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Abstract. This paper considers the effect of a scalar potential V ( x ,  y )  on a Landau level 
in two dimensions. An exact effective Hamiltonian is derived which describes the effect 
of the potential on a single Landau level, expressed as a power series in V / E , ,  where E ,  
is the cyclotron energy. 

The effective Hamiltonian can be represented as a function H ( x , p )  in a one- 
dimensional phase space. The function H ( x ,  p )  resembles the potential V ( x ,  y ) :  when the 
area of a flux quantum is much smaller than the square of the characteristic length scale 
of V, then H 3 V. Also H ( x , p )  retains the translational and rotational symmetries of 
V ( x ,  y )  exactly, but reflection symmetries are not retailed beyond the lowest order of the 
perturbation expansion. 

1. Introduction 

The perturbation of a Landau level in a two-dimensional system by a scalar potential 
is a problem of considerable theoretical interest. There are two reasons for this. Firstly, 
an analysis of this problem is essential to understanding the quantised Hall effect. 
Secondly, when the potential is spatially periodic, this is an example of the problem 
of Bloch electrons in a magnetic field, which has many interesting mathematical 
properties: for instance, it is believed that the spectrum is typically a Cantor set. 

This paper will derive an exact effective Hamiltonian which describes the effect of 
the potential V ( x ,  y )  on a given Landau level, expressed as a power series in V /  E,, 
where E ,  = h e B / m  is the cyclotron energy. The effective Hamiltonian H $ )  of the nth 
Landau level is expressed as an operator in a one-dimensional phase space: fi$' = 
H'" ' (2 ,  j?). This representation is both useful, because the original two-dimensional 
problem has been reduced to a problem in one dimension, and also intuitively appealing 
because the function H ( x ,  p )  resembles the potential V ( x ,  y ) .  A natural dimensionless 
parameter is p, the area of a flux quantum divided by the square of the characteristic 
length scale of the potential; when the potential is periodic we can define p precisely 
as the number of unit cells per flux quantum. When p + 0, the Hamiltonian function 
tends towards the potential: H - t  V. 

Even when p is not small, there are still similarities between H and V, because H 
retains any translational and rotational symmetries of the potential. Reflection sym- 
metries of V are also retained in H in the first order of perturbation theory. 
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The preservation of symmetries of V by the effective Hamiltonian H is very 
important for the problem of Bloch electrons in a magnetic field. In this problem, it 
is believed that when p is an irrational number, the spectrum is a Cantor set (Simon 
1982), and  perturbation theory suggests that this Cantor set should have finite measure. 
Numerical experiments have been done using one-dimensional effective Hamiltonians 
which are periodic functions of x and p .  These experiments show that when the 
effective Hamiltonian has centres of threefold or fourfold rotational symmetry in the 
phase plane, the spectrum is a Cantor set of zero measure for irrational values of p, 
with a remarkable hierarchical structure (Hofstadter 1976, Claro and Wannier 1979, 
Wilkinson 1984). The results of this paper show that this phenomenon is not just an  
artefact of the model, since effective Hamiltonians with exact threefold and fourfold 
symmetry in phase space result from potentials with threefold and  fourfold axes in 
coordinate space, where these are natural crystallographic symmetries. 

Section 2 of this paper evaluates the matrix elements of the perturbing potential 
in a basis of Landau states. By ignoring matrix elements coupling different Landau 
levels, the first-order approximation to fiefi is obtained. Section 3 shows how the 
interband matrix elements coupling different Landau levels can be eliminated, leading 
to an exact effective Hamiltonian. Section 4 discusses the preservation of symmetries 
of V ( x ,  y )  in the effective Hamiltonian H ( x ,  p ) .  In several places a linear canonical 
transformation will be used. Canonical transformations create difficulties in quantum 
mechanical problems because they are usually ambiguous. If the transformation is 
linear, and the Hamiltonian is expressed as a Fourier integral, then there is no ambiguity 
however. The reasons for this are discussed in appendix 1. 

