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Abstract. A new inverse method for aerodynamic design of airfoils is presented
for subcritical flows. The pressure distribution in this method can be prescribed in a
natural way, i.e., as a function of arclength of the as yet unknown body. This inverse
problem is shown to be mathematically equivalent to solving only one nonlinear
boundary value problem subject to known Dirichlet data on the boundary. The
solution to this nonlinear problem determines the airfoil, free stream Mach number
Moo and the upstream flow direction 6^. The existence of a solution to a given
pressure distribution is discussed. The method is easy to implement and extremely
efficient. We present a series of results for which comparisons are made with the
known airfoils. This method will be extended to design supercritical airfoils in the
future.

1. Introduction. The inverse problem in the context of aerodynamics is the de-
termination of an airfoil that will generate a given pressure distribution. This prob-
lem has been considered important for decades because many desirable features of
the flowfield, such as delay of separation and laminar-turbulent transition, can be
achieved by proper prescription of the pressure distribution along the surface of the
as yet unknown body (Stratford [33, 34, 35]). The point of separation of zero skin
friction is related to the specified pressure distribution (see Stratford [33, 34] and
references therein) and a flow with zero skin friction throughout its region of pres-
sure rise is expected to achieve any specified pressure rise in the shortest possible
distance with least possible energy loss (Stratford [35]). In aerodynamics these flow
features are highly desirable and can be realized in practice since a suitable pressure
distribution can be specified to avoid the undesirable flow features and an airfoil can
be generated that will have this pressure distribution along its body. This paper ad-
dresses this problem of generating an airfoil from a given pressure distribution and
proposes a new and extremely efficient method of solution to this problem.
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Various methods, iterative and noniterative, have evolved over the years to solve
the inverse problem, mostly based on analytic function theory for incompressible
flows (Arlinger [1], Glauert [13], Goldstein [14], Halsey [15], Johnson [21], Johnson
and Rubbert [22], Langley [23], Lighthill [25], Strand [32]). However, for compress-
ible flows, most of the solution techniques rely on solving a series of nonlinear bound-
ary value problems in the physical or hodograph plane subject to either Dirichlet or
Neumann boundary conditions, depending on the choice of the dependent variable.
In either of these methods, an initial contour of the airfoil is guessed. In the Dirichlet
formulation (Volpe [38], Volpe and Melnik [39], Tranen [37], Carlson [4]) a sequence
of boundary value problems for the velocity potential, with wing geometry updated at
each step, is solved. The updated condition arises from the normal velocity resulting
at each unconverged step. In the Neumann formulation (Davis [8]; Hicks et al [19,
20]; McFadden [26]) a sequence of analysis problems is solved over a corresponding
series of geometries. Each geometry is provided by some rational method depending
on the difference between the computed speed and prescribed speed being driven to
zero (for a review see Sloof [28]).

The above methods are very general and are applicable to subcritical as well as
supercritical flows. The method of complex characteristics for solving the inverse
problem in the case of supercritical flows is quite efficient and mathematically ele-
gant (Bauer et al [2], Garabedian and Korn [11], Garabedian [10], Garabedian and
McFadden [12], Sanz [27]). In their method the boundary is unknown and they iter-
ate on the boundary to generate the airfoil. There are cost effective methods based on
the fictitious gas concept to generate supercritical airfoils (Sobieczky [29], Yu [40]).
An excellent review on the design of supercritical airfoils and wings can be found in
Sobieczky and Seebass [31], There are other methods of designing airfoils (Hassan
et al [17, 18], Hassan [16]) which are not truly inverse methods since the input pres-
sure distribution in these methods is not prescribed in a natural way, i.e., along the
surface of the airfoil.

In this paper we present an inverse method where only one nonlinear boundary
value problem needs to be solved. The method is computationally very efficient. Pre-
viously Daripa and Sirovich [7] have described an exact inverse method for subsonic
flows within the tangent gas approximation. In this paper we discuss a method that
applies to subsonic flows in general. The key idea of this method is to formulate the
problem in the potential plane with the speed q (normalized by the sonic speed) as
the dependent variable. The body maps into a slit in the potential plane (see Fig. 1).
An input pressure distribution Cp(s) determines the slit, the speed q on the slit and
the speed at infinity, denoted by qoo- A solution of the governing equations subject to
the known values of speed q on the slit determines the airfoil and a speed at infinity,
which we refer to as q^. For a solution to exist, the determined directly from the
input Cp and the computed q^ must be the same, or equivalently, M00 must be the
same as M(The free stream Mach number is a function of the speed at infinity.
Moo and Af£, respectively refer to the free stream Mach number corresponding to qoo
and q^.) Otherwise a solution with the input pressure distribution does not exist.
In our method we always generate an airfoil, but the input and computed pressure
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distributions do not match unless the existence criterion, (or = M^)
is met. The input speed distribution and the calculated can be used to compute
the pressure distribution over the designed airfoil at this Mach number MThe
computed pressure distribution will be close to the input pressure distribution if M^
is close to M

The constraints due to the closure condition have not been imposed in this paper.
Thus the designed airfoil could have a gap at the trailing edge. Currently under study
is the inclusion of the closure condition as an exact constraint and the extension of
the present method to design supercritical airfoils.

