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AN EXACT PRIMAL-DUAL PENALTY METHOD APPROACH

TO WARMSTARTING INTERIOR-POINT METHODS FOR

LINEAR PROGRAMMING

HANDE Y. BENSON AND DAVID F. SHANNO

Abstract. One perceived deficiency of interior-point methods in comparison
to active set methods is their inability to efficiently re-optimize by solving
closely related problems after a warmstart. In this paper, we investigate the
use of a primal-dual penalty approach to overcome this problem. We prove
exactness and convergence and show encouraging numerical results on a set of
linear and mixed integer programming problems.

1. Introduction

In this paper, we consider the re-optimization of linear programming problems
(LPs) of the form

(1)
maximize cTx

subject to Ax ≤ b

x ≥ 0,

where x ∈ R
n are the decision variables, and c ∈ R

n, A ∈ R
m×n, b ∈ R

m are the
problem data. The data, especially c and b, are frequently subject to change, so it
may be necessary to solve a series of closely related optimization problems. Engi-
neering problems with changing specifications and business problems with chang-
ing market prices and demand are examples of such situations. In the context of
a branch-and-bound algorithm to solve problems with binary variables, even the
lower bound on x can change. Other approaches for mixed integer programming
may require the addition of new constraints or variables before resolving a growing
master problem.

If the initial problem is large-scale and the solution time considerable, it is rea-
sonable to expect that solving the rest of the problems in the series will require
a similar amount of effort. However, it is reasonable to also expect that if the
change in the problem data is small enough, the change in the optimal solution
will be small. Warmstarting is the use of information obtained during the solution
of the initial problem to solve the subsequent perturbed problems. When no such
information is used, the new problem is solved from a coldstart.

In this paper, we consider the issue of warmstarting when using an interior-
point method. We will focus here on the algorithm implemented in the software
loqo [22], but the general deficiency of interior-point methods with respect to
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warmstarting is well-known and documented. To summarize, the main issue is that
the solution of the initial problem is on the boundary and well-centered, but when
the problem is perturbed, the old solution can be still close to the boundary but
badly centered. Because of its behavior around the boundary, the interior-point
method will then take a series of short steps and make slow progress toward the
new optimum. Also, numerical problems may arise, requiring the use of iterative
refinement techniques and possibly resulting in step calculations moving the iterate
to a point much farther away from the new optimum.

Several remedies have been proposed for warmstarting an interior-point method
for linear programming. Among them are Freund’s shifted barrier method [7] to
allow infeasibility of the nonnegative variables, Gondzio and Grothey’s [9] and
Yildirim and Wright’s [23] storage of a nearly optimal, well-centered point, Lustig
et.al.’s [16] perturbation of the problem to move the boundary, and Polyak’s mod-
ified barrier function [19]. Of these papers, only [9] and [16] report numerical
results, and only on a few classes of problems. The results show improvement over
coldstarts.

Our contribution here is the use of an exact penalty method to aid in warmstart-
ing. We have documented on an ℓ∞ penalty method for mathematical programs
with equilibrium constraints (MPECs) in [2], and in the same paper, discussed
possible advantages to using a penalty method to bound optimal sets of Lagrange
multipliers, to find nonKKT optimal solutions, and to detect primal infeasibility
for general nonlinear programming problems (NLP). Another additional benefit
mentioned in that paper is that the ℓ1 penalty method can be used to overcome
jamming, which occurs when the algorithm gets stuck at a nonoptimal (possibly
infeasible) point. As discussed in [3], an interior-point method such as loqo can
fail to make progress under certain conditions if the slack variables vanish prema-
turely. We will show that the deficiency of interior-point methods with respect to
warmstarting is similar to jamming, and therefore, an ℓ1 penalty method can be
used as a remedy.

Another issue is that the standard ℓ1 penalty approach is of a primal nature
and can be useful when the perturbation in the problem is due to changes in the
constraints. However, its use is only limited to this case, and it has very little, if
any, effect when the perturbation in the problem is due to changes in the objective
function. Therefore, we introduce here a primal-dual penalty approach, in which
both the primal and the dual problems are relaxed and constrained simultaneously.
For the resulting model, we will show that it yields an exact penalty approach,
which is useful for any type of data perturbation.

In this paper, we have chosen to focus on the case of linear programming and
report encouraging numerical results on problems from the Netlib test suite and on
some mixed integer linear programming problems. The outline of our paper is as
follows: We start with a description of the interior-point method in Section 2. In
Section 3, we illustrate how such a method can fail when warmstarting. Then, in
Section 4, we introduce the primal-dual penalty approach and demonstrate how it
can remedy our problem. Exactness of the penalty problem and convergence analy-
sis for this approach are also provided. In Section 5, we describe the implementation
and testing of our warmstart approach and provide numerical results.
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2. An Infeasible Interior-Point Method for Linear Programming

We begin with an overview of the interior-point algorithm implemented in the
solver loqo. Although loqo is currently known best as a nonlinear programming
solver, it was originally designed to solve LPs. The form of the problem (1) only
allows inequality constraints and nonnegative variables, but this simplification is for
purely pedagogical reasons. The algorithm described below and the warmstart work
to follow is implemented for more general problems, which is also demonstrated in
the numerical results. Further details can be found in [21] and [22].