The problem the perturbation of a Landau level by a periodic potential has been 
discussed in earlier papers by Rauh (1974, 1975) and Schellnhuber et al (1981). These 
authors expressed the effective Hamiltonian as a difference equation with periodic 
coefficients. This is essentially equivalent to quantising the effective Hamiltonian 
H ( x ,  p )  in the position representation (Wilkinson 1984), but has the disadvantage that 
the symmetry of H ( x ,  p )  is obscured, as well as the fact that N -f V when p is small. 
These papers also only give an  approximate effective Hamiltonian, since they d o  not 
show how to eliminate matrix elements coupling different Landau levels. 

2. Representation in a basis of Landau states 

In this section the Hamiltonian will be expressed in a basis of Landau states In, q ) ,  
where n labels the Landau level and q is the internal coordinate for the nth Landau 
level. The first-order approximation to the effective Hamiltonian is obtained by ignoring 
matrix elements coupling different Landau levels. 

First we introduce the Landau level basis. The Hamiltonian of our problem is 
1 

2m 
fi = - ( @ - eA ( i))2 + V( i )  = f i0  + 9 

and we will use the Landau gauge, A = (0, Bx, 0 ) .  It is convenient to rescale the 
coordinates and momenta 

so that [r^',@'] = ihw,, where w,  = eB/m is the cyclotron frequency. Note that the 
unperturbed Hamiltonian io is a quadratic function of the coordinates and  momenta. 
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Using a canonical transformation Ho can be expressed in normal form; the generating 
function of this canonical transformation to a new set of coordinates (q ,  q’) and 
momenta ( p ,  p ’ )  is 

s = s ( x , Y Y P , P ’ ) = x P ’ + Y P - P ’ P .  (2.3) 

Using the relations 

p x  = as lax  P~ = as/ay q = a s / a p  9’ = a s l a p ’  (2.4) 

we find 

P x  = P I  x = q ’ + p  

P Y  = P  y = q + p ’ .  
(2.5) 

Since the canonical transformation is linear, we have 

(2.6) 

(see appendix 1). Note that f i0  is independent of 6 and 3. We can write the eigenstates 
of (2.6) in the form 

9 0 - _  - ;( p1’2 + $2) 

In, d = l n ) @ I q )  (2.7) 

where In) is an eigenfunction of the harmonic oscillator Hamiltonian io, and / q )  is 
an eigenstate of the position operator 4, and these states are called Landau states. The 
energy of the nth Landau level is 

E, =2.rr (n+;)hwc (2.8) 

N = e B / h .  (2.9) 

and its degeneracy per unit area is 

Having introduced the Landau state basis, we can now take matrix elements of the 
potential V in this basis. Again it will be convenient to rescale some quantities: we write 

u ( r / J T i )  = V ( r )  (2.10) 

where A is the square of the characteristic length scale of the potential, or in the 
periodic case, the area of the unit cell. The function u(  r )  then varies on a length scale 
of order unity. We also rescale the conjugate variables q, p which form the internal 
coordinates of the Landau levels: write 

J m  p=--  
eB& eB& 
d m  X = -  (2.11) 

so that 

[2, B]  = ih* h* = A / e B A .  (2.12) 

The dimensionless quantity /3 = 27h* measures the ratio of the area of a flux quantum 
to the area of a unit cell (or some other characteristic area, if the potential is not 
periodic). Collecting together (2.2), (2.5), (2.10) and (2.11), we have 

(2.13) 
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The correct way to quantise this expression is to express the function U as a Fourier 
integral 

u ( r ) =  dku”(k) exp(ik.r) (2.14) I 
(see appendix l ) ,  so that 

(2.15) q= I dk e x p ( ~ ( k , q * ’ + k ~ f i ’ ) ) Q ( k )  i f i  exp[i(k,*- k,6)1. 

We can therefore write the Hamiltonian in the form 

eB 
flfl’ m (2.16) I 2 ~ ( n  +$) - h&,,,+ dk uf l f l , (k)  exp[i(k,g - k,,6)] 

where 

(2.17) 

In (2.16), the terms in the large round brackets are the matrix elements of fi between 
the Landau level indices n, n’, which have been left in ?perator form with respec: to, 
the internal degree of freedom of the Landau levels ( X ,  6). The functions of X ,  P 
appearing in (2.16) have a characteristic length scale of order unity. The matrix element 
multiplying u“(k) in (2.17) tends to 6,,, as h*+O, with k of order unity. In fact this 
matrix element can be evaluated exactly: 

=exp [ ia ( e-- ~ ) ] ( ~ ) a ’ 2 e x p ( - ~ k 2 h * )  

a = In - n’l, N = min(n, n’) (2.18) .( N !  )”‘ L(Nu) (”*) - 
(N+CY)! 

where (k, e )  are the polar coordinates of k = ( k x ,  k,) with 6 measured clockwise from 
the k, axis, and L E )  is an associated Laguerre polynomial (see appendix 2).  

