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An exact form of Lilley's equation with a velocity
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There have been several attempts to introduce approximations into the exact funn d"
Lilley's equation in order to express the_source term as the sum ofa quadrutx_ whose
strength is quadratic in the fluctuating velocities and a dipole whose mength _t
proportional to the temperature fluctuations. The purpose of this note is to _ that
it is possible to choose the dependent (i.e., the pressure) variable so that this type d
result can be derived directly from the Euler equations without inmxluei_ my.
additional approximations.

1. Introduction _

The subject of aeroacoustics was first put on a rational basis by Lighdull (19__.,
1954) when he rearra/nged the Navier-Stokes (Euler) equations into the form el r a _"
linear wave equation for a medium at rest with a quadrupde type source term. l'ke
crucial step in Lighthill's so called acoustic analogy apfxeaeh amounts to asmm/_
that the source term is in some sense known or that it can at least be modeled in same

approximate fashion. While this approach was remarkably saz'eessful in laedicting time
gross features of the sound radiation from turbulent air jets, the eommere_ airot_
industry ultimately found that they needed a much mote sensitive tool that was
capable of predicting how even relatively small chang_in the flow would _ tie ,"
radiated sound. This motivated generations of researche_ to seek impi-ovenae_as in tie

Lighthill approach. Early efforts were focused on accotmting for mean tioar
interaction effects and there were a number of attempts to accomplish this by apply_g
ad hoc corrections to the original Lighthill predictions. A axx-e satisfying
was the one adopted by Phillips (1960), Lille), (1974) and others, which _
deriving inhomogenous moving media wave equations far the sound genemticu
process.

The dominant part of the Lighthill source term is quadratic in the total iIcw
velocity, which can be decomposed into a mean plus a fluctuating cotnponem.
source function therefore contains terms that are both linear and quadratic in lie
fluctuating velocity components. Lilley (1974) argued that the linear terms, wtnk_ ate
typically such larger than the quadratic quantities, do not actually radiate any smmt
and should, therefore, not be included in the source function, since they would _ x_
dominate over the much smaller quadratic terms which are the true sources ofscu_
Including them would cause the sound source to be contaminated by the smart hxt
inevitable errors resulting from the actual computation of these terms and,
thereby lead to inaccurate predictions of the sound field.

Unfortunately, the equation derived by Lilley has a complicated sawee _cn
(Colonius, Lele, and Moin, 1997) which is not Of the physicaIly expected _ i.e., llte ./"
sum of a quadrupole whose strength is quadratic in the fltx:tmaing velocities and a
dipole whose strength is proportional to the temperature _ons. There have been
a number of attempts to obtain such a source term by introdm'ing
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approximations into Lilley's equation. The purpose of this note is to show that it h _
possible to choose the dependent (i.e., the pressure) variable so that this type ofnesult

can be derived exactly without introducing any approximations.

2. The LWey Equation and Related Background Information

Lilley (1974) showed that for an ideal gas the Navier-Stokes equations
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where

S=cpln_t/'C lp) (4)

denotes the entropy, c, denotes the specific heat at constant pressure K -- c,/c. denotes
the specific heat ratio, t denotes the time. x_-_xl.x2.x3} are Cartesian constants, p

denotes the pressure, p the density, v = {v, v 2, v3} the fluid velocity. % the ..'ist'mls
stress tensor. _ the heat flux vector and
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is the connective derivative, can be rearranged into the third order wave equatkm (see,

for example, Goldstein 1976, p. 253)

_( 7 a.,_ aTJ*"a_-7.g'- a.-7.=- _, _,-_,,
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where

n .linE- (6)
a¢ Po

c2 = _r = ,cp/p (7)

is the squared sound speed, R is the gas constant, T is the temperature. _ relmeSe_
the effects of entropy fluctuations and fluid viscosity, which are generally considered
to be unimportant and are therefore neglected in the following discussion.

Linearizing the velocity and thermodynamic variables about the unidirectional
transversely sheared mean flow



v;=8_u(x2,x_),p=po=cons_a_r=ro(X2._3)

and moving the nonlinear terms to the fight hand side leads m the inh_
lhidmore-Brown (1957) equation

LoFI= F, (9)

where

D'[Dr2 _c ax-__+:Zax-_,axlc
0o)

is the Pridmore-Brown operator,
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(n)

is the convective derivative based on the mean flow velocity and

m

c2=_ro. (12)

Notice that

Po ) X Po
(13)

when p' - p-po << p,, i.e., when the pressure fluctuatio_are small ./
The detailed expression for F is given in Colonies, et al_, (1997). This re_t is

still exact but the source term is now very complicated and e_en more impcoaafly
does not exhibit the quadrupole form originally proposed by Lighthill (1952).
Lighthill emphasized the importance of properly exhibiting the correct mulfipole
of the source term before introducing specific modeling assump_ons for this (lmmtity
and Colonius et al. (1997) showed the extreme sensitivity of the predicted sound field
to the detailed assumptions about the form of the source.