The dual problem of (1) is given by

(2)
minimize bT y

subject to AT y ≥ c

y ≥ 0,

and its optimality conditions can be written as

(3)

Ax + w = b

AT y − z = c

xjzj = 0, j = 1, . . . , n
wiyi = 0, i = 1, . . . ,m,

where w and z are the slack variables associated with the primal and dual con-
straints, respectively. The first set of equations ensures primal feasibility, the second
dual feasibility, and the last two complementarity.

We start by relaxing the complementarity conditions as

xjzj = µ, j = 1, . . . , n
wiyi = µ, i = 1, . . . ,m,

where µ is a nonnegative parameter controlled by the algorithm. µ is referred
to as the barrier parameter since the above conditions can also be derived from
the logarithmic barrier problem of Fiacco and McCormick [4]. It is started at a
(possibly large) positive number and driven to zero as the optimum is approached.
This ensures that the iterates are kept away from the boundary until the optimal
solution is obtained.

At each iteration, we have that (x,w, y, z) > 0, and our goal is to find step
directions (∆x,∆w,∆y,∆z) such that the new point (x+∆x,w+∆w, y+∆y, z+∆z)
lies on the central path, that is, satisfies the optimality conditions for the current
value of µ, which is calculated as

(4) µ = r
wT y + xT z

m+ n
,

where r is a constant between 0 and 1. Newton’s Method is used to obtain the step
directions, and it gives the following system to solve at each iteration:









A 0 I 0
0 AT 0 −I
Z 0 0 X

0 W Y 0

















∆x
∆y
∆w
∆z









=









b−Ax− w

c−AT y + z

µe−XZe

µe− YWe









,

whereX,W, Y, and Z denote diagonal matrices with entries from the vectors x,w, y,
and z, respectively, and e is a vector of ones of appropriate dimension.
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This system can be reduced further without providing any additional fill-in.
Thus, we factor out ∆z and ∆w to obtain the reduced KKT system:

(5)

[

−E A

AT F

] [

∆y
∆x

]

=

[

ρ− Eγw

σ + γz

]

,

where

(6)

E = Y −1W

F = X−1Z

ρ = b−Ax− w

σ = c−AT y + z

γw = µW−1e− y

γz = µX−1e− z.

We also have that

(7)
∆z = γz − F∆x
∆w = E(γw −∆y).

loqo then proceeds to a new estimate of the optimum by

x(k+1) = x(k) + γα
(k)
p ∆x(k)

w(k+1) = w(k) + γα
(k)
p ∆w(k)

y(k+1) = y(k) + γα
(k)
d ∆y(k)

z(k+1) = z(k) + γα
(k)
d ∆z(k)

where the superscripts denote the iteration number, γ is a parameter close to but

less than 1, the primal steplength, α
(k)
p , is chosen to ensure that (x(k+1), w(k+1)) > 0

and the dual steplength, α
(k)
d , is chosen to ensure that (y(k+1), z(k+1)) > 0.

3. Warmstarting in Interior-Point Methods

In this section, we will examine the potential difficulties for an interior-point
method after a warmstart. Consider the following problem:

maximize x1 + 3x2

subject to x1 + x2 ≤ 3
2x1 + x2 ≤ 2
x1, x2 ≥ 0.

The optimal primal and dual solutions for this problem are

(8)
x = (0, 2), w = (1, 0)
y = (0, 3), z = (5, 0).

Therefore, we have that the first constraint is inactive and the second constraint is
active at the optimum.

Next, we perturb the first constraint as follows:

x1 + x2 ≤ 1.

The optimal primal and dual solutions for the modified problem are

x = (0, 1), w = (0, 1)
y = (3, 0), z = (2, 0).

Thus, the first constraint has now become active and the second constraint has
become inactive.
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Iteration x w y z

0 (0,2) (1,0) (0,3) (5,0)
1 (0,2) (0.05,0) (0,3) (5,0)
2 (0,2) (0.0025,0) (0,3) (5,0)
3* (0,2) (0.000125,0) (1.6,1.4) (3.05,0)
4* (0,2) (0.00000625,0) (2.93,0.07) (2.07,0)

Table 1. Variable values for the first four iterations after a cold-
start. Iterative refinement was performed on iterations marked by
“*”.

If we start to solve the modified problem from the initial solution (8), we will
run into a range of numerical difficulties. Variable values of initial iterations are
provided in Table 1. First, the only change to the reduced KKT system (5) is
to primal infeasibility, ρ, for the inactive constraint. The corresponding entry of
the diagonal matrix, E, is on the order of 108 (theoretically, it is equal to 1/0).
Therefore, a very small value for this constraint’s ∆y will allow the system to be
satisfied. In fact, in the first several iterations, ∆x and ∆y are both no more than
10−8 for all components.

Second, the barrier parameter, µ, starts at 0, as its computation (4) is not
affected by a perturbation to the data. Therefore, the step direction formulas for
the slack variables result in ∆z also being close to 0. This also means that primal
feasibility can be re-obtained without disturbing the primal variables, and by simply
moving the primal slacks. In the first iteration, we have ∆w1 = −2 to obtain primal
feasibility, but the steplength αp will be cut to prevent w1+αp∆w1 from becoming
negative. Therefore, the steplengths will become shortened due to the warmstart.