Equations (2.16)-(2.18) and (2.12) contain the principal results of this section. A 
lowest order approximation to the effective Hamiltonian can be obtained by ignoring 
the off-diagonal matrix elements in (2.16): 

fi::)= dku,,(k) e x p [ i ( k , g - k , 6 ) ] + ( n + t ) h w , .  (2.19) 

This is equivalent to simply applying degenerate perturbation theory to the nth Landau 
level. For the problem of Bloch electrons in a magnetic field the integral in (2.19) is 
replaced by a summation, because V ( r )  is periodic: 

I 
= 2 u, , (k )  exp[i(k,g - ky6)]. (2.20) 

k 
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This effective Hamiltonian has all the geometrical symmetries of the potential V( r )  
including symmetries under reflection. From (2.18), we see that in the semiclassical 
limit, h * + 0 ,  the effective Hamiltonian is the same as the scaled potential, u ( r )  (see 
(2.10)): 

H$- u ( i ,  -@). (2.21) 
h*+O 

This fact has a simple interpretation. When h* is small, the cyclotron radius is much 
smaller than the scale size of the potential, and this potential acts on the electron like 
a uniform electric field, equal to Vu. In a uniform electric field the electron drifts 
along an equipotential line at a rate proportional to [Vu]. This law of motion is exactly 
the same as Hamilton's equations in one dimension, with a Hamiltonian proportional 
to U. 

3. An exact effective Hamiltonian 

In this section the approximate effective Hamiltonian (2.19) will be made exact using 
a projection operator meth9d. 

When the perturbation V is applied, the Landau levels are broadened, but for small 
enough the gaps in the spectrum between successive Landau levels do not close. 
Let P ( " )  be the projection operator for the nth perturbed Landau level: 

P)= f ( A +  c)  (3.1) 
with f ( E )  equal to 1 if E is in the broadened specitrum of the nth Landau level, and 
zero if E is in any other part of the spectrum of H. This projection operator is well 
defined so long as the gaps between the Landau levels remain open. 

Consider the set of states obtained by projecting the Landau states In, q )  into the 
nth (perturbed) Landau level 

(3.2) 
This set of states is independent of the eigenstates outside the nth Landau level, and 
provided they are linearly independent they form a complete basis for the nth Landau 
level. It will become clear that these states are linearly independent for sufficiently 
small values of V. The Schrodinger equation describing the nth perturbed Landau 
level is therefore 

In, q*) = @(nl  In, 9 ) .  

dq'[(n, q~@(")f i$(")~n,  4')-E(n, q(@("'ln, q')](n, q ' I + ) = O .  (3.3) 

The conditio! for the states In, q*) to the linearly independent is that the normalisation 
matrix (n, qlP(")Jn, 4') appearing in (3.3) should be non-singular. Equation (3.3) can 
be written symbolically in the form 

If $(")* is non-singular, as has been assumed, this equation can be written 
)I *) = 0. (3.4) (A(")* - E$'"'* 

(A::'- E)I'€')=O (3.5) 
where 

(3.6) (@(" I* ) - I /~A(~)* ($ ( " )* ) - I /~  
is the desired effective Hamiltonian. 
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In order to evaluate (3.6) it is necessary to obtain an explicit expression for the 
projection operator. The most useful starting point is the equation 

P=-f A 1  dE&(E)  
27ri 

(3.7) 

where & = (A - E ) - '  is the Green function and C is any contour which encloses only 
the required part of the spectrum. The Green function can be obtained from the Born 
formula 

(3.8) &( E = Go( E ) + &o( E I%( E ) 

by iteration; &,(E)  is the Green function for the unperturbed Landau levels: 

(3.9) 

This leads to an expression for k(n' in the form of a power series in V; the term of 
order V N  will be written FE). 