The paper is organized as follows. In Sec. 2 the governing equations of the steady,
inviscid, irrotational flows in the potential plane are presented. These equations
are then used to derive an equation in the potential plane with only one dependent
variable, namely speed. In Sec. 3 the mapping of the potential plane to the interior
of a unit circle is discussed. The governing equation in the plane of the circle as
well as various relations that are relevant to our problem are derived in this section.
Section 4 outlines the method of solution and presents the numerical results. Closing
remarks are made in Sec. 5.

2. Basic equations. In this section we consider steady two-dimensional compress-
ible fluid flow past an airfoil. We assume that the fluid flow is both irrotational and
isentropic and that the fluid is a perfect gas obeying the gamma law equation of state.
The governing equations of such a flow in usual notation are then given by

V • (pq) = 0; V x q = 0; p = py. (la,b,c)

The variables are normalized with respect to their sonic values and linear dimensions
with respect to some appropriate linear dimension. Here p is the pressure, p is the
density, and q is the speed. The equations (la,b) can be alternatively represented in
terms of a potential 4> and a stream function if/, given by

/>q = cVx(yk); q = V0, (2a, b)

where k denotes a unit vector perpendicular to the plane of the motion. The constant
c has been introduced for later purposes.

If the potential function 4> and the stream function if/ are used as independent
variables and the flow direction 6 and the Prandtl-Meyer function u, defined by

r<7
V

are used as dependent variables, then the governing equations for the subcritical flows
in the potential plane w = (<j> + iy/) are given by (Daripa and Sirovich [6], Bers [3])

0t-{K{M))-lvv = O) e¥ + {K{M))v+ = 0. (3a,b)

The function K{M) in Eqs. (3a,b) is a function of the Mach number M and is given
by

w-'mm (4)
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where
p2 = \\-M2\. (5)

The airfoil in the physical (z = x + iy) and the potential (w = </> + iy/) planes is
shown in Fig. 1.

The system (3) should be solved subject to the ideal gas pressure-density relation
(lc) and Bernoulli's relation given by

1 f dp ...- — = constant. (6)
yjp

1" 1 f dpV + - '2 y
The function K(M) and the Prandtl-Meyer function v(M) are related to the Mach
number M (Daripa [5]) as

PK[M) = cP{l-^ ) (7)

u{M) = Ktanh-1(/?/K) - tanh-1 /?, (8)

where k is a function of the specific heat ratio, y, given by

2 = (y + ]) ,91
(y-i)' ()

Differentiation and elimination reduces the system (3a,b) of first-order partial dif-
ferential equations (PDEs) to an equivalent second-order PDE in u only, given by

{K~\M)v¥)¥ + {K{M)v^ = 0. (10)
In the following paragraphs we briefly outline the underlying ideas, followed by a
detailed account of our method.

It is straightforward to derive from (lc) and (6) the functional relationship Cp =
CP(M, Moo) and q = q(M). See Daripa [5] and Liepmann and Roshko [24], These
relationships determine the free stream Mach number M^, the Mach number M(s),
and speed q(s) along the surface of the body from any specified pressure distribution
Cp(s), 0 < s < 1, where 5 = 0 and 1 respectively refer to the upper and lower side
of the trailing edge of the airfoil. A correspondence between the body surfaces in
the physical and potential planes is made through the relation \d(j>\ = q(s)ds which
determines <j>(s) upon integration. A knowledge of M(s) and (f>{s) together determines

and hence i/(M(<(>)) on the slit in the potential plane (see Fig. 1). The solution
of Eq. (10) subject to the known values of v{<j)) then determines uv on the slit. The
normal derivative vv on the slit can be used in Eq. (3a) to find the value of 6$ and
hence the body.

