Σ′i)
is equal to the realization probability of the longest prefix of the sequence allowed in the
restricted game (denoted by σ′i), and setting the remaining part of the sequence (i.e., σi\σ′i)
to correspond to the default strategy of player i. This computation is expressed as a
multiplication of two probabilities, where we overload the notation and use πDef

i (σi \ σ′i) to
be 1 if the remaining part of the sequence σi corresponds to the default strategy of player i,
and 0 otherwise.

In each iteration of the double-oracle algorithm one sequence-form LP is solved for each
player to compute a pair of NE strategies in the restricted game. We denote these strategies
as (r∗i , r

∗
−i) and (r∗i , r

∗
−i) when they are extended to the original unrestricted game using

the default strategies.

4.1.2 Expanding the Restricted Game

The restricted game is expanded by adding new sequences to the set Φ′ and updating the
remaining sets according to their definition. After adding new sequences, the algorithm
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calculates and stores the temporary utility values for leaves in Z ′ \ Z so they can be used
in the sequence-form LP.

After updating the restricted game, the linear programs are modified so that they cor-
respond to the new restricted game. For all newly added information sets and sequences,
new variables are created in the linear programs and the constraints corresponding to these
information sets/sequences are created (Equations 2 and 4). Moreover, some of the con-
straints already existing in the linear program need to be updated. If a sequence σi is
added to the set Σ′i and the immediate prefix sequence (i.e., sequence σ′i v σi such that
|σ′i| + 1 = |σi|) was already a part of the restricted game, then we need to update the
constraint for information sets Ii for which σ′i = seqi(Ii) to ensure the consistency of the
strategies (Equation 4), and the constraint corresponding to sequence σ′i (Equation 2). In
addition, the algorithm updates Equations (2) assigned to sequences of the opponent σ−i
for which g(σi, σ−i) 6= 0. Finally, the algorithm updates all constraints that previously used
utilities for temporary leaf nodes that are no longer leaf nodes in the restricted game after
adding the new sequences.

New sequences for each player are found using the best response sequence (BRS) algo-
rithms described in Section 4.2. From the perspective of the sequence-form double-oracle
algorithm, the BRS algorithm calculates a pure best response for player i against a fixed
strategy of the opponent in the original unrestricted game. This pure best response specifies
an action to play in each information set that is currently reachable given the opponent’s
extended strategy r∗−i. The best response can be formally defined as a pure realization
plan rBR

i that assigns only integer values 0 or 1 to the sequences. This realization plan
is not necessarily a pure strategy in the original unrestricted game because there may not
be an action specified for every information set. Specifically, there is no action specified
for information sets that are not reachable (1) due to choices of player i, and (2) due to
zero probability in the realization plan of the opponent r∗−i. Omitting these actions does
not affect the value of the best response because these information sets are never reached;
hence, for rBR

i it holds that ∀r′i ∈ ∆i ui(r
BR
i , r∗−i) ≥ ui(r′i, r∗−i) and there exists a pure best

response strategy πBR
i ∈ Πi such that ui(r

BR
i , r∗−i) = ui(π

BR
i , r∗−i). The sequences that are

used in the best-response pure realization plan with probability 1 are returned by BRS
algorithm and we call these the best-response sequences:

{σi ∈ Σi : rBR
i (σi) = 1} (12)

4.1.3 Example Run of the Algorithm

We now demonstrate the sequence-form double-oracle algorithm on an example game de-
picted in Figure 3a. In our example, there are two players: circle and box. Circle aims to
maximize the utility value in the leafs, box aims to minimize the utility value. We assume
that choosing the leftmost action in each information set is the default strategy for both
players in this game.

The algorithm starts with an empty set of allowed sequences in the restricted game
Φ′ ← ∅; hence, the algorithm sets the current pair of (r∗i , r

∗
−i) strategies to be equivalent to

(πDef
i , πDef

−i ). Next, the algorithm adds new sequences that correspond to the best response
to the default strategy of the opponent; in our example the best response sequences for
the circle player are {∅, A,AD}, and {∅, y} for the box player. These sequences are added
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(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4

Figure 3: Example of the steps of the sequence-form double-oracle algorithm in a two-player
zero-sum game, where circle player aims to maximize the utility value, box aims to minimize
the utility value. Bold edges correspond to the sequences of actions added into the restricted
game. The dashed boxes indicate the information sets.

to the set of allowed sequences Φ′. Next, the set of sequences of the restricted game Σ′ is
updated. The maximal compatible set of sequences from set Φ′ cannot contain sequence
AD because the compatible sequence of the box player (i.e., x in this case) is not allowed
in the restricted game yet and sequence AD cannot be fully executed. Moreover, by adding
sequences A and y, the restricted game will contain node Ay for which actions E and F
are defined in the original unrestricted game. However, there is no continuation in the
current restricted game yet; hence, this node is a temporary leaf, belongs to Z ′ \ Z, and
the algorithm needs to define a new value for a modified utility function u′ for this node.
The value u′(Ay) is equal to −2 and corresponds to the outcome of the game if the circle
player continues by playing the default strategy and the box player plays the best response.
To complete the first step of the algorithm we summarize the nodes and information sets
included in the restricted game; H ′ contains 3 nodes (the root, the node after playing an
action A and the node Ay), and two information sets (the information set for node Ay is
not added into the restricted game, because this node is now a leaf in the restricted game).
Playing the sequences A and y with probability 1 is the Nash equilibrium of the restricted
game. The situation is depicted in Figure 3b, the sequences in Σ′ are shown as bold edges.

The algorithm proceeds further and the complete list of steps of the algorithm is sum-
marized in Table 2. In the second iteration, new sequences B and BH are added into the
restricted game. The box player does not add new sequences in this iteration because y is
the best response to the extended equilibrium strategy of the circle player – i.e., playing
sequences A,AC,AE with probability 1. NE in the updated restricted game changes to
playing sequences B,BH and sequence y, all with probability 1. In the third iteration the
situation changes and the box player adds sequence x, while there are no new sequences
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added for the circle player. After adding sequence x, sequence AD also becomes a part of
the set Σ′© as it can now be fully executed due to adding the compatible sequence x. NE in
the restricted game is now fully mixed, the sequences starting with A and with B are played
in a ratio of 3 : 4, x and y in a ratio of 4 : 3. In the fourth iteration, the algorithm adds
sequence AF to the restricted game (the best response for the circle player), which removes
the assigned value u′(Ay) since the node no longer belongs to set Z ′. The algorithm stops
after four iterations. No other sequences are added into the restricted game, the solution of
the restricted game (r∗i , r

∗
−i) can be translated to the solution in the original unrestricted

game, and (r∗i , r
∗
−i) is Nash equilibrium of the original game.