The numerical trouble occurs when the short steps decrease w1 to a value suffi-
ciently close to 0. Since y1 has not moved away from 0, we are now at a degenerate
pair. Thus, the Cholesky factorization and the subsequent backsolve start produc-
ing numerical errors, and iterative refinement measures are needed. However, such
measures provide step directions that move the iterates away from the warmstart
solution. In this case, they have the effect of moving the dual variables to values
around 1.5 and the dual slack z1 to around 3.05.

Continuing from this point, the algorithm finds the optimal solution in another
12 iterations, but after losing all the advantage of a warmstart. In fact, the cold
start solution of the same problem takes 12 iterations, and the warmstart brings it
to 15 iterations.

An appropriate remedy would be to start with a reduced KKT system where
the 0’s on the diagonal and on the right-hand-side have been perturbed. One way
to accomplish this is to shift the values of the primal and dual slack variables.
However, suitable shifting values may be hard to determine, and such a shift is
somewhat contrary to performing a warmstart. In the next section, we propose the
use of an exact penalty approach to provide a suitable perturbation. This penalty
approach also relaxes the lower bounds on the slack variables so that steplengths
do not get shortened.
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4. An Exact Primal-Dual Penalty Method

The ℓ1 penalty function has received much interest in recent literature, especially
in the solution of mathematical programming problems with equilibrium constraints
(MPECs). Anitescu [1], Benson et.al. [2], and Leyffer et.al. [15] consider using
such an approach to resolve the unboundedness of the set of optimal Lagrange
multipliers arising in MPECs. The application of this approach to general nonlinear
programming problems are discussed in [2] and by Gould et.al. in [11], and it is
shown in [2] that an ℓ1 penalty approach allows an interior-point solver to detect
infeasible problems, find nonKKT optima, and resolve jamming.

The penalized problem considered in this paper has the form

(9)

maximize cTx− dT
x ξx − dT

wξw
subject to Ax+ w = b

−ξx ≤ x ≤ uz

−ξw ≤ w ≤ uy

ξx, ξw ≥ 0,

where ξx and ξw are the relaxation variables for the lower bounds on x and w,
respectively, and dx and dw are their corresponding penalty parameters. Since the
ℓ1 penalty function is exact, we can find sufficiently large but finite values for the
penalty parameters for which the solution of (9) matches that of (1).

The form of the problem (9) is different than the usual penalty approaches in
the literature, such as [5] and [18], in that upper bounds, uz and uy, have also
been added to the relaxed variables. Since we assume that the problem (1) has an
optimum, setting uz and uy sufficiently large will not impact the solution. Thus,
for the primal problem, these bounds will not have any serious consequences. They
do, however, play a significant role for the dual problem, which has the form

(10)

minimize bT y + uT
y ψy + uT

z ψz

subject to AT y − z = c

−ψy ≤ y ≤ dw − ψy

−ψz ≤ z ≤ dx − ψz

ψy, ψz ≥ 0,

where ψy and ψz are the relaxation variables for the lower bounds on y and z,
respectively. The form of the upper bounds in (10) differs slightly from those in
(9), but since the relaxation variables will be driven to zero, the upper bound can
be kept sufficiently large. Due to the primal-dual nature exhibited by the relaxing-
bounding scheme of (9) and (10), we will call our approach a primal-dual penalty.
Such an approach is necessary to accommodate perturbations to all data elements
of (1), as changes in b impact primal feasibility, changes in c impact dual feasibility,
and changes in A impact both primal and dual feasibility.

Note that the resulting problem (9) is still an LP. Therefore, the interior-point
algorithm described in Section 2 can be applied to solve this problem. Moreover,
we can show that the effort required per iteration is not substantially different than
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solving the original LP. The optimality conditions for the penalty problem are

Ax+ w = b(11a)

AT y − z = c(11b)

(zj + ψzj)(xj + ξxj) = 0, j = 1, . . . , n(11c)

(yi + ψyi)(wi + ξwi) = 0, i = 1, . . . ,m(11d)

ψzj(uzj − xj) = 0, j = 1, . . . , n(11e)

ψyi(uyi − wi) = 0, i = 1, . . . ,m(11f)

ξxj(dxj − zj − ψzj) = 0, j = 1, . . . , n(11g)

ξwi(dwi − yi − ψyi) = 0, i = 1, . . . ,m.(11h)

After relaxing the complementarity constraints and applying Newton’s Method, the
step directions can be obtained from the corresponding reduced KKT system for
this problem. The system has the same form as (5) with
(12)

E =
(

(

(Y +Ψy)
−1(W + Ξw) + Ξw(Dw − Y −Ψy)

−1
)−1

+Ψy(Uy −W )−1
)−1

F =
(

(Z +Ψz)
−1(X + Ξx) + Ξx(Dx − Z −Ψz)

−1
)−1

+ Ψz(Uz −X)−1

γw =
(

(Y +Ψy)
−1(W + Ξw) + Ξw(Dw − Y −Ψy)

−1
)−1

(

µ(Y +Ψy)
−1e− µ(Dw − Y −Ψy)

−1e− w
)

−
(

µ(Uy −W )−1e− ψy

)

γz =
(

(Z +Ψz)
−1(X + Ξx) + Ξx(Dx − Z −Ψz)

−1
)−1

(

µ(Z +Ψz)
−1e− µ(Dx − Z −Ψz)

−1e− x
)

−
(

µ(Uz −X)−1e− ψz

)

.