The solution of the elliptic equation (10) subject to the Dirichlet data on the
slit also determines the free stream Mach number MThe superscript c refers
to the computed value. The free stream Mach number associated with the
input pressure distribution Cp{s) need not be the same as the computed value
Moo = will imply existence of a solution (an airfoil) corresponding to the input
pressure distribution. (This is equivalent to the condition due to the mean value
theorem in the linear case (Laplace equation).) If M00 / M^, then there does not
exist a solution corresponding to the given pressure distribution Cp(s). However,
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z-plane

{-plane

Fig. 1. Airfoil in the physical r-plane, potential w-plane and the
circle (-plane. A is the front stagnation point.

notice that in our formulation we always generate a body. If M£, is different from
Moo, then the pressure distribution on the designed body can be calculated easily at

using this value for Moo in the formula for Cp. However, one can also solve the
analysis problem directly on the designed airfoil to compute the pressure distribution.

Details of our method follow. The governing equation (10) can alternatively be
written as

Vl¥u = (1 - K2)vh + K-xKvuv - KK^. (11)
Since K and v are functions of Mach number only, it follows that

Kip — Km Mi/Vy, = A/j/ (12a,b)
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Equations (12a,b) reduce Eq. (11) to

V^i/ = (1 - K2)uu + f{M)u* - K2f{M)vl (13)
where f{M) is given by (Daripa [5])

f{M) = KM^- = -y-^M\\\-M2\)-V2. (14)

Use of Eq. (7) has been made to derive (14). Equation (13) is the governing equation
for v and Eqs. (3a,b) for the flow direction 6. It will be useful to transform the
equations from an infinite domain of the w-plane into a finite domain of some new
plane. This is discussed in the next section.

3. Equations in the circle plane.
3.1. Mapping. The potential plane w is mapped into the interior of the unit circle

in the plane £ = rela such that the body maps onto the unit circle and the infinity
goes into the origin. This mapping function is given by (Daripa and Sirovich [6, 7])

w = a(Ce'a° + £~xe~la°) - /2asinaoln(£e'a°). (15)

Here the constants a and ao, as yet unknowns, relate to two physical variables, namely
the free stream direction with respect to the as yet unknown body and the circulation.
As seen from this mapping the circulation, -T, is related to the constants a and a0
by

r = 4^asina0- (16)
The relation of the free stream flow direction, doo, to the body is discussed in Sec.
3.6. From (15) we see

~ = -ae~iao(l - £-')(<?-'"* - £"') (17)

where
ots = n- 2a0. (18)

Thus the rear and front stagnation points map into £ = 1 and £ = el0ls respectively.
Notice that the lower side of the trailing edge maps into a = 0 and the upper side
into a = 2n on the unit circle. On the body £ = ela\ 0 < a < In, 0 and y/ are given
by

0(a) = 2acos(a + ao) + 2a(a + ao) sinao; (//(a) = 0. (19)

Next we discuss the determination of the speed on the unit circle from an input
pressure distribution Cp(s).

3.2. Speed distribution on the unit circle. The following relations can be derived
using (lc) and (6) through simple algebraic manipulation. See Daripa [5] and Liep-
mann and Roshko [24],

2 ( pCp = ~~T7T — - 1 (20)
r^io\Poo '

where the pressure p is given by

H-sr
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Poo in (20) refers to the value of p at infinity. The speed q and the Mach number
M are related to the pressure p through

q2 = k2 - (k2 - \)p^~M = 1 -k2(1 -pi1-?)'?). (22a, b)

Relations (20) through (22) determine M{s), q(s), and Moo from given Cp(s). Since
the body is a streamline, the following relation follows from (2b):

qsds = \d(p\. (23)

s = 0 denotes the lower side of the trailing edge and s — Sf denotes the distance of
the front stagnation point from the lower side of the trailing edge. Equation (19)
reduces Eq. (23) to

qsds = 2a\ sinao - sin(a + a0)| da\ 0<a<2n, (24)

which is simply an ordinary differential equation for s(a). To integrate (24) we
introduce

dQ = d [ qs{s')ds' (25)
Jo

from which

Q(a) = Q(s(a)) (26)
2a{(cosao _ » sin ao - cos(a + ao)}, 0 < a < as
2tf {2(cos(a - as sin ao) + (a sin ao + cos(a + ao) + cos ao)}. as < a < 2n.

Observe that
Q(s = 1) = Sa(a0 sinao + cos ao), (27a)

Q(s = 1) - Q(s - Sf) = 2<z{cosa0 + (it + 2a0) sinao}. (27b)
T is related to Q(s = 1) and Q(s = Sf) by

F = 2Q(s - 1) - Q(s ~ Sf) = 4reasina0. (28)

Q(s = l),Q(i = Sf), and T are known from qs(s) (see Eqs. (25) and (28)). From
(27a) and (28) it follows

6(i'') = -(ao + cotao). (29)
1 7t

After (29) is solved for a0, the constant a can be calculated from (28). Next Q(a) is
computed from (26) and 5(a) is obtained by inverting (26),

s(a) = Q-l(Q(a)), (30)

and qs{a) = qs(s(a)) is obtained from (24). This determines the speed and hence the
Mach number M (see Eq. (22b)) and the Prandtl-Meyer function v (see Eq. (8)) on
the unit circle.