Iteration rBR
© rBR

� Σ′© Σ′�
1. ∅, A,AD ∅, y ∅, A ∅, y
2. ∅, B,BH ∅, y ∅, A,B,BH ∅, y
3. ∅, B,BH ∅, x ∅, A,AD,B,BH ∅, y, x
4. ∅, A,AF ∅, y ∅, A,AD,AF,B,BH ∅, y, x

Table 2: Steps of the sequence-form double-oracle algorithm applied to the example.

Consider now a small modification of the example game where there is a utility value
of −3 in the leaf following action F (i.e., node AyF ). In this case, the algorithm does not
need to add sequence AF (nor AE) to the restricted game because it does not improve
the value of the restricted game. Note that this modified example game shows why the
algorithm needs to set the utility values for nodes in Z ′ \ Z. If the algorithm simply uses
the unmodified utility function, then the node Ay will be treated as if it had zero utility
value. This value overestimates the outcome of any actual continuation following this node
in the original game for the circle player and since sequences AE or AF will never be a
part of the best response for the circle player, the algorithm can converge to an incorrect
solution.

4.2 Best-Response Sequence Algorithm

The purpose of the best-response sequence (BRS) algorithm is to generate new sequences
that will be added to the restricted game in the next iteration, or to prove that there is
no best response with better expected value that uses sequences currently not allowed in
the restricted game. Throughout this section we use the term searching player to represent
the player for whom the algorithm computes the best response sequences. We refer to this
player as i.

The BRS algorithm calculates the expected value of a pure best response to the oppo-
nent’s strategy r∗−i. The algorithm returns both the set of best-response sequences as well
as the expected value of the strategy against the extended strategy of the opponent.

The algorithm is based on a depth-first search that traverses the original unrestricted
game tree. The behavior of the opponent −i is fixed to the strategy given by the extended
realization plan r∗−i. To save computation time, the best-response algorithms use branch
and bound during the search for best-response sequences. The algorithm uses a bound on
the expected value for each inner node, denoted by λ. This bound represents the minimal
utility value that the node currently being evaluated needs to gain in order to be a part
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Require: i - searching player, h - current node, Iki - current information set, r′−i - opponent’s
strategy, Min/MaxUtility - bounds on utility values, λ - lower bound for a node h

1: w ← r−i(seq−i(h)) · C(h)
2: if h ∈ Z then
3: return ui(h) · w
4: else if h ∈ Z ′ \ Z then
5: return u′i(h) · w
6: end if
7: sort a ∈ A(h) based on probability wa ← r′−i

(
seq−i(ha)

)
· C(ha)

8: vh ← 0
9: for a ∈ A(h), wa > 0 do

10: λ′ ← λ−
[
vh + (w − wa) ·MaxUtility

]
11: if λ′ ≤ wa·MaxUtility then
12: v′ ← BRSi(ha, λ

′)
13: if v′ = −∞ then
14: return −∞
15: end if
16: vh ← vh + v′

17: w ← w − wa

18: else
19: return −∞
20: end if
21: end for
22: return vh

Figure 4: BRSi in the nodes of other players.

of a best-response sequence. Using this bound during the search, the algorithm is able to
prune branches that will certainly not be part of any best-response sequence. The bound λ
is set to MinUtility for the root node.

We distinguish 2 cases in the search algorithm: either the algorithm is evaluating an
information set (or more specifically a node h) assigned to the searching player i, or the
node is assigned to one of the other players (either to the opponent, player −i, or it is a
chance node). The pseudocode for these two cases is depicted in Figures 4 and 5.

4.2.1 Nodes of the Opponent

We first describe the case used when the algorithm evaluates node h assigned to either
the opponent of the searching player or to Nature (see Figure 4). The main idea is to
calculate the expected utility for this node according to the (fixed) strategy of the player.
The strategy is known because it is either given by the extended realization plan r∗−i, or by
the stochastic environment (C). Throughout the algorithm, the variable w represents the
probability of this node based on the realization probability of the opponent and stochastic
environment (line 1). This value is iteratively decreased by values wa that represent real-
ization probabilities of the currently evaluated action a ∈ A(h). Finally, vh is the expected
utility value for this node.

The algorithm evaluates actions in the descending order according to the probability
of being played (based on r′−i and C; lines 9–21). First, we calculate a new lower bound
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λ′ for the successor ha (line 10). The new lower bound is the minimal value that must
be returned from the recursive call BRSi(ha) under the optimistic assumption that all the
remaining actions will yield the maximum possible utility. If the lower bound does not
exceed the maximum possible utility in the game, the algorithm is executed recursively
on the successors (line 12). Note that the algorithm does not evaluate branches with zero
realization probability (line 9).

There are 3 possibilities for pruning in this part of the search algorithm. The first
pruning is possible if the currently evaluated node is a leaf in the restricted game, but this
node is an inner node in the original node (i.e., h ∈ Z ′ \ Z; line 5). The algorithm can
directly use the value from the modified utility function u′ in this case, since it is calculated
as a best response of the searching player against the default strategy of the opponent that
will be applied in the successors of node h since h ∈ Z ′. Secondly, a cut-off also occurs
if the new lower bound for a successor is larger than the maximum possible utility in the
game, since this value can never be obtained in the successor (line 19). Finally, a cut-off
occurs if there was a cut-off in one of the successors (line 14).