The step directions for the relaxation variables can be calculated as follows:

(13)

∆ψy = (Uy −W )−1 (µe+Ψy∆w)
∆ψz = (Uz −X)−1 (µe+Ψz∆x)
∆ξx = (Dx − Z −Ψz)

−1 (µe+ Ξx(∆z +∆ψz))
∆ξw = (Dw − Y −Ψy)

−1 (µe+ Ξw(∆y +∆ψy)) .

In these expressions, Ξx, Ξw, Ψy, and Ψz are the diagonal matrices with entries
from the relaxation variables ξx, ξw, ψy, and ψz, respectively. Similarly, Dx, Dw,
Uz, and Uy are the diagonal matrices with entries from the penalty parameters dx,
dw, uz, and uy, respectively. The formulas for the step directions for the original
slack variables remain in the same form as (7). The barrier parameter is computed
as follows:

(14) µ = r

(z + ψz)
T (x+ ξx) + (y + ψy)

T (w + ξw)+
ψT

z (uz − x) + ψT
y (uy − w)+

ξT
x (dx − z − ψz) + ξT

w(dw − y − ψy)

3m+ 3n

Despite the lengthy expressions, it is clear that E and F are diagonal matrices
with nonnegative entries for sufficiently large primal and dual penalty parameters.
Therefore, the reduced KKT matrix has the same sparsity structure as (5) and
it is quasidefinite. Since the factorization of this matrix is the bottleneck of an
interior-point method, using the primal-dual penalty approach does not significantly
increase the amount of work required per iteration.

The reduced KKT system of (9) achieves the goal of perturbing the diagonal
of the matrix and the right hand side of the equation. It also allows the slack
variables of the original primal and dual problems to become negative, preventing
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the excessive shortening of steplengths. Therefore, the interior-point algorithm will
not stall when warmstarting if the new variables ξx, ξw, ψy, and ψz are initialized
appropriately.

4.1. Establishing the Exactness of the Primal-Dual Penalty Formulation.

We mentioned above that setting the penalty parameters large enough to admit
the optimal solutions of (1) and (2) would be beneficial. Let us now formally show
the exactness of the primal-dual penalty approach.

Theorem 1. Let (x∗, w∗) be a solution to (1) and let (y∗, z∗) be a corresponding

solution for its dual (2). If the following conditions hold

dx > z∗

dw > y∗

uy > w∗

uz > x∗,

then (x,w, ξx, ξw) = (x∗, w∗, 0, 0) is a solution to (9) and (y, z, ψy, ψz) = (y∗, z∗, 0, 0)
is a corresponding solution for its dual (10).

Proof. Let (x∗, w∗) be a solution to (1) and let (y∗, z∗) be a corresponding solution
for its dual (2). Letting

dx > z∗

dw > y∗

uy > w∗

uz > x∗,

we have that (x,w, ξx, ξw) = (x∗, w∗, 0, 0) is feasible for (9) and (y, z, ψy, ψz) =
(y∗, z∗, 0, 0) is feasible for its dual (10). Thus, the penalized problem and its dual
have feasible solutions, and therefore, they must have optimal solutions. Let a
primal optimal solution be denoted by (x̄, w̄, ξ̄x, ξ̄w) and let a corresponding dual
optimal solution be denoted by (ȳ, z̄, ψ̄y, ψ̄z), and let the following conditions hold

dx > z̄

dw > ȳ

uy > w̄

uz > x̄.

Then, the conditions

ψ̄zj(uzj − x̄j) = 0, j = 1, . . . , n
ψ̄yi(uyi − w̄i) = 0, i = 1, . . . ,m

of (11e)-(11f) require that ψ̄y = 0 and ψ̄z = 0. Therefore, we have that

dxj − z̄j − ψ̄zj = dxj − z̄j , j = 1, . . . , n
dwi − ȳi − ψ̄yi = dwi − ȳi, i = 1, . . . ,m.

and the conditions

ξ̄xj(dxj − z̄j − ψ̄zj) = 0, j = 1, . . . , n
ξ̄wi(dwi − ȳi − ψ̄yi) = 0, i = 1, . . . ,m.

of (11g)-(11h) require that ξ̄x = 0 and ξ̄w = 0. The remaining conditions, (11a)-
(11d), reduce to (3) which are the optimality conditions for (1). Thus, (x̄, w̄, ξ̄x, ξ̄w) =
(x∗, w∗, 0, 0) is a solution to (9) and (ȳ, z̄, ψ̄y, ψ̄z) = (y∗, z∗, 0, 0) is a corresponding
solution for its dual (10). �
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Corollary 2. Let (x̄, w̄, ξ̄x, ξ̄w) be an optimal solution to (9), and let (ȳ, z̄, ψ̄y, ψ̄z)
be a corresponding optimal solution to (10). If ξ̄x, ξ̄w, ψ̄y, ψ̄z all equal 0, then

(x̄, w̄) is an optimal solution to (1) and (ȳ, z̄) is a corresponding optimal solution

to (2).

