
 Open access Journal Article DOI:10.1109/9.654908

An exact line search method for solving generalized continuous-time algebraic Riccati
equations — Source link

Peter Benner, Ralph Byers

Institutions: University of Kansas

Published on: 01 Jan 1998 - IEEE Transactions on Automatic Control (IEEE)

Topics: Newton's method, Newton's method in optimization, Riccati equation, Line search and Search algorithm

Related papers:

 On an iterative technique for Riccati equation computations

 Algebraic Riccati equations

 A Schur method for solving algebraic Riccati equations

 The Autonomous Linear Quadratic Control Problem

 The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution

Share this paper:

View more about this paper here: https://typeset.io/papers/an-exact-line-search-method-for-solving-generalized-
23xpsqlv49

https://typeset.io/
https://www.doi.org/10.1109/9.654908
https://typeset.io/papers/an-exact-line-search-method-for-solving-generalized-23xpsqlv49
https://typeset.io/authors/peter-benner-1q5w2zkswp
https://typeset.io/authors/ralph-byers-3kx5bpjtyb
https://typeset.io/institutions/university-of-kansas-2ney4vf2
https://typeset.io/journals/ieee-transactions-on-automatic-control-1ra13n3z
https://typeset.io/topics/newton-s-method-1xabdhq1
https://typeset.io/topics/newton-s-method-in-optimization-t13hzf3b
https://typeset.io/topics/riccati-equation-2fcbjt52
https://typeset.io/topics/line-search-13ucxuyb
https://typeset.io/topics/search-algorithm-2g4xpul7
https://typeset.io/papers/on-an-iterative-technique-for-riccati-equation-computations-3nyid65nod
https://typeset.io/papers/algebraic-riccati-equations-u3flkdhep9
https://typeset.io/papers/a-schur-method-for-solving-algebraic-riccati-equations-32kl3gakkb
https://typeset.io/papers/the-autonomous-linear-quadratic-control-problem-4dtrukm164
https://typeset.io/papers/the-autonomous-linear-quadratic-control-problem-theory-and-53ehy1cve6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-exact-line-search-method-for-solving-generalized-23xpsqlv49
https://twitter.com/intent/tweet?text=An%20exact%20line%20search%20method%20for%20solving%20generalized%20continuous-time%20algebraic%20Riccati%20equations&url=https://typeset.io/papers/an-exact-line-search-method-for-solving-generalized-23xpsqlv49
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-exact-line-search-method-for-solving-generalized-23xpsqlv49
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-exact-line-search-method-for-solving-generalized-23xpsqlv49
https://typeset.io/papers/an-exact-line-search-method-for-solving-generalized-23xpsqlv49

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998 101

An Exact Line Search Method for Solving Generalized

Continuous-Time Algebraic Riccati Equations

Peter Benner and Ralph Byers

Abstract— We present a Newton-like method for solving algebraic

Riccati equations that uses Exact Line Search to improve the sometimes
erratic convergence behavior of Newton’s method. It avoids the problem

of a disastrously large first step and accelerates convergence when Newton
steps are too small or too long. The additional work to perform the line

search is small relative to the work needed to calculate the Newton step.

I. INTRODUCTION

We study the generalized continuous-time algebraic Riccati equa-

tion (CARE)

0 =R(X)

=C
T
QC +A

T
XE + E

T
XA

� (B
T
XE + S

T
C)

T
R
�1

(B
T
XE + S

T
C): (1)

Here A;E;X 2 n�n; B 2 n�m; R = RT 2 m�m; Q =

QT 2 p�p; C 2 p�n; and S 2 p�m: We will assume that

E is nonsingular and R> 0, where M > 0 (M � 0) denotes

positive (semi-) definite matrices M: In principle, by inverting E;

(1) may be reduced to the case E = I: This is convenient for study-

ing convergence behavior of the numerical method presented here

(see Section III). However, when E is ill-conditioned (i.e., nearly

singular), this may introduce instability in numerical computations.

Therefore, the algorithm derived here avoids inverting E:

Often, the desired solution X is stabilizing in the sense that the

eigenvalues of the matrix pencil E � �(A � BR�1(BTXE +

STC) have negative real parts. We denote this by �(E;A �
BR�1(BTXE + STC)) � �: Assuming (E;A;B) strongly

stabilizable and (E;A; C) strongly detectable, such a stabilizing

solution exists and is unique [23]. Throughout this paper, we call

the stabilizing solution X�:

We also use the following notation. The Frobenius norm or Eu-

clidean norm of a matrix M is defined by kMk2F = trace(MTM):

For any symmetric matrix M; we have kMk2F = trace(M2
); and for

any two matrices M and N; trace(MN) = trace(NM): Following

[13], we define each floating point arithmetic operation together with

the associated integer indexing as a flop.

The algebraic Riccati equation (1) is a nonlinear system of equa-

tions. One of the oldest, best studied numerical methods for solving

(1) is Newton’s method [9], [14], [18], [23], [26].

Manuscript received February 12, 1996. This work was supported in part by
the National Science Foundation under Grants INT-8922444, CCR-9404425,
and DMS-9628626 and the Kansas Institute for Theoretical and Computational
Science.

P. Benner was with the University of Kansas, Lawrence, KS 66045 USA.
He is now with Fakultät für Mathematik, Technische Universität, Chemnitz-
Zwickau, 09107 Chemnitz, Germany.