4.2.2 Nodes of the Searching Player

In nodes assigned to the searching player, the algorithm evaluates every action in each
state that belongs to the current information set. The algorithm traverses the states in
the descending order according to the probability of occurrence given the strategies of the
opponent and Nature (line 8). Similar to the previous case, in each iteration the algorithm
calculates a new lower bound for the successor node (line 17). The new lower bound λ′

is the minimal value that must be returned from the recursive call BRSi(h
′a) in order for

the action a to be selected as the best action for this information set under the optimistic
assumption that this action yields the maximum possible utility value after applying it in
each of the remaining states in this information set. The algorithm performs a recursive call
(line 20) only for an action that still could be the best in this information set (i.e., the lower
bound does not exceed the maximal possible utility in the game). Note that if a cut-off
occurs in one of the successors, the currently evaluated action a can no longer be the best
action in this information set. Hence, va is set to −∞ and action a will not be evaluated for
any of the remaining nodes. When the algorithm determines which action will be selected
as the best one in an information set, it evaluates only this action for all remaining nodes
in the information set. Finally, the algorithm stores the values for the best action for all
nodes in this information set (line 30). These are reused if the same information set is
visited again (i.e., the algorithm reaches a different node h′ from the same information set
Ii; line 5).

A cut-off occurs in this part of the search algorithm if the maximal possible value vha
is smaller than the lower bound λ after evaluating node h. This means that regardless of
which action will be selected as the best action in this information set, the lower bound
for node h will not be reached; hence, the cut-off occurs (line 27). If a cut-off occurs in
an information set, this information set cannot be reached again and the sequences of the
searching player leading to this information set cannot be a part of the best response. This
is due to propagating the cut-off to at least one previous information set of the searching
player, otherwise there will be no tight lower bound set (the bound is first set only in the
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Require: i - searching player, h - current node, Iki - current information set, r−i - opponent’s
strategy, Min/MaxUtility - bounds on utility values, λ− lower bound for a node h

1: if h ∈ Z then
2: return ui(h) · r′−i(seq−i(h)) · C(h)
3: end if
4: if vh is already calculated then
5: return vh

6: end if
7: H ′ ← {h′; h′ ∈ Ii}
8: sort H ′ descending according to value r−i(seq−i(h

′)) · C(h′)
9: w ←

∑
h′∈H′ r−i(seq−i(h

′)) · C(h′)
10: va ← 0 ∀a ∈ A(h); maxAction ← ∅
11: for h′ ∈ H ′ do
12: wh′ ← r′−i(seq−i(h

′)) · C(h′)
13: for a ∈ A(h′) do
14: if maxAction is empty then
15: λ′ ← wh′ ·MinUtility
16: else
17: λ′ ← (vmaxAction + w ·MinUtility)− (va + (w − wh′) ·MaxUtility)
18: end if
19: if λ′ ≤ wh′ ·MaxUtility then
20: vh

′

a ← BRSi(h
′a, λ′)

21: va ← va + vh
′

a

22: end if
23: end for
24: maxAction ← arg maxa∈A(h′) va
25: w ← w − wh′

26: if h was evaluated ∧
(
maxa∈A(h) v

h
a < λ

)
then

27: return −∞
28: end if
29: end for
30: store vh

′

maxAction as vh
′ ∀h′ ∈ H ′

31: return vhmaxAction

Figure 5: BRSi in the nodes of the searching player.

information sets of the searching player). Therefore, there exists at least one action of the
searching player that will never be evaluated again (after a cut-off, the value va for this
action is set to −∞) and cannot be selected as the best action in the information set. Since
we assume perfect recall, all nodes in information set Ii share the same sequence of actions
seqi(Ii); hence, no node h′ ∈ Ii can be reached again.

4.3 Main Loop Alternatives

We now introduce several alternative formulations for the main loop of the sequence-form
double-oracle algorithm. The general approach in the double-oracle algorithm is to solve the
restricted game to find the equilibrium strategy for each player, compute the best responses
in the original game for both of the players, and continue with the next iteration. However,
the sequence-form LP is formulated in our double-oracle scheme in such a way that on each
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iteration the algorithm can solve the restricted game only from the perspective of a single
player i. In other words, we formulate a single LP as described in Section 3.3 that computes
the optimal strategy of the opponent in the restricted game (player −i), and then compute
the best response of player i to this strategy. This means that on each iteration we can
select a specific player i, for whom we compute the best response in this iteration. We call
this selection process the player-selection policy.

There are several alternatives for the player-selection policy that act as a domain-
independent heuristics in double-oracle algorithm. We consider three possible policies:
(1) the standard double-oracle player-selection policy of selecting both players on each it-
eration, (2) an alternating policy, where the algorithm selects only one player and switches
between the players regularly (player i is selected in one iteration, player −i is selected in
the following iteration), and finally (3) a worse-player-selection policy that selects the player
who currently has the worse bound on the solution quality. At the end of an iteration the
algorithm selects the player i for whom the upper bound on utility value is further away
from the current value of the restricted game. More formally,

arg max
i∈N

∣∣V UB
i − V LP

i

∣∣ (13)

where V LP
i is the last calculated value of the restricted game for player i. The intuition

behind this choice is that either this bound is precise and there are some missing sequences
of this player in the restricted game that need to be added, or the upper bound is overes-
timated. In either case, the best-response sequence algorithm should be run for this player
in the next iteration, either to add new sequences or to tighten the bound. In case of a tie,
the alternating policy is applied in order to guarantee regular switching of the players. We
experimentally compare these policies to show their impact on the overall performance of
the sequence-form double-oracle algorithm (see Section 6).

5. Theoretical Results

In this section we prove that our sequence-form double-oracle algorithm will always con-
verge to a Nash equilibrium of the original unrestricted game. First, we formally define the
strategy computed by the best-response sequence (BRS) algorithm, then we prove lemmas
about the characteristics of the BRS strategies, and finally we prove the main convergence
result. Note that variations of the main loop described in Section 4.3 do not affect the
correctness of the algorithm as long as the player-selection policy ensures that if no im-
provement is made by the BRS algorithm for one player that the BRS algorithm is run for
the opponent on the next iteration.

Lemma 5.1 Let r′−i be a realization plan of player −i in some restricted game G′. BRS(r′−i)
returns sequences corresponding to a realization plan rBRi in the unrestricted game, such that
rBRi is part of a pure best response strategy to r′−i. The value returned by the algorithm is
the value of executing the pair of strategies ui(r

′
−i, r

BR
i ).