Using (3.7)-(3.9) and (2.16), we find 

where i*is the identity operator for the internal coordinate and 

where 

Vnfl,(J?, p )  = dk u n n , ( k )  exp[i(kxi  - k , F ) ] .  I 
The general term in the series is 

( N  terms) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where exactly one of the integers m, n ,  , n,, . . . , m' is equal to n and the corresponding 
term is omitted from the product of ( n  - nk)*terms in the denominator. Equations 
(3.10), (3.11) and (3.13) give the expansion of P'") in powers of V; because the Landau 
levels are all well separated there are no small denominators appearing in this series. 
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Using equations (2.16) and (3.10)-(3.13) we can calculate the Hamiltonian and 
normalisation operators restricted to the nth Landau level (cf equation (3.4)) as a 
power series in V .  The general term will not be given; the second term of each series 
is zero: 

$n)* = (n l@(f l ) f i$f l ) ln)=  ( n + f ) h w , +  ~,,,,(i, &+0(v3)  (3.14) 

$n)* = (nl n> = i* + o( v3). (3.15) 

From (3.15) we see that the normalisation operator, $”)*, is non-singular for small 
enough values of V, as was assumed. Substituting these results into (3.6) we find that 
the first-order term of the exact effective Hamiltonian is given by (2.19) and again the 
second-order term vanishes: 

I?::) = ( n + f) hw, + v,,,, (2, F) + o( v3). (3.16) 

4. Symmetries of the effective Hamiltonian 

The lowest order approximation to fi!;) is given by (2.19). It is noteworthy that this 
approximate effective Hamiltonian retains all of the geometrical symmetries of the 
potential. If the potential has translational symmetry, the effective Hamiltonian has 
the same spatial frequencies in phase space as the potential has in real space, and 
therefore has the same translational symmetry. Also, the matrix element (2.18) which 
multiplies the Fourier coefficients of the potential only depends on the magnitude of 
the wavevector k (since, in this case, n = n’) .  The approximate effective Hamiltonian 
therefore retains the rotational and reflection symmetries of the potential. In this 
section it will be shown that the exact effective Hamiltonian also retains the translational 
and rotational symmetries of the potential, but not the reflection symmetries. 

Because :he effective Hamiltonian is represented as a Fourier integral, the Weyl 
symbol of H = H ( $ , i )  is H ( x , p )  (see appendix 1). It will prove useful to define 
operators which have the effect of translating, rotating and reflecting the Weyl symbol 
of an operator. The translation operator in phase space is 

f(x, P) = exp[i( H - xi>/ f i ] .  (4.1) 

If the operator A is rep!:sented by the Weyl symbol A ( x , p ) ,  then the Weyl symbol 
of the operator f ( X ,  P ) A T + ( X ,  P) is A ( x  - X ,  p - P ) ,  i.e. it has been translated through 
the vector ( X ,  P). The translation operators have the composition law 

f(x, P) f ( ~ ’ ,  P’) = e x p [ i ( ~ ’ ~  - X P ’ ) / ~ ~ I ~ ( X  + x’ ,  P+ P’) (4.2) 

and the adjoint is given by f ’ ( X ,  P) = f ( - X ,  -P). The composition law (4.2) shows 
that the algebra of these phase space translation operators is the same as that of the 
magnetic translation operators (Brown 1964). 

The rotation operator in phase space, which rotates the Weyl symbol of an operator 
through an angle 6 about the origin, is 

This is a special case of the symplectic transformation discussed in appendjx 1. Th,e 
constant tfi is added to the harmonic oscillator Hamiltonian in order that R ( 2 r )  = 1, 
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instead of -? if this were omitted. The composition law for rotations is obvious: 
d (  e ) i (  e ’ )  = d (  0 + e’) .  The rule for combining rotations and translations is 

(4.4) 

where ( X ‘ ,  P ’ )  is the result of rotating the vector ( X ,  P )  by the angle 8. This result is 
not obvious; there could be a qhase factor involved as in (4.2), but it folloAws from the 
results of appendix 1, since R ( 6 )  is a symplectic transformatiy and T ( X ,  P )  is a 
function of a linear combination of 2 and p*. The operator M which produces a 
reflection about the line p = 0 is defined by 