R. Byers is with the Department of Mathematics, University of Kansas,
Lawrence, KS 66045 USA.

Publisher Item Identifier S 0018-9286(98)01176-3.

Algorithm 1 (Newton’s Method for Solving CARE)

1. Choose some initial starting guess X0 = XT
0 :

2. FOR j = 0; 1; 2; � � �
2.1 Kj R�1(BTXjE + STC):

2.2 Solve for Nj in the Lyapunov equation

(A�BKj)
TNjE + ETNj(A�BKj)

= �R(Xj).

2.3 Xj+1 Xj +Nj :

END FOR.

If (E;A; B) is strongly stabilizable, (E;A; C) is strongly detectable,

and X0 is stabilizing, then Algorithm 1 converges to the desired

stabilizing solution X� [18], [23], [26]. Ultimately, convergence is

quadratic. At each step, �(E;A � BKj) �
�; and after the first

step, convergence is monotone. (Algorithm 1 also provides all the

ingredients for a condition estimate of CARE and Nj is an estimate

of the error X� � Xj [7].)

Because of its robustness in the presence of rounding errors, we

prefer to calculate the Newton step explicitly as in Algorithm 1 rather

than to use the mathematically equivalent formulation [9], [18], [23],

[26]

(A�BKj)
T
Xj+1E + E

T
Xj+1(A�BKj)

= �CT
(Q� SR�1ST)C �ET

XjBR
�1
B
T
XjE

which determines Xj+1 directly. The coefficient matrices of the

two Lyapunov equations are the same, but the right-hand sides

are different. Loosely speaking, if the condition number of the

coefficients permits us to solve the Lyapunov equation to (say) k

correct significant digits, and Xj+1 is calculated directly, then its

accuracy is limited to k significant digits. However, in Algorithm 1,

it is the rounding error corrupted Newton step Nj that is limited to k

significant digits. The sum Xj+Nj has roughly k more correct digits

than Xj . The accuracy of Algorithm 1 is ultimately limited only by

the accuracy to which R(Xj) and the sum Xj+Nj are calculated. Of

the many methods for solving Riccati equations, Algorithm 1 usually

squeezes out the maximum possible accuracy [2], [16], [17].

Algorithm 1 is potentially faster (and more accurate) than the

widely used Schur vector method [20]. The break-even point is

between six and eight iterations [9] (assuming that a Bartels–Stewart-

like algorithm [3], [11] is used to solve the Lyapunov equation).

Although Algorithm 1 ultimately converges quadratically, rapid

convergence occurs only in a neighborhood of X�: Automatic stabi-

lizing procedures like those proposed in [1], [27], and [28] may give

choices of X0 that lie far from the solution X�: Sometimes the first

Newton step N0 is disastrously large and many iterations are needed

to find the region of rapid convergence [16], [17]. If the Lyapunov

equation is ill-conditioned it may be difficult to compute an accurate

Newton step, and the exact-arithmetic convergence theory breaks

down. (This signals an ill-conditioned algebraic Riccati equation [7].)

Sometimes rounding errors or a poor X0 cause Newton’s method to

converge to a nonstabilizing solution. For these reasons, Newton’s

method is often limited to defect correction or iterative refinement of

an approximate solution obtained by a more robust method.

Example 1: This example is contrived to demonstrate a disastrous

first step. (A similar example appears in [16] and [17].) For � with

0<� < 1; let A = S = 0; E = C = B = R = I2; and

Q = diag(1;
p
�): The stabilizing solution is X�

= diag(1; �1=4):

Choosing X0 = diag(1; �), we obtain kX� �X0kF �
p
�kX�kF ;

0018–9286/98$10.00 1998 IEEE

102 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998

but kN0kF � 0:51�(1=2): For � = 10
�8; kR(X0)kF � 10

�4

and kR(X1)kF � 10
7. Newton’s method then takes 20 iterations to

reduce kR(Xj)kF back down to 10�4 where it reaches the region

of quadratic convergence.

From the point of view of optimization theory, the Newton step

gives a search direction along which kR(Xj)kF may be (at least

approximately) minimized. The disastrous first step is a step in the

search direction that is too long. The several subsequent steps that

make limited progress are too short.

In this paper we show how to minimize kR(X)kF along the

search direction at little additional cost. This avoids a disastrously

large first step, accelerates convergence when Newton steps are

too small or too long, and restores some robustness to Newton’s

method. The idea is to choose tj > 0 to minimize kR(Xj+1)kF =

kR(Xj+tjNj)kF , i.e., to use an Exact Line Search along the Newton

direction. Line searches along conjugate gradient directions were

used in [10] and [12] to solve (1). Line searches were also used in

the Fletcher–Powell/Davidon’s method proposed in [21]. Section II

shows that the extra cost of doing an Exact Line Search is little more

than the cost of calculating the Newton step Nj in Algorithm 1. In

Section III we prove that the Exact Line Search along the Newton

direction converges quadratically to the stabilizing solution, if the

starting guess X0 is stabilizing. Numerical examples in Section IV

demonstrate that step-size control often saves enough iterations to be

competitive with the Schur vector method. Some final remarks and

conclusions appear in Section V.

II. STEP-SIZE CONTROL BY EXACT LINE SEARCH

Line searches are a well-understood technique in optimization [8].