As it will be seen, the airfoil and the flow direction at infinity are related to the
values of v inside the unit circle. This requires solving the governing equation (13) in
the circle plane subject to the known values of v on the unit circle. Next we discuss
this equation in the circle plane and the relation of the airfoil and the flow direction
at infinity to the values of v inside the unit circle.
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3.3. Transformed equations. The conformal mapping (15) transforms Eq. (13)
into

V> = §[(1 - K2)uh + f{M)u2v - K2 f(M)v%] (31)

where
V2rav = \dr(rdr v) + \daav, (32)r r

and vv, and D are known functions of the various derivatives of (j), y/, and
v in the circle plane and can easily be derived using the mapping function (15).

The Prandtl-Meyer function v (see Eq. (8)) has a logarithmic singularity in speed
q at a stagnation point. It is essential to remove this singularity before the solution
of Eq. (31) is sought. This is discussed next.

3.3.1. Removal of singularity. The logarithmic singularity of v at a stagnation
point is removed by introducing

v(r, a) = —v(r, a) + L(r, a) (33)

where
L(r, a) = - In G(r, a). (34)

G(r, a) in Eq. (34) is given by

G(r,a) = |(1 - Q-d{eia> - C)~'| = {Sx{r,a))-ll2{S2[r,a))-ll2 (35)

where
Si (r, a) = 1 4- r2 - 2r cosa; a) = S\ (r, a — as). (36a,b)

S denotes dt/n where 6, is the trailing edge angle. Then Eq. (31) becomes

V2raD = £[(1 - K2)(vm - Lh) + f(M)(vv - Lv)2 - K2f{M)[u(j) - L0)2]. (37)

Equation (37) is the main equation to be solved in the circle plane. The values of
v{r = I, a) are computed from known values of u{r = I, a) using Eq. (33). As we
see from (34) to (36), L[r, a) is singular at the stagnation points a — 0 and a = as
on the unit circle and this singularity precisely cancels the singularity in v at those
points. Therefore, it is not straightforward to calculate the values of v using (33) at
these stagnation points and special estimates have to be made to evaluate them at
a = 0 and a = as. This will be discussed in Sec. 3.6. Various derivatives of L and v
with respect to <j> and y in Eq. (37) can easily be related to their derivatives in the
circle plane through the mapping function (15).

We have regularized v but the right-hand side (henceforth to be referred to as
RHS) of Eq. (37) remains singular at a stagnation point (see Appendix B). As shown
in Appendix B, the singularity at a front stagnation point can be removed by choosing
a particular value of the constant c appearing in K (see Eq. (4)) which is given by

c = y + 1

However, the RHS remains singular at the trailing edge (a = 0) if 0 < d, < n/2. For
the case where the trailing edge angle is zero, the RHS is regular also at the trailing
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edge and hence the RHS remains regular everywhere. We will only be concerned
with this case when we discuss our results.

The solution of (37) subject to the known Dirichlet data will provide the value of
v inside the unit circle. Next we discuss how to relate these values of v to the body
angle dB{a) and the free stream direction doo-

3.4. Body angle. It is easy to see from (33) to (36) that on the unit circle

ur — —ur + e + constant x S(a - as) + constant5(a); on r — 1, (38)

where
« = ^ (39)

and 5 denotes the Dirac delta function. The tangent angle dB on the body is related
to the flow direction 0 on the body by

6{a) = eB{a) -2n + nU(a-as) (40)

where U(a - as) is the unit step function. Then

8a{a) = {dB(a))a + nS(a - as). (41)

As shown in Appendix A (see equation (A6)), under the mapping (13), 6a on the unit
circle is related to u through the following relation:

0a = -K-lvr{a) |r=1. (42)

Direct substitution of (38) and (41) in (42) results in

(eB(*))a = K-\ur |r=i-e). (43)

From (43) it follows that

L2 71 -1K {v\r=x - e) da = -2en (44)

since (see Fig. 1)
ds{a = 2n) - dB(a = 0) = -2en. (45)

If vr is known on the unit circle, then (dB(a))a is known and 6B(a) on the body can
easily be computed by integration as given by

eB(a) = eB(a = 0)+ r K~\u\r=x -e)da.
Jo (46)

0B(a — 0) can be arbitrarily assigned to calculate dB(a). Then the body can easily be
computed using the equations

fa ds
x(a) = / -j-cos dB(a)da', (47a)

Jo da

y{a) = f sin dB{a') da1 (47b)
Jo da

with
ds — 2q 1 sin Qo ~ sin(a + q0) |
da qs{a)
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The free stream direction Ooo must be related to 6^ (a = 0) to find the orientation of
the body with respect to the free stream direction.