Proof. Setting ξ̄x, ξ̄w, ψ̄y, ψ̄z equal to 0 reduces the optimality conditions (11a)-
(11h) to the optimality conditions (3) of the original problem. �

Note that, for an LP, the sets of optimal primal and dual values are either
both empty or both have at least one finitely valued member, and therefore, if an
optimal solution exists for the original problem, the penalty parameters can be made
sufficiently large for finite values. Therefore, the primal-dual penalty approach is
exact.

Also note that the penalized primal and dual problems (9) and (10) will always
have optimal solutions. Because the bounds on the primal variables and primal
slacks are relaxed, all primal constraints can be satisfied, and therefore the penalized
primal problem always has a feasible solution. Since the primal variables and slacks
are also bounded above, the penalized primal problem is not unbounded. Thus, the
penalized primal problem always has an optimal solution, which means that the
penalized dual always has a corresponding optimal solution. As in the proof of
Theorem 1, we will refer to the optimal solutions of the penalized primal and dual
problems as (x̄, w̄, ξ̄x, ξ̄w) and (ȳ, z̄, ψ̄y, ψ̄z), respectively.

Certificates of infeasibility for the original primal and/or dual problems can be
obtained by examining the optimal solution of the penalized problem. If any com-
ponents of ξx or ξw cannot be driven to zero even as the corresponding components
of dx and dw are driven to ∞, then the problem is primal infeasible. Similarly, if
any components of ψy and ψz cannot be driven to zero as the corresponding com-
ponents of uy and uz are increased to ∞, then the problem is dual infeasible. We
can get these certificates by repeatedly solving the problem with increasing values
of the penalty parameters if

‖ξ̄x‖+ ‖ξ̄w‖+ ‖ψ̄y‖+ ‖ψ̄z‖ > 0.

The scheme of updating the penalty parameters and resolving the problem only
after an unsatisfactory solution has been obtained is referred to as a static penalty
approach. Later in this section, we will also discuss a dynamic penalty approach,
where the parameters may be updated from one iteration to the next.

Any provably convergent interior-point method for LP can solve the penalized
primal-dual problems (9) and (10) to an optimal solution. The algorithm described
in Section 2 is such an algorithm, as proved by Kojima et.al. in [13]. Therefore,
it can find solutions to the original primal-dual problems (1) and (2) or provide
certificates of infeasibility when coupled with a static approach to updating the
penalty parameters.

4.2. Computational Issues. Two questions still remain:

(1) How do we initialize the penalty parameters, dx, dw, uy, and uz, and the
relaxation variables, ξx, ξw, ψy, and ψz, in order to reach the new optimum
quickly after a warmstart?

(2) If necessary, how do we update the penalty parameters in order to obtain
the solution to the perturbed LP?
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Before answering these questions, we first formally establish some notation and
terminology. We will refer to the initial problem as the first LP to be solved and
the perturbed problem as any subsequent problem to be solved. We assume that
the initial problem has the optimal primal-dual solution pairs (xI , wI) and (yI , zI),
which we can use to warmstart, and that if the perturbed problem has an opti-
mal solution, such a primal-dual pair is denoted by (xP , wP ) and (yP , zP ). The
perturbed problem will be solved using the primal-dual penalty approach outlined
in the previous section, and we will refer to that problem as the penalized prob-

lem. The penalized problem will have the primal-dual solutions (x̄, w̄, ξ̄x, ξ̄w) and
(ȳ, z̄, ψ̄y, ψ̄z). The initial values of the relaxation variables in the perturbed problem

will be denoted by ξ
(0)
x , ξ

(0)
w , ψ

(0)
y , and ψ

(0)
z . Also, we will refer to the data elements

of the perturbed problem as b̃, Ã, and c̃. We will also let l̃ denote the new, possibly
nonzero, lower bounds on the variable x.

To determine the best initial values for the relaxation variables, our goal is to
allow the nonnegative variables of the perturbed problem to become negative so
that progress may be made in the first few iterations. Therefore, we set them
proportional to the perturbation, as follows:

(15)

ξ
(0)
xj = max(l̃j − xI

j , 0) + ǫ, j = 1, . . . , n

ξ
(0)
wi = max(b̃i −

n
∑

j=1

ãijx
I
j − wI

i , 0) + ǫ, i = 1, . . . ,m

ψ
(0)
yi = ǫ, i = 1, . . . ,m

ψ
(0)
zj = max(c̃j −

m
∑

i=1

ãijx
I
j + zI

j , 0) + ǫ, j = 1, . . . , n,

where ǫ is a small parameter, currently set to 10−5M , where M is the greater of
1 and the largest primal or dual slack value. The magnitude has been determined
to ensure that the Cholesky factorization remains stable if there is no perturbation
to either the primal or the dual, while being small enough to reach the optimal
solution in one or two iterations if it has not changed by much. Consideration of
the primal and dual slack values also allows for a consideration of scale.

