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AN EXACT GENERAL SOLUTION FOR THE TEMPERATURE
DISTRIBUTION AND THE COMPOSITE RADIATION CONVECTION HEAT
EXCHANGE ALONG A CONSTANT CROSS-SECTIONAL AREA FIN*

By A. R. SHOUMAN?! (New Mezico State University, Las Cruces)

Abstract. An exact general solution is obtained for the nonlineardifferential equation
governing the one-dimensional steady-state heat exchange by composite radiation and
convection along constant area fins with uniform temperature at the base and an arbi-
trary temperature gradient at the other end. The fin can dissipate or receive energy.
The fin is assumed to have constant thermal properties, and the radiant interaction
between the fin and the base surfaces is neglected.

Introduction. Although the subject of heat transfer from fins and extended surfaces
has been studied analytically and experimentally for almost two centuries [1], the
subject of radiating fins has only recently come under extensive study because of the
interest in space and space travel. The assumption is usually made that the end of the
fin farthest from the base is insulated.

Numerical solutions of the radiating fin problem using difference equations and
computers have been published by Chambers and Somers [2], Lieblein [3], Bartes and
Sellers [4], and Callinan and Berggren [5]. Wilkins [6] and Liu [7] treated the problem
of the minimum mass fin. Mackay (8] has outlined a method of successive approxima-
tions for use with a digital computer to solve the problem including variable area.
Shouman [9] has shown that the problem can be solved. Hung and Appl [10] considered
the heat generation and the effect of the variation of thermal properties with temperature.

Since convection heat transfer sometimes accounts for a significant portion of the
exchange of heat, the purpose of this paper is to present the exact and general solutions
for heat exchange by means of radiation-convection along a constant area fin with
constant thermal properties.

The problem and its solution. The general case of a fin with a constant cross-
sectional area of arbitrary shape is considered herein. For reasons which will be made
clear later, the positive z axis is chosen in the direction of increasing temperature for
the case in which the fin transfers heat to the surroundings and in the direction of
decreasing temperature for the case in which the fin receives heat from the surroundings.
Assuming constant thermal properties, the steady-state one-dimensional heat flow equa-

tion is written as
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If Eq. (1) is integrated, the following expression is obtained.

<g> 20EP
dz 5kA

Introducing 6 = T/T, where T, is the temperature at z = 0, r = 5h/(2¢ET%) and
applying the boundary condition

(d6/dz)’-y = g(2<EPT?/5kA)
the solution to Eq. (2) can be manipulated into the form

(T® — 5T°T) + (T’ oT.\T) + C. @)

3\ 1/2 0
(BEPI)" s & [0 = 1) = 5640 — D 470 — DO — 20,4+ 1 + g™ do. (3
1
Substituting for C = g + 56% — 1 + r(28, — 1), Eq. (3) can be written as follows:
2¢'rl’7P'.r'3)”2 s 5 4 2 -1/2
= + 9> — 56,0 0 — 20,6 dé. 4
(2] [ T )+ ) @

The positive and negative signs in Eqgs. (3) and (4) correspond respectively to the
cases of heat transfer to and from the surroundings. The integral in the right-hand
member can be evaluated numerically or graphically for the case in which ¢ > 0. Note
from Eq. (3) that for g = 0, a singularity exists at 8 = 1, so the evaluation of the integral
requires special consideration. If ® and A are defined as:

0,0, ,r,C) = f [6° — 560 + r(6* — 26,6) + C]"V* do (5)
6
and

6
A6, 8, ,7,C) = f [6° — 560 + r(6® — 26,6) + C]"* do (6)

and & and A are proved to be finite for the range of interest, the solution can be written
for the fin transferring heat as

(20EPT;/5kA)*x = &(1, 6, ,r, C) — &(9, 6, ,r, C) @)
and for the fin receiving heat as
(206EPTS/5kA)*z = A(1, 8, ,7, C) — A(6, 6, , 7, C). ®

Evaluation of the functions ® and A. An examination of ® and A shows that both
functions have an upper bound which exists forr = 0, g = 0 and 6, = 1 and also that
the functions are finite in the entire field except at the point § = 1 when §, = land g = 0,

The Function ®. After introducing the variable A = 1/6, Eq. (5) can be written
as follows:

A
a0\, 0, ,7, C) = g f [1 — 5O 4+ 131 — 260 + CON]7Y2 47, ©)
0

This form can be used when g > 0 and the integral can be determined to any desired
accuracy by using \*? as the independent variable. When g = 0, a singularity exists
at A = 1. However, integration by parts leads to the following form:

— 560\ + r\°(1 — 26,)) + CN1V2(10 + n\®) dA¥?)
[5(1 — 8\ + 2r\*(1 — 6,M)]°
N[ = 56 4 V(L= 26N 4+ ON?
51 — 6N + 2331 — 8,))

N
20 0,7, 0) =5 [ &
0

(10)
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In this form & is finite over the entire range of interest except at A = 1, 6, = 1, and
g = 0. Hence the same numerical procedure can be applied as in the case of Eq. (9).