3.5. Free stream direction. 0r can be integrated along any ray, a - constant, in
the unit circle from the origin to the unit circle to calculate the free stream direction
Ooo — 0{r = 0) with respect to the body. It is easy to see that

6(r = l,a = a.) = doc + [ 9r(r)\a=a.dr (49)
J o

where a* is the angular position of any ray. From (40) and (49)

dB{ct = a*) = Ooo + [ 6r(r)\a=a.dr + In - nU(a - a,). (50)
Jo

0r is related to ur and ua in general through the relation (3a,b) and mapping function
(15). Use of (33) and (A 10) (see Appendix A) gives

„ K{M) . ~ , T .. n ....
0r - ( La J | a=a | ? & 1 2 ^ 1)

From Eqs. (49), (50), and (51) we see that 0^(« = 0) is related to 6oo by
ra i

a = 0) = 0B{a = a,) - [ K 1 (ur|r=1 - e) da (52)
J o

= doo + 2n- [ K l{vr\r=] - e)da+ [ K^M\-ua + La) |a=a, dr.
Jo Jo r

Equation (52) determines Boo and hence the orientation of the body with respect to
the free stream direction. So far our exposition has been exact. As mentioned in Sec.
3.3.1, we need to estimate the values of D(a = 0) and u(a = as) on the unit circle.
This is discussed next, which will be useful later for numerical solution of (37). In
the next section we also discuss how to compute the trailing edge angle 8{= from
known values of speed on the unit circle.

3.6. Behavior at stagnation points. It is both interesting and useful to study the
behavior near a stagnation point (£ = 0, £ = e'as). From (20) one obtains

q ys for q ss 0. (53)
y/ (/C — 1)

From (8) one obtains

tanh '/?«/ctanh 1 ( ^ ) - u\ for q « 0. (54)

From (5) and (54) one obtains
-k/2

M m '■
From (53) and (55) it follows

qK,F(K)eu\ for q « 0 (56)

where

F(/c) = 2<f{K+|H K'2 K (57)
\(#C - 1) / y/(Kl- 1)
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From (34), (35), and (56)

q ss .F(k)-^—for q m 0. (58)
G(a)

A tilde on q indicates it is a function of a. From (36) and (37)
_ | aa(2cosa0) for a 0,

I \a - ai|(2cosQo)'5 for a « as.
From (58) and (59)

qa ( 1 foTaa0' (60)
I Ki\oi — as| for a s» as,

where

Ki =JF(K)e"'7(a=0)(2cosao). (61a)

^2 = JF(K)e-'7(Q=as)(2cosao)J. (61b)

If ai and a2 are close to a — 0, then from (60)

. _ In(q{a2)/q{u\))

From (60) and (61)

v{a — 0) ss - In

ln(a2/Qi)

q{oh){2 cosqq)-1

and

u(a — as) « - In

af F(k)

q{af){ 2cosa0) 15
\oif - as\F(k)

(62)

(63)

(64)

where ay a as. Equations (62) to (64) determine 5, v{a = 0), and u(a = as) from
q{a). Having discussed all the relevant details, the method of solution is discussed
next.

4. Numerical results. In this section we discuss the numerical steps involved in
carrying out this design method. We present numerical results for two different (sym-
metric and nonsymmetric) pressure distributions corresponding to known airfoils.

4.1. Methods of solution. Usually, the pressure distribution Cp(s), 0 < s < 1,
is prescribed at a finite number of points sj, j = 1,2, 3,We assume that
Cp(s = Sf) = Cpo is one of the data points (this is the maximum value of Cp(s)) and
corresponds to the stagnation point pressure coefficient. The free stream Mach num-
ber Moo is obtained from Cp0 using Eqs. (20) and (21). The calculation procedure
goes as follows.

(a) The pressure ps{s), the Mach number M(s), and the speed qs(s) on the body
are computed from Cp(s) using the relations (20) to (22). In all our cases the Cp{s)
was prescribed at 129 points.

(b) The speed q{a) on the unit circle at N grid points is computed from qs(s) (see
Sec. 3.2). In all our runs the number of grid points on the unit circle in the mapped
plane was 129.
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(c) The Mach number M(a) and the Prandtl-Meyer function u(a) are computed
from q(a) using the relations (8) and (22).