Proof BRS(r′−i) searches the game tree and selects the action that maximizes the value
of the game for player i in all information sets Ii assigned to player i reachable given
the strategy of the opponent r′−i. In the opponent’s nodes, it calculates the expected value
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according to r′−i where it is defined and the value according to the pure action of the default
strategy πDef

−i where r′−i is not defined. In chance nodes, it returns the expected value of
the node as the sum of the values of the successor nodes weighted by their probabilities. In
each node h, if the successors have the maximal possible value for i then node h also has
the maximal possible value for i (when playing against r′−i). The selections in the nodes
that belong to i achieves this maximal value; hence, they form a best response to strategy
r′−i. �

For brevity we use v(BRS(r′−i)) to denote the value returned by the BRS algorithm,
which is equal to ui(r

′
−i, r

BR
i ).

Lemma 5.2 Let r′−i be a realization plan of player −i in some restricted game G′ and let
V ∗i be the value of the original unrestricted game G for player i, then

v(BRS(r′−i)) ≥ V ∗i . (14)

Proof Lemma 5.1 showed that v(BRS(r′−i)) is a value of the best response against r′−i
which is a valid strategy in the original unrestricted game G. If v(BRS(r′−i)) < V ∗i then
V ∗i cannot be the value of the game since player −i has a strategy r′−i that achieves better
utility, which is a contradiction. �

Lemma 5.3 Let r′−i be a realization plan of player −i that is returned by the LP for some
restricted game G′ and let V LP

i be the value of the restricted game returned by the LP, then

v(BRS(r′−i)) ≥ V LP
i . (15)

Proof The realization plan r′−i is part of the Nash equilibrium strategy in a zero-sum
game that guarantees value V LP

i in G′. If the best response computation in the original
unrestricted game G selects only the actions from restricted game G′, it creates the best
response in game G′ as well obtaining value V LP

i . If the best response selects an action
that is not allowed in the restricted game G′, there are two cases.

Case 1 : The best response strategy uses an action in a temporary leaf h ∈ Z ′ \ Z.
Player i makes the decision in the leaf, because otherwise the value of the temporary leaf
would be directly returned by BRS. The value of the temporary leaf has been under-
estimated for player i in the restricted game by the modified utility function u′ and it is
over-estimated in the BRS computation as the best response to the default strategy πDef

−i .
The value of the best response can only increase by including this action.

Case 2 : The best response strategy uses an action not allowed in G′ in an internal node
of the restricted game H ′ \ Z ′. This can occur in nodes assigned to player i, because the
actions of player −i going out of G′ have probability zero in r′−i. BRS takes the action
with maximum value in the nodes assigned to player i, so the reason for selecting an action
leading outside G′ is that it has greater or equal value to the best action in G′. �

Lemma 5.4 Under the assumptions of the previous lemma, if v(BRS(r′−i)) > V LP
i then it

returns sequences that are added to the restricted game G′ in the next iteration.
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Proof Based on the proof of the previous Lemma, BRS for player i can improve over
the value of the LP (V LP

i ) only by selecting an action a that is not present in G′ but is
performed in a node h that is included in G′ (in which i makes decision). Let (σi, σ−i) be
the pair of sequences leading to h. Then in the construction of the restricted game for the
next iteration, sequence σ−i is the sequence that ensures that σia can be executed in full
and will be part of the new restricted game. �

Note, that Lemmas 5.2 and 5.4 would not hold if the utility values u′ for temporary
leaves (h ∈ Z ′ \ Z) are set arbitrarily. The algorithm sets the values in temporary leaf h
as if the player p(h) continues by playing the default strategy and the opponent (−p(h)) is
playing the best response. If the utility values for the temporary leaves are set arbitrarily
and used in the BRS algorithms to speed-up the calculation as proposed (see the algorithm
in Figure 4, line 5), then Lemma 5.2 does not need to hold in cases where the value in
node h strictly overestimates the optimal expected value for player p(h). In this case, the
best-response value of the opponent may be lower than the optimal outcome,

v
(
BRS(rp(h))

)
< V ∗−p(h) (16)

On the other hand, if the BRS algorithm does not use the temporary values u′ for such a
node, then Lemma 5.4 is violated because the best-response value will be strictly higher for
player −p(h) even though no new sequences are to be added into the restricted game.

Theorem 5.5 The sequence-form double-oracle algorithm for extensive-form games de-
scribed in the previous section terminates if and only if

v(BRS(r′−i)) = −v(BRS(r′i)) = V LP
i = V ∗i , (17)

which always happens after a finite number of iterations (because the game is finite), and
strategies (r′i, r

′
−i) are a Nash equilibrium of the original unrestricted game.

Proof First we show that the algorithm continues until all equalities (17) hold. If
v(BRS(r′−i)) 6= −v(BRS(r′i)) then from Lemma 5.2 and Lemma 5.4 we know that for
some player i it holds that BRS(r′−i) > V LP

i , so the restricted game in the following iter-
ation is larger by at least one action and the algorithm continues. In the worst case, the
restricted game equals the complete game G′ = G, and it cannot be extended any further.
In this case the BRS cannot find a better response then V ∗i and the algorithm stops due
to Lemma 5.4.

If the condition in the theorem holds the algorithm has found a NE in the complete
game, because from Lemma 5.1 we know that rBR−i = BRS(r′i) is the best response to r′i in
the complete game. However, if the value of the best response to a strategy in a zero-sum
game is the value of the game, then the strategy r′i is optimal and it is part of a Nash
equilibrium of the game. �

6. Experiments

We now present our experimental evaluation of the performance of the sequence-form
double-oracle algorithm for EFGs. We compare our algorithm against two state-of-the-art
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baselines, the full sequence-form LP (referred to as FullLP from now on), and Counter-
factual Regret Minimization (CFR). The first baseline is the standard exact method for
solving sequence-form EFG, while CFR is one of the leading approximate algorithms ap-
plied to EFG. Our experimental results demonstrate the advantages of the double-oracle
algorithm on three different classes of realistic EFGs. We also test the impact of the different
variants of the main loop of the algorithm described in Section 4.3.

We compare three variants of the sequence-form double-oracle algorithm: (1) DO-b
is a variant in which the best-responses are calculated for both players in each iteration;
(2) DO-sa calculates the best-response for a single player on each iteration according to
a simple alternating policy; and (3) DO-swp is a variant in which the best-response is
calculated for a single player according to the worse-player selection policy. For all of the
variants of the double-oracle algorithm we use the same default strategy where the first
action applicable in a state is played by default.