The approach is to replace Step 2.3 in Algorithm 1 by Xj+1 =

Xj + tjNj , where tj is a real scalar “step length” in the direction of

Nj . The step length is chosen to minimize or approximately minimize

an objective function which, in our case, is kR(Xj + tjNj)k
2
F . The

line search is said to be exact if tj is an exact (as opposed to

approximate) minimizer.

From (1), we obtain

R(Xj + tNj)

= R(Xj) + t((A �BKj)
T
NjE + E

T
Nj(A�BKj))

� t
2
E
T
NjBR

�1
B
T
NjE: (2)

If Vj = ETNjBR
�1BTNjE and Nj is as in Step 2.2 of Algorithm

1, then

R(Xj + tNj) = (1� t)R(Xj)� t
2
Vj : (3)

So, finding tj to minimize kR(Xj+1)kF is equivalent to minimizing

the quartic polynomial

fj(t) = trace(R(Xj + tNj)
2
)

=�j(1� t)
2
� 2�j(1� t)t

2
+ jt

4
(4)

where �j = trace(R(Xj)
2
); �j = trace(R(Xj)Vj); and j =

trace(V 2
j): If j 6= 0, then fj(t) has at most two local minima,

one of which is the global minimum. If j = 0, then fj(t) attains

its global minimum value (zero) at tj = 1. Differentiating fj and

using (3), we obtain

f
0

j(t) =�2 � trace((R(Xj) + 2tVj)R(Xj + tNj))

=�2 � trace((R(Xj) + 2tVj)((1� t)R(Xj)� t
2
Vj)): (5)

Remark 1: There exists a local minimum of fj at some value

of tj 2 [0; 2], since f 0j(0) = �2 � trace(R(Xj)
2
) � 0, and

f 0j(2) = 2 � trace((R(Xj) + 4Vj)
2
) � 0: If R(Xj) 6= 0, i.e., if

Xj is not a solution of (1), then f 0j(0)< 0 and the Newton step

is a descent direction of kR(Xj + tNj)kF . It follows that for the

minimizing tj 2 [0; 2]; we have kR(Xj + tjNj)kF � kR(Xj)kF

and kR(Xj + tjNj)kF = kR(Xj)kF if and only if R(Xj) = 0:

Remark 1 suggests that we modify Algorithm 1 as follows.

Algorithm 2 (Exact Line Search)

1. Choose some initial starting guess X0 = XT
0 :

2. FOR j = 0; 1; 2; � � �

2.1 Kj R�1
(BTXjE + STC):

2.2 Solve for Nj in the Lyapunov equation

(A�BKj)
TNjE + ETNj(A�BKj)

= �R(Xj).

2.3 Vj ETNjBR
�1BTNjE.

2.4 Find a local minimizer tj 2 [0; 2] of

fj(t) using (4).

2.5 Xj+1 Xj + tjNj :

END FOR.

Remark 2: Algorithm 2 finds the solution of scalar Riccati equa-

tions in the first step. Applied to Example 1, one step of the Exact

Line Search reduces kR(Xj)kF by as much as 24 steps of Newton’s

method.

In addition to the work in Algorithm 1, at each

iteration, Algorithm 2 must compute the symmetric matrix

Vj = ETNjBR
�1BTNjE. One way to compute Vj efficiently is

as follows. Before starting the iteration, we compute a Cholesky

factorization of R;R = LTL and store the product B̂ = BL�1.

Using B̂, we can obtain Vj from Vj = (ETNjB̂)(ETNjB̂)
T

which requires 5n2m + nm flops. In case E = I; this reduces to

3n2m + nm flops. In many applications, m � n; in which case

the computation of this matrix is cheap relative to the cost of the

Newton step Nj . Computing the coefficients �j ; �j ; j of fj and

finding the minimizing tj contributes 3n inner products and some

scalar operations, which is negligible compared to the O(n3) flops

used by matrix multiplications and Lyapunov equation solutions.

Using work estimates from [11] and [13] for solving the Lyapunov

equation, we can conclude that for m = n; each iteration step of

Algorithm 2 does less than 10% more work if E = I and less than

5% more work if E 6= I: This comparison becomes more favorable

as m decreases relative to n:

III. CONVERGENCE

Algorithm 2 casts the nonlinear equation (1) as a nonlinear

least squares problem. The convergence theory for this approach

is well known and largely satisfactory (for example, see [8, Sec.

6.5]). However, convergence—even convergence to a solution—is

not sufficient. Often it is the symmetric stabilizing solution that is

required. Other solutions can be transformed back to the stabilizing

solution through a process of eigenvalue ordering [9], but it is

preferable to get the stabilizing solution in the first place. In this

section, we show that under certain assumptions, Algorithm 2 has

guaranteed quadratic convergence from a stabilizing starting guess to

the stabilizing solution.