R(e)f(x,  P )  = Ti.(x!, pi)R(e) 

I $ M ) =  $M = $ * ( X I  (4.5) 

i.e. we take the complex conjugate in the positio? representation. 
The terms of order V N  in the expansion of Hka’ contain products of N operators 

V,, (2, p * ) ,  given by equation (3.12). The fir? a t d  last la!els are equal to n, the Landau 
level index, i.e. the product is of the form V,,, V n l n 2 . .  . V, ,_ , , ,  and the n l n 2 . .  . are free 
to take any value except n. In order to understand the symmetry properties ofJhe 
effective Hamiltonian it is necessary to cys jder  the*commutation relations of the V,, 
operators with the symmetry operators T, R and M. 

The operator V,, (2, 3 )  has the same Fourier coefficients as u ( r ) ,  so that if u ( r )  
is invariant under translation by a vector R, tke Weyl symbol of V,, (2, 3 )  is invariant 
under the action of the translation op*erator T ( X ,  P ) ,  where ( X ,  P )  = R. The operator 
V,, (2, p * )  therefore commutes with T ( R ) ,  where R is a lattice vector: 

Vmm (2, $1 = Vmm (2, p * ) .  (4.6) 

Any product of ?,, s therefore also commutes with ? ( R ) ,  so that the exact effective 
Hamiltonian does have the translational symmetry of the potential. 

Next consider the effect of the rotation operator d ( 0 )  on c,,,, . From (3.12) and 
(4.1), we see that V,, can be written in the form 

?,, =I d k e x p [ i ( m - m ‘ ) B ] f ( k ) ~ ( k ) T i . ( k h )  (4.7) 

where (k, e )  are polar coordinates of k. Using (4.4), we see that if u ( r )  is invariant 
under rotation by the angle 6 about the origin, then 

(4.8) 

so that only the diagonal terms ( m  = m’) commute with d (  e) .  For all of the products 
of terms the first and last indices are equal to n, so that 

R (0)  Vnnl Vn2n2 . . . Vn,  - , n  = exp{i[( n - n, 1 + ( n l  - nz) + . . . 

$ e )  e,,,,,, = exp[i(m - m’)e]Q,,, k ( e )  

A A A  A 

A A  A A  

+ ( n ~ - ~ - n ) 1 } v ~ n , ~ n , n 2 . . .  Q n h - , n f i ( e ) =  vnntVnlnz.. . Q n b - , n f i ( e )  (4.9) 

and the exact effective Hamiltonian does indeed compute with k (  0 ) .  
I f  th,e potential has reflection symmetry, again M commutes with the diagonal 

terms, V,,, but not with the off-diagonal terms V,, . In this case however there is 
no reason to expect that the products of off-diagonal ?,,,, commute with and it is 
easy to find cases where they do not. The exact effective Hamiltonian does not therefore 
preserve reflection symmetries of the potential beyond the lowest order term. This is 
perhaps not unexpected, since applying a magnetic field imposes a chirality on the 
system. 
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5. Conclusions 

The influence of a scalar potential V ( x ,  y )  on a Landau level in two dimensions can 
be represented by a one-dimensional effective Hamiltonian Hk",( x, p ) ,  which remains 
valid provided the gaps between the nth Landau levels remain open and the normalisa- 
tion operator P('')* (equation (3.15)) remains non-singular. The effective Hamiltonian 
can be expressed as a power series in V / E , .  The lowest order term was derived in 
§ 2 (equation (2.19)), and the higher-order terms can be written down using the results 
of § 3. The second-order term in this expansion is identically zero (equation (3.16)). 