Since there is no standardized collection of zero-sum extensive-form games for bench-
mark purposes, we use several specific games to evaluate the double-oracle algorithm and
to identify the strengths and weaknesses of the algorithm. The games were selected to
evaluate the performance under different conditions, so the games differ in the maximal
utility the players can gain, in the causes of the imperfect information, and in the structure
of the information sets. One of the key characteristics that affects the performance of the
double-oracle algorithm is the relative size of the support of Nash equilibria (i.e., the num-
ber of sequences used in a NE with non-zero probability). If there does not exist a NE with
small support, the algorithm must necessarily add a large fraction of the sequences into the
restricted game to find a solution, mitigating the advantages of the double-oracle approach.

We present results for two types of games where the double-oracle significantly outper-
forms the FullLP on all instances: a search game motivated by border patrol and Phantom
Tic-Tac-Toe. We also present results on a simplified version of poker for which the double-
oracle algorithm does not always improve the computation time. However, the FullLP
also has limited scalability due to larger memory requirements and cannot find solutions for
larger variants of poker, while the double-oracle algorithm is able to solve these instances.

Our principal interest is in developing new generic methods for solving extensive-form
games. Therefore, we implemented the algorithm in a generic framework for modeling arbi-
trary extensive-form games.1 The algorithms do not use any domain-specific knowledge in
the implementation, and do not rely on any specific ordering of the actions. The drawbacks
of this generic implementation are higher memory requirements and additional overhead
for the algorithms. A domain-specific implementation could improve the performance by
eliminating some of the auxiliary data structures. We run all of the experiments using a
single thread on an Intel i7 CPU running at 2.8 GHz. Each of the algorithms was given a
maximum of 10 GB of memory for Java heap space. We used IBM CPLEX 12.5 for solving
the linear programs, with parameter settings to use a single thread and the barrier solution
algorithm.

In addition to runtimes, we analyze the speed of convergence of the double-oracle al-
gorithms and compare it to one of the state-of-the-art approximative algorithms, Counter-
factual Regret Minimization (CFR). We implemented CFR in a domain independent way

1. Source code is available at the home pages of the authors.
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based on the pseudocode in the work of Lanctot (2013, p. 22). In principle, it is sufficient
for CFR to maintain only a set of information sets and apply the no-regret learning rule
in each information set. However, maintaining and traversing such a set effectively in a
domain independent manner could be affected by our implementation of generic extensive-
form games data structures (i.e., generating applicable actions in the states of the game,
applying the actions, etc.). Therefore we use an implementation where CFR traverses the
complete game tree that is held in memory to maintain the fairness of the comparison, and
to guarantee the maximal possible speed of convergence of the CFR algorithm. The time
necessary to build the game tree is not included in the computation time of CFR.

6.1 Test Domains

Search Games Our first test belongs to the class of search (or pursuit-evasion) games,
often used in experimental evaluation of double-oracle algorithms (McMahan et al., 2003;
Halvorson et al., 2009). The search game has two players: the patroller (or the defender)
and the evader (or the attacker). The game is played on a directed graph (see Figure 6),
where the evader aims to cross safely from a starting node (E) to a destination node (D).
The defender controls two units that move in the intermediate nodes (the shaded areas)
trying to capture the evader by occupying the same node as the evader. During each turn
both players move their units simultaneously from the current node to an adjacent node,
or the units stay in the same location. The only exception is that the evader cannot stay in
the two leftmost nodes. If a pre-determined number of turns is made without either player
winning, the game is a draw. This is an example of a win-tie-loss game and the utility
values are from the set {−1, 0, 1}.

Players are unaware of the location and the actions of the other player with one exception
– the evader leaves tracks in the visited nodes that can be discovered if the defender visits
the nodes later. The game also includes an option for the evader to avoid leaving the tracks
using a special move (a slow move) that requires two turns to simulate the evader covering
the tracks.

Figure 6 shows examples of the graphs used in the experiments. The patrolling units
can move only in the shaded areas (P1,P2), and they start at any node in the shaded
areas. Even though the graph is small, the concurrent movement of all units implies a large
branching factor (up to ≈ 50 for one turn) and thus large game trees (up to ≈ 1011 nodes).
In the experiments we used three different graphs, varied the maximum number of turns
of the game (from 3 to 7), and we altered the ability of the attacker to perform the slow
moves (labeled SA if the slow moves are allowed, SD otherwise).

Phantom Tic-Tac-Toe The second game is a blind variant of the well-known game of
Tic-Tac-Toe (e.g., used in Lanctot et al., 2012). The game is played on a 3×3 board, where
two players (cross and circle) attempt to place 3 identical marks in a horizontal, vertical,
or diagonal row to win the game. In the blind variant, the players are unable to observe
the opponent’s moves and each player only knows that the opponent made a move and it is
her turn. Moreover, if a player tries to place her mark on a square that is already occupied
by an opponent’s mark, the player learns this information and can place the mark in some
other square. Again, the utility values of this game are from the set {−1, 0, 1}.
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Figure 6: Three variants of the graph used in the experiments on the search game; we refer
to them as G1 (left), G2 (middle), and G3 (right).

The uncertainty in phantom Tic-Tac-Toe makes the game large (≈ 109 nodes). In
addition, since one player can try several squares before her move is successful, the players
do not necessarily alternate in making their moves. This rule makes the structure of the
information sets rather complicated and since the opponent never learns how many attempts
the first player actually performed, a single information set can contain nodes at different
depths in the game tree.

Poker Games Poker is frequently studied in the literature as an example of a large
extensive-form game with imperfect information. We include experiments with a simplified
two-player poker game inspired by Leduc Hold’em.