Goldstein (1984) carried out a systematic second order as)mptotic expansion and
introduced a new dependent variable to show that

Doof; ou 0f_ (14)
ro

to within second order accuracy, lois defined in equation (10), the new _t

variable x' is defined by

x'--.n +±n 2, (IS)
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V; EV¢-- DilU(X2,x3) (17)

and

( 21- to) (18)

is the fluctuating sound speed.
The source term in this equation is identical to the one that would be pmduoed by

an externally applied force [ - {/7, _,£} and is therefore properly _ as a

dipole. The first term in f represents the source that would be pmduoed by the
fluctuating shear stress v,'vj" and can therefore be interpreted as a quadrupole. The
remaining term is a dipole source produced by the temperature fluc'tuafions

T'=T-To (19)

The quadrupole source scales like v'/t, where t is a characteristics length of the

turbulence and the second term scales like T'/T (v'2/_, where TTf. is of the order of
the turbulence Mach number squared for cold air jets, and should therefore be
negligible compared to the first when the flow is subsonic (Morfey, Szewczyk, and
Tester, 1978)

Colonius et al., (1997) showed that they could accm'ately vepnxtuc_ the
numerically predicted sound field radiated from a low Mach number shear layer by
substituting the numerically computed values for

a • •

ff .* ----ViVj, (20)
%

and U into (14) and numerically solving the resulting linear equation for ft. However,
the Goldstein expansion, on which this result is based, is, at best, only locally valid,
since nonlinear effects eventually dominate the near field disturbances and cause the
expansion to breakdown. And since the acoustic field depends on the global solution
to the problem, this approach does not lead to a rigorous derivation of the basic
acoustic analogy equation.

3. The Exact Equation

The purpose of this note is to show that it is possible to obtain an exact
rearrangement of the Navier-Stokes (Euler) equations that leads to a third order
convective wave equation with a simple source term that still consists of a velocity
quadrupole plus a fluctuating temperature dipole by introducing an appropriate
dependent variable to represent the pressure fluctuations.

To this end, we neglect viscous and heat conduction effects O'he final result can
easily be modified to include these effects by adding an addition term to the source
function.) and substitute (4) into (3) to obtain

J



• 1

o

Then multiplying equations (1) and (2) by p'_'/p, differentiating by parts imd using (7)
and (21) shows that

_t pt/_ + (pl /_vj )= O, (22)

x _ 11_

_p_ t/,_vi÷_. B [-tI_:vivjh'c21" op- - =0, (23)
at axj ax i

which upon introducing (11) and (17) can be written as

Do i/_:+ a _P ))/l/_Cv'_-O. _ (24)

and

Oo(,,,/,_¢l+ ,=,au 2apI/'` a tt/,_,,I
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where we have used equation: (24) to simplify equation (25). Upon _ the

new dependent variables

(26)

(27)

and using (12) and (18), these become the inhomogeneous linearized Euler equ_ons

oo_+0.j ___0 (2s)
Dt axj

O--"_L+ 8"u*V U +c'3a_=Y"Dt (29)

where theexternallyappliedforcef,isnow givenby

./;=-)L- 0 +_),,;v:.-:" _--_-- (2o)
axj J ax i

These are identical in form to the linearized equations discussed in Chapter l
of Goldstein (1976), where it is shown (by taking the convective derivative of the first
equations and the divergence of the second, subtracting the results and then using the
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second equations with i ffi 1 to eliminate the velocity fluctuation on the left hand side)
that they can be rearranged into the inhomogeneous Pridmo_ equation

Do _au afj
ol_ =_- Z-

Dt ax t _x j _x i
(31)

which is identical to (14) but with the pressure fluctuation x now given by (27) and
the externally applied forcefnow given by (30) rather than by (16). Notice that

| •

x_-_p[po when p'fp-po'-*O, (32)

Finally, it is worth noting that (31) can be written as

Do _ 2 _U ___
LoTt= -_t -_ii - "_ ax I

(33)

m w

where Lo is the same as (10) but with c 2 replaced by c2 = c 2 +e-" and

- -_--_(I+_)v_v_/ (34)

is now a pure quadrupole source, which suggests that the dipole _ source in
O1) could also be interpreted as a weak nonlinear propagation.

Aside from the definition of the pressure fluctuation, the only difference
between equations (14) and (31) is the appearance of the pressure fluctuation factor

(1 + _) in the quadmpole strength (1 + _) v',v',. Since g shoukl be of the order of the
turbulent intensity squared (which is typicall), small compared m unity) and since
substituting exact values of U and f, into (31) should yield exaedy the same result as
the direct numerical solution for the sound field, this expla_ why Coloneus et al.
(1997) were able to obtain such good agreement using the two ¢[ffevent approaches.

Lighthill indicated that the basis of his acoustic analog- is &e demonstration
that there is an exact analogy between the density fluctuati_ms fn any real flow and
those produced by a quadmpole source in an ideal stationary, acoustic medium. The
present result shows that, aside from viscous and heat conductk_ effects, there is an
exact analogy between the ":(p/p_) fluctuations in any real flow and the corresponding
linear fluctuations in this quantity produced by a quadr_p¢_ plus a temperature
dipole source in an arbitrary ideal transversely sheared mean flzw.
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