By assumption, E is nonsingular, so we may rewrite (1) as

R(X) = ~R(~X) = ~F + ~A
T ~X + ~X ~A� ~X ~G ~X (6)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998 103

where

~A =E
�1

(A�BR
�1
S
T
C); ~F = C

T
(Q� SR

�1
S
T
)C

~B =E
�1
B; ~G = ~BR

�1 ~B
T
; ~X = E

T
XE:

It is easy to verify that ~Xj and ~R(~Xj) are the sequences of

approximate solutions and residuals produced by Algorithm 2 applied

to (6) with starting guess ~X0. Note that because E is nonsingular, the

boundedness, convergence (or lack of it), and rate of convergence of

the two sequences Xj and ~Xj are identical and �(E;A � BKj) �
� if and only if ~A� ~G ~Xj is stable. The residual satisfies ~R(~Xj) =

R(Xj), and X� satisfies R(X�) = 0 if and only if ~X� = ETX�E

satisfies ~R(~X�) = 0. Note further that the sequence of step sizes

tj produced by Algorithm 2 is equal in both cases. The coefficient

matrix ~G = ~BR�1 ~BT is symmetric positive semidefinite because by

assumption, R is symmetric positive definite.

In Remark 1, it was observed that there exists a local minimizer of

kR(Xj + tNj)kF in the interval [0; 2]: The following lemma shows

that the iterates ~Xj + tj ~Nj are stabilizing if the starting guess ~X0

is stabilizing, and tj 2 [0; 2]. We can thus consider [0; 2] to be the

“canonical” search interval.

Lemma 3: If ~G � 0 and ~A � ~G ~Xj is stable, then for all

t 2 [0; 2]; ~A � ~G(~Xj + t ~Nj) is also stable.

Proof: The Newton Step ~Nj is determined by

(~A� ~G ~Xj)
T
(~Xj +

~Nj) + (~Xj +
~Nj)(

~A� ~G ~Xj)

= � ~F � ~Xj
~G ~Xj :

Subtracting this from ~R(~X�) = 0 and subtracting ~Xj
~G ~X�+ ~X� ~G ~Xj

on both sides yields

(~A� ~G ~Xj)
T ~X

�

� (~Xj+
~Nj) + ~X

�

� (~Xj+
~Nj) (~A� ~G ~Xj)

= (~X
�

� ~Xj)
~G(~X

�

� ~Xj): (7)

Using a modified version of Lyapunov’s theorem [19, p. 447] (7)

together with the stability of ~A � ~G ~Xj and ~G � 0 implies
~X� � (~Xj +

~Nj) � 0. Rearranging (7), we obtain

(~A� ~G(~Xj + t ~Nj))
T
(~X
�

� (~Xj +
~Nj))

+ (~X
�

� (~Xj +
~Nj))(

~A� ~G(~Xj + t ~Nj))

= (~X
�

� (~Xj + t ~Nj))
~G(~X

�

� (~Xj + t ~Nj))

+ t(2� t) ~Nj
~G ~Nj =: W: (8)

Since t 2 [0; 2]; the right-hand side W in (8) is positive semidefinite.

Now suppose ~A � ~G(~Xj + t ~Nj) has an eigenvalue � with

Re(�) � 0 and corresponding eigenvector z 6= 0, i.e.,

(~A� ~G(~Xj + t ~G ~Nj))z = �z: (9)

Multiply (8) from the left by zH and from the right by z: Then we

obtain

2 � Re(�)z
H
(~X
�

� (~Xj +
~Nj))z = z

H
Wz: (10)

The left-hand side of (10) is nonpositive since ~X�� (~Xj +
~Nj) � 0

and Re(�) � 0: As W is positive semidefinite, the right-hand side

of (10) is nonnegative and it follows that zHWz = 0: Thus

z
H
(~X
�

� (~Xj + t ~Nj))
~G(~X

�

� (~Xj + t ~Nj))z = 0

and since ~G � 0; this implies ~G(~X� � (~Xj + t ~Nj))z = 0, or,

equivalently, ~G ~X�z = ~G(~Xj+ t ~Nj)z: From (9) we therefore obtain

�z = (~A� ~G(~Xj+t ~Nj))z = (~A� ~G ~X�)z: Hence, � is an eigenvalue

of ~A� ~G ~X� which contradicts the stability of ~A� ~G ~X�:

The Lyapunov operator corresponding to the Lyapunov equations

in Step 2.2 of Algorithm 2 is defined by ~
j(Z) = (~A� ~G ~Xj)
TZ +

Z(~A� ~G ~Xj) for Z 2
n�n and j = 1; 2; � � � : A corollary of Lemma

3 is that with a stabilizing starting guess, Algorithm 2 cannot fail due

to a singular Lyapunov operator.

Corollary 4: If ~X0 is stabilizing, and Algorithm 2 is applied to

(6), then the Lyapunov operator ~
j in Step 2.2 is nonsingular for all

j, and the sequence of approximate solutions ~Xj is well defined.

We will also need the following technical characterization of

controllability.

Lemma 5: Suppose that A 2
n�n; B 2

n�m; R 2
m�m; and

R is symmetric positive definite. The pair (A;B) is controllable if

and only if the only matrix Y = Y H satisfying Y BR�1BTY = 0

and ATY + Y A � 0 is Y = 0.

Proof: We will prove the contrapositive of the statement in

Lemma 5: the pair (A;B) is uncontrollable if and only if there exists

Y = Y H
6= 0 such that Y BR�1BTY = 0 and AT Y + Y A � 0.

If (A;B) is uncontrollable, then there exists a left eigenvector w

of A that lies in the left null space of B. Let �r be the real part

of the corresponding eigenvalue of A. If Y = sign(�r)ww
H , then

Y BR�1BTY = wwHBR�1BTwwH = 0 and AT Y + Y A =

2j�rjY = 2j�rjww
H is positive semidefinite.