(d) The regularized Prandtl-Meyer function u{a) is then computed using Eqs.
(33) to (36) except at stagnation points (a = 0 and a = as). Stagnation point
estimates of V are obtained from (63) and (64) and the trailing edge angle 8 from
(62). Accuracy of these estimates depends on the accuracy in the speed q{a) near
these points (see Eqs. (63) and (64)) and hence on the speed distribution qs(s) near
the stagnation points where the slope is usually steep. If the speed is not prescribed
over a sufficient number of points in these steep areas, then the above estimate could
be inaccurate. Under such circumstances, the above estimates of V(a) should be
obtained by interpolation and extrapolation near front and rear stagnation points,
respectively, and the trailing edge angle should be prescribed.

In all our runs the approximate relations (63) and (64) were used to compute the
stagnation point estimates. In addition, the input speed at the trailing edge was finite
but not zero, which means that the trailing edge angle is zero.

(e) Equation (37) is solved numerically inside the unit circle subject to the follow-
ing known data:

v(r = 1, a) — ?(a), 0 < a < 2n,

V2rau = 0 at r = 0.

Notice that the second condition above follows since the flowfield is uniform at
infinity. In solving Eq. (37) numerically, a general linear Helmholtz equation solver
(Swarztrauber and Sweet [36]) is used in an iterative manner. An initial guess of the
flowfield inside the unit circle determines the right-hand side (RHS) of Eq. (37) at
(M - 2) x N grid points where M and N are the number of uniformly spaced grid
points in the radial and angular directions, respectively. The solver then updates the
values of v inside the unit circle and the process is repeated until a given convergence
criterion is met.

In all our runs M x N was taken to be 50 x 129. The solution was considered
to have converged if the difference in the maximum value of the regular Prandtl-
Meyer function D inside the unit circle between two successive iterations was less
than 5 x 10~6. We never needed more than six iterations in all of our calculations
when the initial guess was taken to be that of a uniform flowfield.

(f) After the solution v inside the unit circle is obtained in the above step, ur (a;> r —
1) for j = 1, N and va(r,, a — n/l - ao) for i = 2,..., M, are computed using
second-order finite difference equations.

(g) Equation (52) is used to find dB(a = 0) in relation to the free stream direction.
Equation (46) then determines the body angle 6b(u) and the body is constructed
using Eqs. (47) and (48). The trapezoid rule was used for numerically evaluating the
integrals in Eqs. (46), (47), and (52).

(h) The solution of the elliptic equation (37) also determines v{r = 0) and hence
the Mach number M(r — 0) (see Eq. (8)). Since the origin of the circle plane
corresponds to infinity in the physical plane (see Eq. (15)), the computed free stream
Mach number M= M(r = 0).
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Even though the exact solution of Eq. (37) will give the exact airfoil, errors are
introduced in the numerical approximations. The major source of error is in step
(f). This could be improved by using higher-order finite difference approximations
for ur.

4.2. Results. In this section we present a series of results using our method. The
program was run on IBM 3081 in single precision and the computation time was
approximately 5 minutes in the cases discussed below. Here we generate pressure
distributions over a series of closed airfoils at a given free stream Mach number
Moo and angle of attack doo by using an Euler code (flo52s written by A. Jameson,
E. Turkel, and M. Salas). This pressure distribution is then used in our method to
generate the airfoil and to find the computed free stream Mach number, M^, and
the computed angle of attack, 0^. The diagnostics that we monitor as a measure
of accuracy of our method are E(M) = \Moo - M^\, E(9oo) = |#oo - E(6B) =
max |0B(s,)- 6cB{Sj)|, .y gap = |y(s = 0)- y(s = 1)|, and xgap = |x($ = 0)-x(s = 1)|.

Upper side >|< Lower side »|

Fig. 2. Pressure distribution over a 12% thick Kutta airfoil from
Euler solution (flo52s) at Moo = 0.6 and a = 0.
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x gap and y gap (normalized by chord length) measure the gap at the trailing edge of
the airfoil and 6b refers to the body angle. The above diagnostics are a measure of
numerical sources of error in our method and should ideally be zero.

We present a series of results. Fig. 2 shows the Euler pressure distribution over
a 12% thick Kutta airfoil at free stream Mach number M00 = 0.6 and doo = 0.
The application of the above method then generates the body and also gives the
computed values of the free stream Mach number, A/£,, and the angle of attack, 0^.
The number of iterations (see Sec. 4.1) required to converge to the solution using
the linear elliptic solver was only six. Fig. 3 compares the designed airfoil with the
original airfoil. We find that the agreement is excellent. Our method gives the free
stream Mach number = 0.60033 and the angle of attack 6^ = 0.00174 radian
(0.1 degree). We get the following values of our error diagnostics: E(M) = 0.00033,
Eifioo) = 0.00174, E{0b) = 0.00672, xgap = 0.00000, and ygap = 0.00133. Notice
that the designed airfoil is not closed and the gap is within about 1% of the airfoil
thickness. In general, closure cannot be expected unless explicitly imposed either by
some iterative or exact method. (We will report on the design of a closed airfoil
in the near future.) The source of these errors is numerical as has been discussed
before.