As mentioned in Theorem 1, we need the following conditions to hold to find an
optimal solution to the perturbed problem using the primal-dual penalty approach

dx > zP

dw > yP

uy > wP

uz > xP

if the perturbed problem has a solution. Otherwise, we need to increase at least
one of the penalty parameters indefinitely to provide a certificate of infeasibility.

In the absence of any information on the magnitudes of the optimal solutions
to the perturbed problem, one may consider setting all penalty parameters to very
large values. Nevertheless, doing so may cause numerical instability and does not
guarantee that the penalty parameters are large enough or that the perturbed
problem is not primal and/or dual infeasible.

However, for a warmstart, we can use the solution of the initial problem to set
the penalty parameters for the perturbed problem. If the perturbation is small
enough, it is reasonable to assume that in most cases the new primal and dual
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solutions will exist and be of the same order of magnitude as those of the initial
problem. Since the active set can change, we use the following initialization scheme
for the penalty parameters:

(16)

dx = 10(zI + δ)
dw = 10(yI + δ)

uy = 10(wI + ψ
(0)
y + δ)

uz = 10(xI + ψ
(0)
z + δ),

where δ is a constant set to 100.
For the static penalty approach, we can increase the penalty parameters and

resolve the problem if the optimal values of at least one relaxation variable is
sufficiently larger than 0. One way to implement this is to multiply the penalty
parameters by 10 and resolve the problem.

For the dynamic penalty approach, we need to be able to detect that the penalty
parameters are not large enough while the penalized problem is being solved. As
shown in (9) and (10), the primal and dual penalty parameters act as upper bounds
on the dual and primal variables. If one or more variables among x,w, y, and z are
converging to their upper bounds, (11c)-(11h) require that these variables cannot
provide a feasible solution to the original problem. Therefore, the corresponding
penalty parameters must be increased. Doing so will ensure that the penalty pa-
rameters are larger than the optimal values of these variables, which is sufficient
for exactness. Supplementing the interior-point algorithm with such an updating
scheme retains its convergence properties.

Theorem 3. If the perturbed problem has an optimal solution, a dynamic penalty

update approach will be able to find this solution after a finite number of penalty

parameter updates. Otherwise, the dynamic penalty update approach will provide a

certificate of infeasibility.

Proof. Let us assume that the perturbed problem has an optimal solution and that
at least one of the penalty parameters is not large enough to admit this solution.
There still exists an optimal solution to the penalized problem, but at this solution,
at least one of the relaxation variables will be nonzero, as shown by Theorem 1. For
the relaxation variable that is nonzero, the corresponding decision or slack variable
must be equal to its upper bound in order to satisfy the optimality conditions (11e)-
(11h). Therefore, the dynamic update approach will not stop at such a solution
and will instead update the penalty parameter until it is large enough to admit the
solution of the perturbed problem.

Note that there are a finite number of penalty parameters, so the dynamic
penalty updating scheme cannot update the penalty parameters indefinitely and
must either stop the updates after a finite number of times or have one or more of
the penalty parameters approach ∞. If the updates stop after a finite number of
times, then according to the above argument, all the penalty parameters must be
large enough to admit the solution of the perturbed problem. Then, as shown in
[13], the algorithm described in Section 2 will converge to the optimal solution of
the penalized problem, which is the optimal solution of the perturbed problem.

If the penalty parameters are updated an infinite number of times, then at
least one of the decision or slack variables must approach infinity. Therefore, the
perturbed problem must be infeasible, and a certificate of infeasibility can be is-
sued. �
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The particular scheme implemented in the code for updating penalty parameters
checks each of x,w, y, and z against their upper bounds, which are the corresponding
primal or dual penalty parameters. If one of these variables is greater than one-
tenth of its upper bound, the penalty parameter is increased tenfold. Although this
scheme may require an excessive distance between the variable and its bound, it
has worked well in practice. The details of the exact primal-dual penalty approach
with a dynamic update are provided as Algorithm 1.

Algorithm 1. Initialize the solution x = x(0), w = w(0), y = y(0), z = z(0).

Initialize the relaxation variables using (15). Initialize the penalty parameters using

(16). Let k = 1, r = 0.95, τ = 10−8.

Step 1: Compute µ(k) using (14).

Step 2: Obtain step directions (∆x(k),∆w(k),∆ξ
(k)
x ,∆ξ

(k)
w ) and (∆y(k),∆z(k),

∆ψ
(k)
y ,∆ψ

(k)
z ) by solving (5) and (7) with (12) and (13).

Step 3: Compute the primal and dual steplengths, α
(k)
P and α

(k)
D as follows:

α
(k)
P = max

(

rmaxi,j

(

ξ
(k)
xj

∆ξ
(k)
xj

,
ξ
(k)
wi

∆ξ
(k)
wi

,
(x

(k)
j

+ξ
(k)
xj

)

(∆x
(k)
j

+∆ξ
(k)
xj

)
,

(w
(k)
i

+ξ
(k)
wi

)

(∆w
(k)
i

+∆ξ
(k)
wi

)

)

, 1

)

.