In our version of poker, each player starts with the same amount of chips and both
players are required to put some number of chips in the pot (called the ante). In the next
step, the Nature player deals a single card to each player (the opponent is unaware of the
card) and the betting round begins. A player can either fold (the opponent wins the pot),
check (let the opponent make the next move), bet (being the first to add some amount of
chips to the pot), call (add the amount of chips equal to the last bet of the opponent into
the pot), or raise (match and increase the bet of the opponent). If no further raise is made
by any of the players, the betting round ends, the Nature player deals one card on the
table, and the second betting round with the same rules begins. After the second betting
round ends, the outcome of the game is determined – a player wins if: (1) her private card
matches the table card and the opponent’s card does not match, (2) none of the players’
cards matches the table card and her private card is higher than the private card of the
opponent, or (3) the opponent folds. The utility value is the amount of chips the player has
won or lost. If no player wins, the game is a draw and the pot is split.

In the experiments we alter the number of types of the cards (from 3 to 4; there are
3 types of cards in Leduc), the number of cards of each type (from 2 to 3; set to 2 in Leduc),
the maximum length of sequence of raises in a betting round (ranging from 1 to 4; set to 1
in Leduc), and the number of different sizes of bets (i.e., amount of chips added to the pot)
for bet/raise actions (ranging from 1 to 4; set to 1 in Leduc).

6.2 Results

Search Games The results for the search game scenarios show that the sequence-form
double-oracle algorithm is particularly successful when applied to games where NEs with
small support exist. Figure 7 shows a comparison of the running times for FullLP and
variants of the double-oracle algorithm (note the logarithmic y-scale). All variants of the
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Figure 7: Comparison of the running times on 3 different graphs with either slow moves
allowed (SA) or disallowed (SD), the depth is set to 6 (left subfigure) or 7 (right subfigure).
Missing values for the FullLP algorithm indicate that the algorithm runs out of memory.

double-oracle algorithm are several orders of magnitude faster than FullLP. This is most
apparent on the fully-connected graph (G2) that generates the largest game tree. When
slow moves are allowed and the depth is set to 6, it takes almost 100 seconds for FullLP
to solve the instance of the game but all variants of the double-oracle algorithms solve the
game in less than 3 seconds. Moreover, when the depth is increased to 7, FullLP was
unable to solve the game due to the memory constraints, while the fastest variant DO-swp
solved the game in less than 5 seconds. Similar results were obtained for the other graphs.

The graph G1 induced a game that was the most difficult for the double-oracle algorithm:
when the depth is set to 7, it takes almost 6 minutes for FullLP to solve the instance, while
the fastest variant DO-swp solved the game in 21 seconds. The reason is that even though
the game tree is not the largest, there is a more complex structure of the information sets.
This is due to limited compatibility among the sequences of the players; when the patrolling
unit P1 observes the tracks in the top-row node, the second patrolling unit P2 can capture
the evader only in the top-row node, or in the middle-row node.

Comparing the different variants of the sequence-form double-oracle algorithm does
not show consistent results. There is no variant consistently better in this game since all
the double-oracle variants are typically able to compute a Nash equilibrium very quickly.
However, DO-swp is often the fastest and for some settings the difference is quite significant.
The speed-up this variant offers is most apparent on the G1 graph. On average through all
instances of the search game, DO-sa uses 92.59% of the computation time of DO-b, and
DO-swp uses 88.25%.

Table 3 shows a breakdown of the cumulative computation time spent in different com-
ponents of the double-oracle algorithm: solving the restricted game (LP), calculating best
responses (BR), and creating a valid restricted game after selecting new sequences to add
(Validity). The results show that due to the size of the game, the computation of the
best-response sequences takes the majority of the time (typically around 75% on larger
instances), while creating the restricted game and solving it takes only a small fraction of
the total time. It is also noticeable that the size of the final restricted game is very small
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Figure 8: Convergence of variants of the double-oracle algorithm and CFR on the search
game domain: y-axis displays the current approximation error.

Algorithm Overall [s] LP [s] BR [s] Validity [s] Iterations |Σ′1|(
|Σ′

1|
|Σ1|

) |Σ′2|(
|Σ′

2|
|Σ2|

)

FullLP 351.98 − − − − − −
DO-b 81.51 6.97 63.39 10.58 187 252 (17.22%) 711 (0.26%)

DO-sa 54.32 5.5 39.11 9.09 344 264 (18.05%) 649 (0.24%)

DO-swp 21.15 1.93 16.28 2.47 209 193 (13.19%) 692 (0.25%)

Table 3: Cumulative running times for different components of the double-oracle algorithm,
iterations, and size of the restricted game in terms of the number of sequences compared to
the size of the complete game. The results are shown for scenario G1, depth 7, and allowed
slow moves.

compared to the original game, since the number of sequences for the second player (the
defender) is less than 1% (there are 273,099 sequences for the defender).

Finally, we analyze the convergence rate of the variants of the double-oracle algorithm.
The results are depicted in Figure 8, where the size of the interval given by the bounds
V UB
i and V LB

i defines the current error of the double-oracle algorithm as |V UB
i − V LB

i |.
The convergence rate of the CFR algorithm is also depicted. The error of CFR is calculated
in the same way, as a sum of the best-response values to the current mean strategies from
the CFR algorithm. We can see that all variants of the double-oracle algorithm perform
similarly – the error drops very quickly to 1 and a few iterations later each version of the
algorithm quickly converges to an exact solution. These results show that in this game the
double-oracle algorithm can very quickly find the correct sequences of actions and compute
an exact solution, in spite of the size of the game. In comparison, the CFR algorithm can
also quickly learn the correct strategies in most of the information sets, but the convergence
has a very long tail. After 200 seconds, the error of CFR is equal to 0.0657 and it is dropping
very slowly (0.0158 after 1 hour). The error of CFR is quite significant considering the value
of the game in this case (−0.3333).

Phantom Tic-Tac-Toe The results on Phantom Tic-Tac-Toe confirm that this game is
also suitable for the sequence-form double-oracle algorithm. Due to the size of the game,
both baseline algorithms (the FullLP and CFR) ran out of memory and were not able
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Figure 9: (left) Comparison of the convergence rate of the double-oracle variants for Phan-
tom Tic-Tac-Toe; (right) Comparison of the performance of the double-oracle variants for
Phantom Tic-Tac-Toe when domain-specific move ordering and default strategy is used.