.1

.4 .6
Airfoil Kutta

+ + Designed Airfoil

Fig. 3. Comparison of the 12% thick Kutta airfoil and the airfoil
designed from the Euler pressure distribution of Fig. 2.

A more important quantity is the body angle which is likely to suffer maximum
error near the leading edge since the body angle is a rapidly varying function of
arclength there. Fig. 4 compares the body angle of the original airfoil with that of
the designed airfoil as a function of arclength, and Fig. 5 compares the same in the
leading edge region. Again notice that the agreement is excellent. The error in the
body angle is 0(1O~4) everywhere except near the leading edge where the error is
maximum and is given by E(6B) = 0.00672 radian.

Next we show the results based on the same airfoil but with an angle of attack.
Fig. 6 shows the pressure distribution at = 0.5 and angle of attack = 2.0 degrees.
The number of iterations required to design by our method was five. In Fig. 7 we
compare the designed airfoil with the exact airfoil and find that the agreement is
again excellent. We find the computed free stream Mach number = 0.50005 and
the angle of attack 6^ = 2.05 degrees. The values of the error diagnostics in this
case are E(M) = 0.00005, E{6<*,) = 0.00087, E{6B) = 0.009, xgap = 0.00043, and
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Body Angle

in Radian
5.0

— Body angle of the Kutta airfoil
+ + Body angle of the airfoil designed from pressure distribution of fig. 2.

Fig. 4. Comparison of the body angle of the designed airfoil and of
the Kutta airfoil as a function of arclength of the airfoil. The input
pressure distribution of the designed airfoil is shown in Fig. 2.

y gap = 0.00010. The gap at the trailing edge is within 0.01% of the thickness of the
airfoil which is negligibly small. Fig. 8 compares the computed and exact values of
body angle as a function of arclength. Fig. 9 compares the same in the leading edge
region. Here again we find the error in the body angle is <2(10~4) everywhere except
near the leading edge where it is maximum and is given by E{6b) — 0.009.

5. Conclusions. A new method for solving the inverse problem has been presented.
The key point is that knowing the pressure distribution, the body is known in the
potential plane. We find the body in the physical plane by solving one Dirichlet-type
nonlinear boundary value problem. It is worth noting that, from a mathematical
point of view, this problem is similar to the analysis (direct) problem, except that
in the latter case one usually solves a Neumann-type problem. For computational
simplicity, the potential plane was mapped into the interior of the unit circle and the
problem was solved there.
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Body Angle

in Degrees

250

0.4 0.5 0.6

% Arclength

 Body angle of the Kutta airfoil in the leading edge region
+ + Body angle of the designed airfoil in the leading edge region

Fig. 5. Comparison of the body angle of the designed airfoil and of
the Kutta airfoil as a function of arclength of the airfoil in the leading

edge region. The input pressure distribution of the designed airfoil is
shown in Fig. 2.

The solution to the inverse problem exists only if the computed free stream Mach
number is the same as the Mach number corresponding to the input pressure dis-
tribution. In our formulation, the free stream Mach number is determined by the
solution and thus the generation of an airfoil is always guaranteed. The computed
Mach number then determines whether the input pressure distribution has a solution
or not. In either case we can compute the pressure distribution on the designed airfoil
at any Mach number we wish. This is an important feature of our method.

The method presented here is based on a mathematically exact formulation, and
the only error is from numerical approximation. The numerical errors introduce a
gap at the trailing edge. We are developing a closure procedure to obtain a specified
gap (zero gap for closed airfoil) at the trailing edge. An obvious approach would be
to use our method in an iterative mode.
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Upper side »U Lower side -

Fig. 6. Pressure distribution over a 12% thick Kutta airfoil from
Euler solution (flo52s) at Moo = 0.5 and a = 2 degrees.

  Airfoil Kutta

+ + Designed Airfoil

Fig. 7. Comparison of the 12% thick Kutta airfoil and the airfoil
designed from Euler pressure distribution of Fig. 6.

We hope to extend this method to design supercritical airfoils using the ideas of
fictitious gas (Fung et al [9], Yu [40], Sobieczky [29], Sobieczky [30] and references
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Body Angle

in Radian
5.0

Arclength

— Body angle of the Kutta airfoil
+ + Body angle of the airfoil designed from pressure distribution of fig. 6.