This representation is useful because the original two-dimensional problem has 
been reduced to one dimension and because the phase space function H j " , ( x , p )  
resembles the potential V ( x , y ) .  When the ratio p of the area of a flux quantum to 
the characteristic area of the potential is small, H+ V (equation (2.21)). Also, the 
results of § 4 show that H preserves the translational and rotational symmetries of V 
exactly, even when p is not small, but only retains the reflection symmetries of V in 
the lowest order of the perturbation expansion in powers of V/ E , .  Numerical experi- 
ments on effective Hamiltonians periodic in x and p show that the spectrum is of an 
unusual type when the effective Hamiltonian has exact threefold or fourfold rotational 
symmetry in phase space (Wilkinson 1984). The results of this paper show that this 
symmetry corresponds to natural crystallographic symmetries of the periodic potential. 
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Appendix 1 

Canonical transformations are used in the derivation of the effective Hamiltonian and 
the symmetry operators introduced in 0 4 are all canonical transformations. This 
appendix will introduce the Weyl symbol as a way of representing operators as functions 
in phase space and will discuss its most important property, which guarantees that a 
certain type of classical canonical transformation can be given an unambiguous meaning 
in quantum mechanical problems. All the canonical transformations required in this 
paper are of this type. 

The Weyl symbol A , ( x , p )  of an operator a is defined by the equations 

A d x ,  P) = Tr[ +cx, p ) i l  ( A l . l )  

) @ ( x , p )  =$I d X  d P  e x p ( i  [ ( p  - p * ) P + ( x - i ) X ]  . (A1.2) 

The motivation for this definition comes from the fact that the Weyl symbol A w ( x ,  p )  
transforms classically under the action of a linear canonical transformation 

(;:) = q;). (A1.3) 
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This statement needs some explanation. A syyplectic transformation of the form 
(A1.3) is generated by a quadratic Hamiltonian H acting over a time t 

fi =;[Ai2+ Bp*2+ C(;p*+$$)] (A1.4) 

and the operator transforms as follows: 

Act) = f i + ( r ) A f i ( r )  f i ( t )  =e-'''. (Al.5) 

The result is that the Weyl symbol of A( t )  evolves classically: 

aAs,(t)lat  ={A*, w (Al.6) 

where { } is the Poisson bracket. A derivation of this result has been given by Ozorio 
de  Almeida and Hannay (1982). 

The other important point is that if the operator A is a function of a linear 
combination of 2 and p* 

A = A( a2 + pp*, (A1.7) 

then the Weyl symbol of A is simply A( a x  + p p ) .  Similarly, if A is a sum of functions 
of this type, the Weyl symbol is also obtained by replacing 2, j? by the c numbers x, 
p .  Thus, if A(2, p * )  is expressed as a Fourier integral 

(A1.8) 

then the Weyl symbol of A is A,(x, p )  = A(x, p ) .  Provided we express all operators 
as a Fourier integral, they transform classically under linear canonical transformations. 

Appendix 2 

This appendix gives the derivation of equation (2.18). To simplify the notation, we 
will work in units where [$, p*]  = i and evaluate the matrix element 

I d a ,  P )  = (nIexp[i(a~+PP*)IIn')  (A2.1) 

where In), 1 n') are eigenstates of the harmonic oscillator Hamiltonian. 
It is convenient to represent ( a ,  P )  by a single complex number z; define 

where a*', 6 are the usual annihilation and creation operators, so that 

1 
I , , , (z)  = ,, , , 2  (Ol6"f(Z)6+"10). 

( n ! n  .) 

(A2.2) 

(A2.3) 

The first step in evaluating (A2.3) is to express it in terms of matrix elements of 
the form ( O ~ 6 k f ( z ) ~ O ) .  It is easy to show that 

[ f( z ) ,  a^+] = zf( 2 )  (A2.4) 
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so that 

where in the final step we have assumed that n a n'.  

Hausdorf formula, we find 
The next step is to evaluate the matrix elements (O la*k f (z ) lO) .  Using the Baker- 

so that 

= ( - 5 ) k  e-zf /2  

From (A2.5) and (A2.7), we have 

where 

n !  n' 

L y - y x )  = 1 ( - X I m  
m = O  ( n  - n'+ m ) !  ( n  - m ) !  m !  

(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

is an associated Laguerre polynomial (Abramovitz and Stegun 1964). Inserting the 
correct dimensional factors in (A2.8) we obtain (2.18). If n'>  n, we can calculate Znn, 
using the relation 

Znn. (Z)  = zn ,n ( - z ) .  (A2.10) 
- 
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