α
(k)
D = max

(

rmaxi,j

(

ψ
(k)
yi

∆ψ
(k)
yi

,
ψ

(k)
zj

∆ψ
(k)
zj

,
(y

(k)
i

+ψ
(k)
yi

)

(∆y
(k)
i

+∆ψ
(k)
yi

)
,

(z
(k)
j

+ψ
(k)
zj

)

(∆z
(k)
j

+∆ψ
(k)
zj

)

)

, 1

)

.

Step 4 (Dynamic Update): For j = 1, . . . , n,

If dxj < 10(z
(k)
j +∆z

(k)
j ), then dxj = 10dxj, and

if uzj < 10(x
(k)
j +∆x

(k)
j ), then uzj = 10uzj.

For i = 1, . . . ,m,

If dwi < 10(y
(k)
i +∆y

(k)
i ), then dwi = 10dwi, and

if uyi < 10(w
(k)
i +∆w

(k)
i ), then uyi = 10uyi.

Step 5: Let

x(k+1) = x(k) + α
(k)
P ∆x(k)

w(k+1) = w(k) + α
(k)
P ∆w(k)

ξ
(k+1)
x = ξ

(k)
x + α

(k)
P ∆ξ

(k)
x

ξ
(k+1)
w = ξ

(k)
w + α

(k)
P ∆ξ

(k)
w

y(k+1) = y(k) + α
(k)
D ∆y(k)

z(k+1) = z(k) + α
(k)
D ∆z(k)

ξ
(k+1)
y = ξ

(k)
y + α

(k)
D ∆ξ

(k)
y

ξ
(k+1)
z = ξ

(k)
z + α

(k)
D ∆ξ

(k)
z .

If (11a)-(11h) are satisfied within tolerance τ , then Stop. (x(k), w(k), ξ
(k)
x , ξ

(k)
w ) is

the optimal primal solution and (y(k), z(k), ψ
(k)
y , ψ

(k)
z ) is the optimal dual solution.

Otherwise, let k = k + 1 and go to Step 1.

Computationally, it is not possible to update penalty parameters an infinite num-
ber of times. Therefore, in the code, we update the penalty parameter three times
before discarding the original objective function and minimizing the infeasibility. If
the penalty objective is sufficiently close to zero, then the problem continues from
the current solution with the largest value of the penalty parameter encountered.
Otherwise, a certificate of infeasibility can be issued. Note that this scheme can
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also be performed to detect dual infeasibility by discarding the objective function
on the dual side.

4.3. A Simpler Model. We can achieve the goal of relaxing the primal and dual
constraints using a simpler set of models. The primal problem can be expressed as
follows:

maximize cTx− dT ξ

subject to Ax+ w = b

0 ≤ x ≤ u

−ξ ≤ w

ξ ≥ 0,

and the dual problem is

minimize bT y + uTψ

subject to AT y − z = c

0 ≤ y ≤ d

−ψ ≤ z

ψ ≥ 0.

The reduced KKT system for this pair of problems has the same form as (5),
with

E = Y −1(W + Ξ) + Ξ(D − Y )−1

F = (Z + Ψ)−1X +Ψ(U −X)−1

γw =
(

Y −1(W + Ξ) + Ξ(D − Y )−1
)−1

(µY −1e− µ(D − Y )−1e− w)
γz = µX−1e− µ(U −X)−1e− z

All the same theoretical results presented above apply to this simpler model.
However, the numerical performance of this approach is not stable, as any entry of
E corresponding to a former inactive constraint or any entry of F corresponding
to a former active bound would start at a very high value. For some problems, this
causes numerical difficulties right after the warmstart and increases the number of
iterations needed to reach the optimum. Therefore, we have used the formulation
(9)-(10) as our approach. In the next section, we provide testing results on the
implementation of this approach, coupled with a dynamic updating of the penalty
parameters.

5. Numerical Results

The penalty approach presented in the previous section was able to solve the
example of Section 3 in 8 iterations. This is an improvement over the 12 iterations
performed with a coldstart and remedies the shortcomings of the original method
which resulted in 15 iterations after a warmstart. In this section, we provide further
results to illustrate the performance of our approach.

For perturbation of the data, we performed our numerical testing on a selection
of 37 problems from the Netlib test suite. The main selection criterion was the size
of the problem, in that we considered only those problems with n+m < 1000. We
also eliminated all instances where the perturbation did not change the solution
significantly or resulted in an infeasible problem. We solved these problems using
the solver loqo Version 6.06 [20] which implements the algorithm described in
Section 2. The problems, expressed in MPS format, were submitted directly to the
solver, and no preprocessing was performed.
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Changed δ Avg Warmstart Iters Avg Coldstart Iters Avg Reduction
b 0.001 10.38 21.76 52%
b 0.01 10.41 21.67 52%
b 0.1 12.07 21.58 44%
c 0.001 11.55 22.74 49%
c 0.01 11.78 22.09 47%
c 0.1 13.00 22.21 41%
A 0.001 12.01 21.78 45%
A 0.01 12.41 21.78 43%
A 0.1 13.95 21.87 36%

Table 2. Summary numerical results for penalty warmstart approach.