Fig. 8. Comparison of the body angle of the designed airfoil and of
the Kutta airfoil as a function of arclength of the airfoil. The input
pressure distribution of the designed airfoil is shown in Fig. 6.

therein, Sobieczky et al [31] for the supersonic region. Also, this method can be
extended to design supercritical airfoils without making any use of fictitious gas.

The author thanks his thesis advisor Professor Lawrence Sirovich for helpful dis-
cussions. I also thank Professor James Glimm and Professor Paul Garabedian for
constructive comments. I am indebted to Professor Marsha Berger for interesting
discussions and for her patient reading and correcting of the manuscript. This work
was supported by the National Aeronautics and Space Administration under Grant
NSG-1617 and the Air Force Office of Scientific Research under Grant AFOSR-83-
0336 at Brown University and by the Applied Mathematical Sciences subprogram
of the Office of Energy Research, U. S. Department of Energy, under Contract No.
DE-AC02-76ER03007 at New York University. This work was initiated at Brown
University and extends results contained in my Ph.D. thesis (Daripa [5]).
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360

0.5

% Arclength

 Body angle of the Kutta airfoil in the leading edge region
+ + Body angle of the designed airfoil in the leading edge region

Fig. 9. Comparison of the body angle of the designed airfoil and of
the Kutta airfoil as a function of arclength of the airfoil in the leading
edge region. The input pressure distribution of the designed airfoil is

shown in Fig. 6.

Appendix A. Derivation of Equations (42) and (51). We briefly derive the expres-
sions for 6a and 6r. 6a can be written as

0a — -f" 0yjlj/a. (Al)

From (la,b) and the mapping function given by (15), we obtain

= K-{D~\va\j/a - urfc), (A2)
dv = -KD~x{ua(j)a + ViVa). (A3)

D and V) in Eqs. (A2) and (A3) are given by

D = <t>l + vi = yvr
Direct substitution of (A2) and (A3) into (Al) results in

6a = Z>-'{(A-' - K)ua<j>ay/a - + Ky/2a)v,}. (A4)
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On the unit circle r = 1,

va = 0, D = 4>i (A5)

which reduces (A4) to
0a — -K~lur on r = 1. (A6)

6r can be written as

@r = Oipffir + 0vy/r. (A7)

Direct substitution of (A2) and (A3) into (A6) and using the fact the mapping (15)
is conformal, we obtain

dr = D-lr-[{(K-lri + Kct>2a)va-(K-1 - K)v,cj>a^a}. (A8)

It can be easily seen from (15) that

y/a = 0, ona = a, = ^- a0 and - a0. (A9)

Then (A7) reduces to

0r = ^W)U=a.. (A10)

Appendix B. Stagnation point estimate of right-hand side of Equation (37). In the
following we determine the nature of singularity of the right-hand side of Eq. (37)
at a stagnation point. From (53) and (60),

M = | °(Q^ as a —► 0, (B1)

I 0(\a — a^l) as a —+ as.
From (14) and (Bl),

0{a4S) as q -> 0,
0(\a — a.s|4) as a —►

We recall from Sec. 3.3.1 that S above refers to 6,/n where 9, is the trailing edge
angle. K(M) (see Eq. (4)) can be expanded in M to give

^ = jl_Z±iyl/4 + <9(M6)J (B3)

where

,B4)

From (Bl) and (B3),

1 - K2 = 1 - R2 + R — ̂  ^ M4 + 0(M6)

= (1 -R2) + ( 0(q4<5) as a —► 0, (B5)
I 0(\a - a^l4) as a -+ as.

AM) = {
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A simple calculation using the mapping function (15) gives the following estimates
as a —► 0 for 6t > 0:

DLm —

\J DL^ =

0 ( ] as a —► 0,

01 aSQ^%

O ( as a —► 0,

O [ -—-—7 ) as a —>
\a - a.

(B6)

(B7)

%/DL^ = 0{ 1) as a —+ 0 or as. (B8)

RHS = ( °^S 2) _ (B9)
I 0((a - a/""

From (B5) and (B8) we obtain the following estimates for the right-hand side (RHS)
of Eq. (37):

as a —► 0,
0((a — as)2) as a —* as.

In arriving at the above estimate, the value of R in equation (B5) has been taken to
be one, which determines the value of the constant c from (B4). The constant c is
then given by

(BIO)

From (B9) we see that the RHS is regular at the front stagnation point. The RHS will
be singular at the front stagnation point if c is taken to be different from that given
by (BIO). However, it is singular at the trailing edge if 0 < 6t < n/2 and regular for
tt/2 < 6t < 2n and 6, = 0. For 0t = 0, estimates in (B2), (B6) to (B8) are of 0(1) as
a —> 0 and hence the RHS remains regular.
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