Algorithm Overall [s] LP [s] BR [s] Validity [s] Iterations |Σ′1|(
|Σ′

1|
|Σ1|

) |Σ′2|(
|Σ′

2|
|Σ2|

)

FullLP N/A − − − − − −
DO-b 21,197 2,635 17,562 999 335 7,676 (0.60%) 10,095 (0.23%)

DO-sa 17,667 2,206 14,560 900 671 7,518 (0.59%) 9,648 (0.22%)

DO-swp 17,589 2,143 14,582 864 591 8,242 (0.65%) 8,832 (0.20%)

Table 4: Cumulative running times for different components of the double-oracle algorithm
for the game of Phantom Tic-Tac-Toe.

to solve the game. Therefore, we only compare the times for different variants of the
double-oracle algorithm. Figure 9 (left subfigure) shows the overall performance of all three
variants of the double-oracle algorithm in the form of a convergence graph. We see that the
performance of two of the variants is similar, with the performance of DO-sa and DO-swp
almost identical. On the other hand, the results show that DO-b converges significantly
slower.

The time breakdown of the variants of the double-oracle algorithm is shown in Table 4.
Similarly to the previous case, the majority of the time (≈ 83%) is spent in calculating
the best responses. Out of all variants of the double-oracle algorithm, the DO-swp variant
is the fastest one. It converged in significantly fewer iterations compared to the DO-sa
variant (iterations are twice as expensive in the DO-b variant).

We now present the results that demonstrate the potential of combining the sequence-
form double-oracle algorithm with domain-specific knowledge. Every variant of the double-
oracle algorithm can use a move ordering based on domain-specific heuristics. The move
ordering determines the default strategy (recall that our algorithm uses the first action as
the default strategy for each player), and the direction of the search in the best response
algorithms. By replacing the randomly generated move ordering with a heuristic one that
chooses better actions first, the results show a significant improvement in the performance
of all of the variants (see Figure 9, right subfigure), even though there are no changes to
the rest of the algorithm. Each variant was able to solve the game in less than 3 hours, and
it took 2 hours for the fastest DO-swp variant.
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Figure 10: Comparison of the running times on different variants of the simplified poker
game. The left subfigure shows the computation times with an increasing number of raise
actions allowed, the right subfigure shows the computation times with an increasing number
of different bet sizes for raise/bet actions.

Poker Games Poker represents a game where the double-oracle algorithms do not per-
form as well and the sequence-form LP is often faster on smaller instances. One significant
difference compared to the previous games is that the size of the NE support is larger
(around 5% of sequences for larger instances). Secondly, the game trees of poker games
are relatively shallow and the only imperfect information in the game is due to Nature.
As a result, the double-oracle algorithms require a larger number of iterations to add more
sequences into the restricted game (up to 10% of all sequences for a player are added even
for the largest poker scenarios) in order to find the exact solution. However, with increasing
depth and/or branching factor, the size of the game grows exponentially and FullLP is
not able to solve the largest instances due to the memory constraints.

Figure 10 shows the selected results for simplified poker variants. The results in the
left subfigure show the computation times with increasing depth of the game by allowing
the players to re-raise (players are allowed to re-raise their opponent a certain number of
times). The remaining parameters are fixed to 3 types of cards, 2 cards of each type, and 2
different betting sizes. The size of the game grows exponentially, with the number of possible
sequences increasing to 210,937 for each player for the R4 scenario. The computation time
for FullLP is directly related to the size of the tree and increases exponentially with the
increasing depth (note that there is a standard y scale). On the other hand, the increase is
less dramatic for all of the variants of the double-oracle algorithm. The DO-swp variant is
the fastest for the largest scenario – while FullLP solved this instance in 126 seconds, it
took only 103 seconds for DO-swp. Finally, FullLP is not able to solve the games if we
increase the length to R5 due to memory constraints, while the computation time of all of
the double-oracle algorithms increases only marginally.

The right subfigure of Figure 10 shows the increase in computation time with an in-
creasing number of different bet sizes for raise/bet actions. The remaining parameters were
fixed to 4 types of cards, 3 cards of each type, and 2 raise actions allowed. Again, the
game grows exponentially with the increasing branching factor. The number of sequences
increases up to 685,125 for each player for the B4 scenario, and the computation time of

859
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Figure 11: Comparison of the convergence of the variants of the double-oracle algorithm
and CFR for two variants of the simplified poker with 4 types of cards, and 3 cards of each
type. There are 4 raise actions allowed, 2 different bet sizes in the left subfigure; there are
2 raise actions allowed, 3 different bet sizes in the right subfigure.

Algorithm Overall [s] LP [s] BR [s] Validity [s] Iterations |Σ′1|(
|Σ′

1|
|Σ1|

) |Σ′2|(
|Σ′

2|
|Σ2|

)

FullLP 278.18 − − − − − −
DO-b 234.60 149.32 56.04 28.61 152 6,799 (1.81%) 6,854 (1.83%)

DO-sa 199.24 117.71 51.25 29.59 289 6,762 (1.80%) 6,673 (1.78%)

DO-swp 182.68 108.95 48.25 24.8 267 6,572 (1.75%) 6,599 (1.76%)

Table 5: Cumulative running times for different components of the double-oracle algorithm,
iterations, and sizes of the restricted game in terms of the number of sequences compared
to the size of the complete game. The results are shown for poker scenario with 4 raise
actions allowed, 2 different betting values, 4 types of cards, and 3 cards of each type.

all algorithms increases exponentially as well (note logarithmic y scale). The results show
that even with the increasing branching factor, the double-oracle variants tend to be slower
than solving the FullLP. However, while the FullLP ran out of memory for the largest
B4 setting, all of the double-oracle variants were able to find the exact solution using less
memory.

Comparing the different variants of the double-oracle algorithm using the convergence
graph (see Figure 11) and the decomposition of the computation times (see Table 5) shows
that DO-swp is the fastest variant in the selected scenario (and in nearly all of poker
scenarios). Decomposition of the overall time shows that the majority of the computation
time is spent in solving the restricted game LP (up to 65%). The decomposition also shows
that DO-swp is typically faster due to the lower number of iterations. In addition, the
final size of the restricted game is typically the smallest for this variant. On average over
all instances of the poker games, DO-sa uses 86.57% of the computation time of DO-b,
and DO-swp uses 82.3% of the computation time.