For the converse, assume that there exists a symmetric matrix

Y 6= 0 such that AT Y + Y A � 0 and Y BR�1BTY = 0. We will

show that (A;B) is uncontrollable by constructing a left eigenvector

of A belonging to the left null space of B.

By choosing an appropriate orthonormal basis, we may arrange

that A; Y; and BR�1BT take the form

BR
�1
B
T
=

G11 0 0

0 0 0

0 0 0

; Y =

0 0 0

0 Y22 0

0 0 0

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

where G11 2
h�h and Y22 2

k�k are nonsingular. The assump-

tion Y 6= 0 implies that k> 0. However, it is possible that either

h = 0 or n� h� k = 0, in which case the corresponding rows and

columns do not appear. In this basis, ATY + Y A takes the form

A
T
Y + Y A =

0 AT21Y22 0

Y22A21 AT22Y22 + Y22A22 Y22A23

0 AT23Y22 0

:

By hypothesis, this matrix is positive semidefinite, so Y22A21 = 0

and Y22A23 = 0. It follows from the nonsingularity of Y22 that

A21 = 0 and A23 = 0.

Let w2 2
k be a left eigenvector of A22. Define w 2

n as

w = [w1; w2; w3] where w1 = 0 2
h and w3 = 0 2

n�h�k. The

vector w is a left eigenvector of A belonging to the left null space

of B:

As seen in Remark 1, the sequence of residuals ~R(~Xj) produced by

Algorithm 2 is monotonically decreasing and, in particular, bounded.

The next lemma shows that boundedness carries over to the iterates
~Xj also.

Lemma 6: Suppose that ~Xj ; j = 1; 2; 3; � � � is a sequence of

symmetric n-by-n matrices such that ~R(~Xj) is bounded. If (~A; ~B)

is a controllable pair, then the sequence ~Xj is bounded.

Proof: We will prove the contrapositive: if ~Xj is unbounded,

then (~A; ~B) is not controllable. Without loss of generality we may

assume that limj!1 k ~XjkF = 1. (If not, we may consider a

subsequence for which this assertion holds.) Define �j = k ~XjkF

and ~Yj = ~Xj=�j : The ~Yj ’s are bounded, so there is a convergent

subsequence which we may assume without loss of generality is the

whole sequence. Let ~Y = limj!1
~Yj . Note that ~Y 6= 0. From

definition (6), we have

1

�j
(~F � ~R(~Xj)) +

~A
T ~Yj + ~Yj ~A = �j ~Yj ~BR

�1 ~B
T ~Yj : (11)

104 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998

Because ~R(~Xj) is bounded, the first term on the left-hand side of (11)

tends to zero as j !1. The second term approaches the finite limit
~AT ~Y + ~Y ~A. From the right-hand side, it is clear that this is a limit

of positive semidefinite matrices and hence is positive semidefinite.

Dividing (11) by �j and letting j !1 gives ~Y ~BR�1 ~BT ~Y = 0: It

follows from Lemma 5 that (~A; ~B) is uncontrollable.

We are now ready to prove that Algorithm 2 reduces the residual
~R(~Xj) [and hence R(Xj)] asymptotically to zero if the computed

step sizes are bounded away from zero.

Theorem 7: If (~A; ~B) is a controllable pair, and the sequence

of step sizes tj computed by Algorithm 2 is uniformly bounded

from below by tL> 0; then the residual norms k ~R(~Xj)kF decrease

monotonically to zero and cluster points of the sequence ~Xj are

solutions of the algebraic Riccati equation (1).

Proof: Lemma 6 shows that the sequence of approximate roots
~Xj is bounded. Consequently, the steps tj ~Nj are also bounded. Here
~Nj = ETNjE, and tj is the step size computed by minimizing
~fj(t) = k ~R(~Xj + t ~Nj)k

2
F : The tj 2 [0; 2] also form a bounded

sequence, and since we assumed 0<tL � tj for all j; the ~Nj ’s

are bounded, too. Select a subsequence ~Xj of the ~Xj’s such that

X̂ = limk!1
~Xj ; t̂ = limk!1 tj ; and N̂ = limk!1

~Nj

exist. Note that the residual norms k ~R(~Xj)kF are monotonically

decreasing, so they approach a limit and hence

k ~R(X̂ + t̂N̂)kF = k ~R(X̂)kF : (12)

Therefore, the coefficients �j ; �j ; and j in (4) approach limits

and the minimum value of the polynomial f̂(t) = k ~R(X̂ + tN̂)k2F
is the limit of the minimum values of the ~fj ’s, i.e., we have

limk!1 fj (tj) = f̂(t̂) � f̂(0): However, using (12), we obtain

f̂(0) = k ~R(X̂)kF = k ~R(X̂ + t̂N̂)kF = f̂(t̂): It follows that

f̂ 0(0) = 0: But as observed in Remark 1, f̂ 0(0) = �2k ~R(X̂)k2F :

Thus, ~R(X̂) = 0:

In summary, we have the following convergence result for New-

ton’s method with Exact Line Search.

Theorem 8: Suppose (~A; ~B) defines a controllable matrix pair. If

Algorithm 2 is applied to the algebraic Riccati equation (6) with

a stabilizing starting guess ~X0 and the step sizes tj are bounded

away from zero, then ~X� = limj!1
~Xj exists and is the stabilizing

solution of (6).