The Function A. When g > 0, A can be calculated directly using Eq. (6), but for
g = O the argument has a singularity at § = 1. Integrating by parts, the following
equation is obtained:

_2[6° — 5616 + r(6° — 26.6) + C]'* 2¢c'”?
A 8 m ) = TR e F a6 — 6) T 56t + 206,

*16° — 5606 + r(6® — 26,0) + C]'/*(106° + 1) d6
+4 (56 — 0 + 2r(6 — 6T - an

Note that A is finite in the entire range of interest except at 6 = 1,6, = 1, and g = 0.
The same procedure can be used to evaluate A as ®.

The minimum mass fin. As an example of the use of the solution, consider a fin with
minimum mass, constant area, and constant base temperature, T, , transferring @
amount of heat. FFor this case the following equation is readily obtained:

Q = —[20EkPA/5)"*TY*[1 — 500\% + r\i(1 — 26,1\;) + A3 (12)
therefore,
2
A = S ERPTS = 56t -ieri(l — 26, + CON) (13)
also
L = [5kA/20EPT})*6Y*[¢(1, 6, ,r, C) — &(\. , 6, , 7, C)). (14)
For a rectangular fin of thickness 25, P = 2, and 4 = 2§,
5= 3 5 . (15)
8cEETL[1 — 500\ + »\i(1 — 20,\;) + CA:]
and
L = [5k 8/2¢EPT1)*6¥%(2(1, 6, ,7, C) — ®(\;, , 6, ,7, O)]. - (16)
Equation (17) is obtained by combining Eqs. (15) and (16).
V =9l = 25Q° [, 0, ,7,C) — 2\, , 6, ,7, O)] an

16°E°kT? N1 — 500\; + rAL(l — 20,\,) + O\
For minimum V, the expression

[Q(ly 6, y 7y C) - ¢()‘L ) 0, ) C)]
A1 — 500N + 31 — 260.\) + O\
should be a minimum. Differentiating and equating to zero gives the following equation:
2 271 — 560 + i — 260.,) + O\
3 [1 — 2560\ + 2r\3(2 — 56,\.) + 6CAL)
(18)

The solution of Eq. (18) gives the condition required for a minimum mass rectangular
fin.

(I>(l, 6, ,1’,0)—@()\[,,0, ,T,C) = -
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For a circular fin of diameter D, A = #D*/4 and P = »D); this leads to the expression

- L( 10°Q° )"“ (21, 0,,71,C) — 80, 6,7, O (g
16 \#’c*E*kTY/ \/[1 — 500\% + i1 — 20,\.) 4+ O\

|4

Differentiating and equating to zero, the condition for minimum V is found to be

AN2[1 — 5008 + m3i(1 — 20,\,) + C\]2
<I>1,0,,, — &\ ,00)) = - '
0L 0,7, O = 80w, 6007 O = =54~ Siaging + mabla — Ao + HON

(20)

The solution of Eq. (20) gives the requirements for minimum fin geometry.

Conclusion. An exact general solution is presented for the nonlinear differential
equation that describes one-dimensional heat transfer by radiation and convection
between a constant area fin and a surrounding space at an equivalent sink temperature.
The fin can be either dissipating or receiving heat. The solution results in a number
of functions that can be presented in tabulated form, graphed form, or both. The use
of the solution is illustrated by considering an optimization problem.

DEFINITION OF SYMBOLS

Symbol Definition

Area, ft

Constant

Constant

Diameter, ft

Emissivity factor, dimensionless
Constant

Convection heat transfer coefficient, Btu/hr ft* °R
Thermal conductivity, Btu/hr ft °R
Length, ft

Perimeter, ft

Rate of heat transfer, Btu/hr
Constant, 5h/2¢ET3

Volume, ft’

Temperature, °R

Distance, ft

Stefan-Boltzmann constant, 0.1714 X 10™* Btu/hr ft* °R*
Dimensionless variable, T/T,

1/6

Half thickness of rectangular fin, ft
Function

Function

QA

S

g > oA 8OO N> s

Subscripts
Condition at a distance L from origin
Condition at origin
s Condition of surroundings

o~
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