Convergence in poker games is slower compared to search games of similar size (note the
logarithmic scale in Figure 11). Comparing the double-oracle algorithm variants with CFR
shows an interesting result in the left subfigure. Due to the size of the game, the speed of
the CFR convergence is nearly the same as for the double-oracle algorithms during the first
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iterations. However, while the double-oracle algorithms continue to converge at roughly the
same rate and are able to find an exact solution, the error of the CFR algorithm decreases
very slowly. In the scenario depicted in the left subfigure, the CFR algorithm converged
to an error of 0.1212 (the value of the game in this case is ≈ −0.09963) after 400 seconds.
After 1 hour, the error dropped to 0.0268. For scenarios with more shallow game trees and
larger branching factor, the convergence of CFR is faster at the beginning compared to the
double-oracle algorithms (right subfigure of Figure 11). However, the main disadvantage of
CFR having a long tail for convergence is still the case and the error after 1600 seconds is
still over 0.0266 (the value of this game is ≈ −0.09828).

6.3 Discussion of the Results

The experimental results support several conclusions. The results demonstrate that the
sequence-form double-oracle algorithm is able to compute an exact solution for much larger
games compared to the state-of-the-art exact algorithm based on the sequence-form linear
program. Moreover, we have experimentally shown that there are realistic games where only
a small fraction of sequences are necessary to find a solution of the game. In these cases,
the double-oracle algorithms also significantly speed up the computation time. Our results
indicate that the DO-swp variant is typically the fastest, but not in all cases. By selecting
the player that currently has the worse bound on performance, the DO-swp version can
add more important sequences, or prove that there are not any better sequences and adjust
the upper bound on the value faster.

Comparing the speed of convergence of the double-oracle algorithms with the state-of-
the-art approximative algorithm CFR showed that CFR quickly approximates the solution
during the first iterations. However, the convergence of CFR has a very long tail and CFR is
not able to find an exact solution for larger games in a reasonable time. Another interesting
observation is that for some games the convergence rate of the double-oracle algorithms
and CFR is similar in the first iterations, and while the double-oracle algorithms continue
at this rate and find an exact solution, the long tail convergence remains for CFR. This is
despite the fact that our implementation of CFR has an advantage of having the complete
game tree including the states for all histories in memory.

Unfortunately, it is difficult to characterize the exact properties of the games for which
the double-oracle algorithms perform better in terms of computation time compared to the
other algorithms. Certainly, the double-oracle algorithm is not suitable for games were
the only equilibria have large support due to the necessity of large number of iterations.
However, having a small support equilibrium is not a sufficient condition. This is apparent
due to two graphs shown in the poker experiments, where either the depth of the game tree
or the branching factor was increased. Even though the game grows exponentially and the
size of the support decreases to ≈ 2.5% in both cases, the behavior of the double-oracle
algorithms is quite different. Our conjecture is that games with longer sequences suit the
double-oracle algorithms better, since several actions that form the best-response sequences
can be added during a single iteration. This contrasts with shallow game trees with large
branching factors, where more iterations are necessary to add multiple actions. However,
a deeper analysis to identify the exact properties of the games that are suitable is an open
question that must be analyzed for normal-form games first.
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7. Conclusion

We present a novel exact algorithm for solving two player zero-sum extensive-form games
with imperfect information. Our approach combines the compact sequence-form represen-
tation for extensive-form games with the iterative algorithmic framework of double-oracle
methods. This integrates two successful approaches for solving large scale games that have
not yet been brought together for the general class of games that our algorithm addresses.
The main idea of our algorithm is to restrict the game by allowing players to play only a
restricted set of sequences from the available sequences of actions, and to iteratively expand
the restricted game over time using fast best-response algorithms. Although in the worst
case the double-oracle algorithm may need to add all possible sequences, the experimental
results on different domains prove that the double-oracle algorithm can find an exact Nash
equilibrium prior to constructing the full linear program for the complete game. Therefore,
the sequence-form double-oracle algorithm reduces the main limitation of the sequence-form
linear program—memory requirements—and it is able to solve much larger games compared
to state-of-the-art methods. Moreover, since our algorithm is able to identify the sequences
of promising actions without any domain-specific knowledge, it can also provide a significant
runtime improvements.

The proposed algorithm also has another crucial advantage compared to the current state
of the art. The double-oracle framework offers a decomposition of the problem of computing
a Nash equilibrium into separate sub-problems, including the best-response algorithms, the
choice of the default strategy, and the algorithms for constructing and solving the restricted
game. We developed solutions for all of these sub-problems in a domain-independent man-
ner. However, we can also view our algorithm as a more general framework that can be
specialized with domain-specific components that take advantage of the structure of specific
problems to improve the performance of these sub-problems. This can lead to substantial
improvements in the speed of the algorithm, the number of iterations, as well as reducing
the final size of the restricted game. We demonstrated the potential of the domain-specific
approach on the game of Phantom Tic-Tac-Toe. Another example is that fast best-response
algorithms that operate on the public tree (i.e., a compact representation of games with
publicly observable actions; see Johanson, Bowling, Waugh, & Zinkevich, 2011) can be ex-
ploited for games like poker. Finally, our formal analysis identifies the key properties that
these domain-specific implementations need to satisfy to guarantee the convergence to the
correct solution of the game.

Our algorithm opens up a large number of directions for future work. It represents a new
class of methods for solving extensive-form games with imperfect information that operates
very differently than other common approaches (e.g., counterfactual regret minimization),
and many possible alternatives to improve the performance of the algorithm remain to
be investigated. Examples include more sophisticated calculation of utility values for the
temporary leaves, alternative strategies for expanding the restricted game, and removing
unused sequences from the restricted game. A broader analysis of using the sequence-
form double-oracle algorithm as an approximation technique should be performed, possibly
by exploring alternative approximative best-response algorithms based on sampling (e.g.,
Monte Carlo) techniques.
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There are also several theoretical questions that could be investigated. First, the per-
formance of the double-oracle algorithm depends strongly on the number of iterations and
sequences that need to be added. However, the theoretical question regarding the expected
number of iterations and thus the speed of the convergence of the double-oracle algorithm
have not been explored even for simpler game models (e.g., games in the normal form). An
analysis of these simpler models is needed to identify the general properties of games where
the double-oracle methods tend to be faster and to identify the optimal way of expanding
the restricted game.
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