Remark 9: The above convergence result relies on the fact that

tj � tL for all j and a given constant tL> 0: We can modify

Algorithm 2 such that the step size is set to one if tj drops below a

prescribed (small) constant. By (7) it is clear that the so-defined new

iterate Xj+1 = Xj + Nj satisfies X�

� Xj+1. We can now apply

the Newton iteration (Algorithm 1) with the “starting guess” Xj+1

and use the standard convergence theory for Newton’s method [18],

[23], [26] to show that iterates produced by this hybrid algorithm

converge to the stabilizing solution of (1).

In our numerical experiments, very small step sizes occurred only

at the very beginning of the iteration if the starting guess already

yielded a residual norm within the order of the limiting accuracy. In

such a case, neither Newton’s method nor the Exact Line Search can

be expected to improve the accuracy of the approximate solution of

(1) any further.

Algorithm 2 inherits its quadratic convergence from Newton’s

method [24]. Suppose that ~Xj is within the region of quadratic

convergence of Newton’s method. In this case [23]

~Nj = ~X
�

� ~Xj +O(k ~X
�

� ~Xjk
2

F) (13)

and

k ~R(~Xj + ~Nj)kF = O(k ~X
�

� ~Xjk
2

F): (14)

Let ~
(Z) = (~A� ~G ~X�)TZ + Z(~A� ~G ~X�); Z 2
n�n: Then the

residual produced by Algorithm 2 satisfies

~R(~Xj + tj ~Nj) = ~R(~X
�

+ (~Xj + ~Nj � ~X
�

) + (tj � 1) ~Nj)

= ~
(~Xj + ~Nj � ~X
�

) + (tj � 1)~
(~Nj)

� ((~Xj + ~Nj � ~X
�

) + (tj � 1) ~Nj)

� ~G((~Xj + ~Nj � ~X
�

) + (tj � 1) ~Nj):

Taking norms, using (13), and recognizing that jtj � 1j � 1 gives

k ~R(~Xj + tj ~Nj)kF � 2jtj � 1jk ~X
�

� ~XjkF k ~A� ~G ~X
�

kF

+O(k ~Xj � ~X
�

k
2

F): (15)

Recall that tj 2 [0; 2] is chosen to minimize k ~R(~Xj + t ~Nj)kF , so

(14) implies

k ~R(~Xj + tj ~Nj)kF �k ~R(~Xj + ~Nj)kF = O(k ~X
�

� ~Xjk
2

F): (16)

It follows from (15) and (16) that jtj�1j = O(k ~X�

� ~XjkF) which

implies that tj � 1 in the neighborhood of the stabilizing solution.

Hence

k ~X
�

� ~Xj+1kF �k ~X
�

� (~Xj + ~Nj)kF + j1� tj jk ~NjkF

=O(k ~X
�

� ~Xjk
2

F)

which proves the quadratic convergence of Algorithm 2.

The following theorem summarizes the convergence theory.

Theorem 10: If (E�1A;E�1B) is controllable and X0 = XT
0 is

stabilizing in the sense that �(E;A�BK0) �
�; then the sequence

of approximate solutions Xj produced by the modified Algorithm

described in Remark 9 converges quadratically to the stabilizing

solution X�, at each step, �(E;A � BKj) �
�, and the residual

norms kR(Xj)kF converge monotonically and quadratically to zero.

The theorem is more general than the one stated in [23] since

it does not require X0 to be positive semidefinite. In contrast

to Newton’s method, the iterates Xj are not necessarily positive

semidefinite and they do not necessarily converge monotonically (in

terms of definiteness). On the other hand, the theorem needs the

strong hypothesis of controllability. Numerical experiments suggest

that this can be weakened to stabilizability, but as of this writing we

do not have a proof.

IV. NUMERICAL EXAMPLES

Newton’s Method (Algorithm 1) and the Exact Line Search (Algo-

rithm 2) were implemented as MATLAB [22] functions. We did not

use the hybrid algorithm proposed in Remark 9. All computations

were done under MATLAB Version 4.2a [22] on Hewlett Packard

Apollo series 700 computers under IEEE double precision and

machine precision " � 2:2204 � 10�16: We compared the algorithms

on the examples in the benchmark collection of CARE’s [6], several

randomly generated examples, and some contrived examples [5].

We observed the following.

1) In examples where Newton’s method is much more expensive

than the Schur vector method (Examples 2 and 3), the Exact

Line Search was competitive and sometimes faster than the

Schur vector method [20].

2) When used as defect correction or iterative refinement method,

it sometimes even improves on Newton’s method (see Example

4).

In most cases, when used as defect correction method, the com-

puted step sizes are tj � 1; so the Exact Line Search behaves like

Newton’s method. This is expected from the discussion of quadratic

convergence in Section III. For more detailed numerical studies and

other examples see [5].

Exact Line Search, and the Schur vector method as proposed in

[4], [5], and [20], have been implemented on vector and parallel

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998 105

Fig. 1. Example 2, � = 1:

Fig. 2. Example 2, � = 10
�6

:

computers using block-oriented algorithms [25]. The results reported

there suggest that on computers with advanced architectures, the

Exact Line Search and even Newton’s method compare favorably

to the Schur vector method.

Example 2 [6, ex. 14], [2, ex. 2]: Here, A depends upon a param-

eter �: If � ! 0; the system approaches one which is unstabilizable

and a conjugate complex pair of closed-loop eigenvalues approaches

the imaginary axis. The system matrices are given by

A =

�� 1 0 0

�1 �� 0 0

0 0 � 1

0 0 �1 �

; B = C
T
=

1

1

1

1

E = I4; Q = R = [1]; S = 0:

Stabilizing starting guesses X0 were generated by the method de-

scribed in [1], [14], and [27]. Figs. 1 and 2 show the behavior of the

algorithms for � = 1 and � = 10�6. The initial slow convergence

behavior of Newton’s method grows worse as � ! 0, but the Exact

Line Search neatly avoids the problem. As opposed to Newton’s

method, the Exact Line Search needs no more than six to eight

iterations and is therefore competitive with or even cheaper than the

Schur vector method.

Example 3 [6, ex. 15], [20, ex. 4]: This example is frequently

used to test CARE solution methods. It is a position and velocity

control model of a string of N high-speed vehicles. We have

n = 2N � 1;m = N; and p = N � 1: The nonzero

entries in the transition matrix A are a2N�1;2N�1 = 1 and for

i = 1; � � � ; N � 1; a2i�1;2i�1 = a2i;2i+1 = �1; and a2i;2i�1 = 1:

106 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998

Fig. 3. Example 4, n = 40:

TABLE I
EXAMPLE 3

The other system matrices are E = R = C = In; S = 0; B =

diag(1; 0; 1; 0; � � � ; 1; 0; 1); and Q = diag(0;10; 0; 10; � � � ; 0; 10; 0).

Stabilizing starting guesses X0 were generated by the method

described in [1], [14], and [27]. Table I shows the number of iterations

and the Frobenius norm of the last absolute and relative residual for

some values of n: (X̂ denotes the computed approximation to X�:)

Exact Line Search is somewhat faster than the Schur vector method

while Newton’s method slows down as n increases. In agreement

with our observations, timings on vector and parallel computers in

[25] indicate that the Exact Line Search requires about two-thirds of

the time of the Schur vector method.

Example 4: One of the situations in which defect correction or

iterative refinement [16], [17] has the most to offer is when the Riccati

equation is ill-conditioned. Rounding errors make it unlikely that any

Riccati solver will produce much accuracy, but with its excellent

structure-preserving rounding error properties, Newton’s method is

likely to squeeze out as much accuracy as possible [2], [16], [17].

This example is contrived to be highly ill-conditioned. Let e 2 n

denote the vector of ones, and n = m = p; then the CARE (1) is

given by

E =R = I; A = S = 0; B = 10
3
I

C = I �
2

n
ee
T
; Q = diag

1

91
;
1

92
;
1

92
;
1

93
;
1

93
; � � � :

The exact stabilizing solution is given by X�

= 10
�3CTQC:

We obtained the starting guess as X0 = (X + XT
)=2 where X

is the “solution” of (1) computed by the Schur vector method as

discussed in [2]. Observe in Figs. 3 and 4 that Newton’s method

increases the initial residual norm by several orders of magnitude.

The graph of relative errors closely matches the graph of residuals.

Using the CARE condition number K+ proposed in [7] and [15]

we obtain K+
� 1:8 � 109 for n = 40 and K+

� 4:2 � 1011 for

n = 50: Rounding errors made while forming CTQC are sufficient to

change the smaller eigenvalues and corresponding invariant subspaces

of the solution X� and the closed-loop system A�BR�1BTX� by

over 100%. The closed-loop poles are so close to the imaginary axis

that the symmetrized Schur vector solution for n = 50 did not appear

to be stabilizing as it should have been; one of the smaller eigenvalues

of A�BR�1BTX0 computed by MATLAB was of the wrong sign.

The Exact Line Search preserves inertia, so for n = 50 it did not

converge to a stabilizing solution either, while for Newton’s method

two more eigenvalues cross the imaginary axis.

Notice in Fig. 3 that for n = 40, refining the Schur vector solution

reduced the residual down to machine precision. In both cases, the

Exact Line Search required about two-thirds of the computational

cost of Newton’s method to reach the limiting accuracy. This shows

that also for defect correction, the Exact Line Search does in some

cases compare favorably to Newton’s method. In both examples, the

first Newton step is a disaster.

V. CONCLUSIONS

We have studied an Exact Line Search method based on Newton’s

method for solving (generalized) continuous–time algebraic Riccati

equations. It avoids Newton’s method’s problem with disastrously

large first steps, and it accelerates convergence when Newton steps

are too small or too long. Numerical experiments verify that it

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998 107

Fig. 4. Example 4, n = 50:

sometimes significantly reduces the number of iterations. Theoretical

convergence properties are similar to Newton’s method. Used as a

defect correction method or for iterative refinement, it has the ability

to obtain high accuracy. The Exact Line Search adds less than 10%

to the cost of a Newton iteration, i.e., the additional work to perform

the line search is small relative to the work needed to calculate the

Newton step.

A Fortran 77 implementation of the Exact Line Search method

will complement Newton’s method in a forthcoming release of the

Subroutine Library in Control and Systems Theory (SLICOT) [29].

ACKNOWLEDGMENT

The authors wish to thank S. G. Nash for his helpful comments

on the proof for quadratic convergence of the Exact Line Search

method and Alan J. Laub for providing the MATLAB function care

implementing the Schur vector method as discussed in [2].

REFERENCES

[1] E. S. Armstrong, “An extension of Bass’ algorithm for stabilizing linear
continuous constant systems,” IEEE Trans. Automat. Contr., vol. AC-20,
pp. 153–154, 1975.

[2] W. Arnold, III and A. Laub, “Generalized eigenproblem algorithms
and software for algebraic Riccati equations,” Proc. IEEE, vol. 72, pp.
1746–1754, 1984.

[3] R. Bartels and G. Stewart, “Solution of the matrix equation AX +

XB = C: Algorithm 432,” Comm. ACM, vol. 15, pp. 820–826, 1972.
[4] P. Benner and R. Byers, “Step size control for Newton’s method applied

to algebraic Riccati equations,” in Proc. Fifth SIAM Conf. Appl. Lin.

Alg., Snowbird, UT, J. Lewis, Ed. Philadelphia, PA: SIAM, 1994, pp.
177–181.

[5] , “Newton’s method with exact line search for solving the al-
gebraic Riccati equation,” Fakultät für Mathematik, TU Chemnitz-
Zwickau, 09107 Chemnitz, FRG, Tech. Rep. SPC 95–24, 1995; available
as SPC95_24.ps by anonymous ftp from ftp.tu-chemnitz.de, direc-
tory/pub/Local/mathematik/Benner.

[6] P. Benner, A. Laub, and V. Mehrmann, “A collection of benchmark
examples for the numerical solution of algebraic Riccati equations
I: Continuous-time case,” Fakultät für Mathematik, TU Chemnitz-
Zwickau, 09107 Chemnitz, FRG, Tech. Rep. SPC 95-22, 1995.

[7] R. Byers, “Numerical condition of the algebraic Riccati equation,”
Contemporary Math., vol. 47, pp. 35–49, 1985.

[8] J. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Op-

timization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-
Hall, 1983.

[9] L. Dieci, “Some numerical considerations and Newton’s method re-
visited for solving algebraic Riccati equations,” IEEE Trans. Automat.

Contr., vol. 36, pp. 608–616, 1991.
[10] L. Dieci and R. D. Russell, “Some iterative methods for solving

algebraic Riccati equations,” Georgia Inst. Technol., School Math.,
Atlanta, GA, Tech. Rep. 091389-001, 1989.

[11] J. Gardiner, A. Laub, J. Amato, and C. Moler, “Solution of the Sylvester
matrix equation AXB + CXD = E;” ACM Trans. Math. Software,

vol. 18, pp. 223–231, 1992.
[12] A. Ghavimi, C. Kenney, and A. Laub, “Local convergence analysis of

conjugate gradient methods for solving algebraic Riccati equations,”
IEEE Trans. Automat. Contr., vol. 37, pp. 1062–1067, 1992.

[13] G. Golub and C. Van Loan, Matrix Computations, 2nd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1989.

[14] S. Hammarling, “Newton’s method for solving the algebraic Riccati
equation,” Nat. Phys. Lab., Teddington, Middlesex TW11 0LW, U.K.,
NPL Rep. DITC 12/82, 1982.

[15] C. Kenney and G. Hewer, “The sensitivity of the algebraic and differen-
tial Riccati equations,” SIAM J. Contr. Optim., vol. 28, pp. 50–69, 1990.

[16] C. Kenney, A. Laub, and M. Wette, “A stability-enhancing scaling
procedure for Schur-Riccati solvers,” Syst. Contr. Lett., vol. 12, pp.
241–250, 1989.

[17] , “Error bounds for Newton refinement of solutions to algebraic
Riccati equations,” Math. Contr., Signals, Syst., vol. 3, pp. 211–224,
1990.

[18] D. Kleinman, “On an iterative technique for Riccati equation com-
putations,” IEEE Trans. Automat. Contr., vol. AC-13, pp. 114–115,
1968.

[19] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed.
Orlando, FL: Academic, 1985.

[20] A. Laub, “A Schur method for solving algebraic Riccati equations,”
IEEE Trans. Automat. Contr., vol. AC-24, pp. 913–921, 1979; see also
Proc. 1978 Conf. Decision Contr., pp. 60–65.

[21] F. Man, “The Davidon method of solution of the algebraic matrix Riccati
equation,” Int. J. Contr., vol. 10, pp. 713–719, 1969.

[22] MATLAB. Natick, MA: The MathWorks, 1984–1994.
[23] V. Mehrmann, “The autonomous linear quadratic control problem,

theory and numerical solution,” no. 163 in Lecture Notes in Control

and Information Sciences. Heidelberg: Springer-Verlag, July 1991.
[24] S. Nash, private communication, 1994.
[25] E. Quintana and V. Hernández, Parallel Algorithms for Solving Alge-

braic Riccati Equations. 1996.
[26] N. Sandell, “On Newton’s method for Riccati equation solution,” IEEE

Trans. Automat. Contr., vol. AC-19, pp. 254–255, 1974.
[27] V. Sima, “An efficient Schur method to solve the stabilization problem,”

IEEE Trans. Automat. Contr., vol. AC-26, pp. 724–725, 1981.
[28] A. Varga, “On stabilization methods of descriptor systems,” Syst. Contr.

Lett., vol. 24, pp. 133–138, 1995.
[29] “Working group on software (WGS),” SLICOT Mark 3, to be published;

http://www.win.tue.nl/wgs/slicot.html.