The problems were perturbed randomly. The random numbers were obtained
using the random number generator Mersenne Twister [17], and we generated a list
of numbers uniformly distributed between -1 and 1. For the case of perturbing the
right hand sides of the constraints, two vectors of length m each were read in. The
first vector, ǫ1, determined whether a constraint would be perturbed. Constraint i
was perturbed if

ǫ1i < MIN(−0.80,
40

m
− 1),

which ensures that no more than 10% or 20 constraints (on the average) will be
perturbed. The second vector, ǫ2, was used to determine the magnitude of the
perturbation. In order to match the scale of the numbers in the problem, the
following scheme was used:

b̃i =

{

δǫ2i, if bi = 0
bi(1 + δǫ2i), otherwise.

when perturbing constraint i. The parameter δ was varied to observe the effects
of different levels of perturbation. A similar scheme was employed to perturb the
objective coefficients, c, and constraint coefficients, A. The only difference with the
constraint coefficient updates is that the sparsity structure of A was preserved.

For each original problem, we present the numerical results obtained by 5 dif-
ferent perturbations to b, c, and A at three different levels of δ (0.001, 0.01, 0.1).
We report on the distance between the optimal solutions to the original and per-
turbed problems, along with the number of changes to the active set, and compare
iteration counts for the warmstart and the coldstart solutions. These results are
summarized in Table 2 and presented in detail in the Appendix.

The distance between the solutions is computed as

‖xI − xP ‖

1.0 + ‖xI‖
,

and the distance between the Lagrange multipliers is computed as

‖yI − yP ‖

1.0 + ‖yI‖
.

When the distance between the solutions is small, generally 10−2 or less, the warm-
start scheme works very well, as evidenced by the decrease in the number of iter-
ations from solving the perturbed problem with a coldstart. However, when the
distance is large, such as e226 in Table 3 of the Appendix, the performance deteri-
orates. Nonetheless, such a distance represents a significant enough change in the
problem that there is no reason to perform a warmstart.
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We also implemented a branch-and-bound algorithm to solve mixed-integer lin-
ear programming (MILP) problems, using loqo to solve the linear relaxation at
each node of the tree. While not being competitive with a MILP solver, we were
able to examine the performance of our approach on warmstarting after variable
bound perturbations. Table 9 shows the results of this exercise. We chose three
small problems, a four-choice version of diet from [6], hl415 from [12], and synthes3

originally from [14] and linearly formulated by Hans Mittelman. The results present
a comparison of the iteration counts between a coldstart, which goes back to the
original initial solution, and a warmstart, which starts the node from the optimal
solution of its parent.

We have made several observations during the solution of the MILPs. First,
all three problems included binary variables, and for such a problem, changing
variable bounds only changes the slacks for the bounds by at most 1. Therefore,
letting the initial values of the relaxation variables on the bounds and δ for the
corresponding penalty parameters equal 1 worked the best. Second, scaling issues
arise which can greatly affect the number of iterations or whether the problem can
be solved at all. This behavior is due to the fact that an interior-point method
stops when it satisfies the optimality conditions within a small tolerance, and, as
in many codes, loqo scales primal and dual infeasibilities and the duality gap
by (‖b‖ + 1), (‖c‖ + 1), and (|cTx| + 1), respectively. When any of these data
elements are large, even binary variables which may be fixed at 0 or 1 can take
on non-integer “optimal” values. This problem is easy to remedy for the case of a
binary variable by preprocessing the fixed variable out of the problem, which we
have implemented for the coldstart results shown in this paper. Another related
problem, however, is that due to the magnitude of the objective function, penalty
parameters may need to be quite large to ensure that the objective function in
the original variables will not improve significantly in exchange for a small penalty.
Since a dynamic update of the penalty parameter will take several iterations to
detect this behavior and increase the penalty parameter sufficiently, scaling issues
can greatly affect the performance of the primal-dual penalty approach. While
this behavior can occur for any problem, it is especially prevalent in MILPs which
involve cost-minimization objectives. The fixed cost portion of such an objective
can be quite large (a magnitude of 105 is not unusual), and in numerical testing
on larger problems not documented in this paper, we have found it beneficial to
rescale the objective function. We have employed such an approach to improve the
performance of two such models here: we rescaled the range constraints of diet and
the objective function of synthes3 by a factor of 1000. The coldstart results are also
for these rescaled problems.

As stated above, we do not expect our branch-and-bound code to be competitive
with other MILP solvers, but it may be improved by not solving the intermediate
subproblems to optimality. In [8] and [10], Gondzio and Vial present an approach
where nearly-optimal well-centered points are obtained for the subproblems, and
report substantial improvements in iteration counts when warmstarting. Subse-
quent work on MILP would benefit from consideration of and comparisons to this
approach.

Finally, we provide an example to illustrate the effects of adding variables and/or
constraints to the problem. The cutting-stock, or roll-trimming, problem as for-
mulated in [6] provides a column generation approach, implemented using looping
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constructs within ampl. A linear relaxation of the master problem is solved with
subsequently increasing numbers of variables. The new variables are obtained by
solving a different integer programming problem. Each new variable in the master
problem is a new constraint in its dual. For the warmstart, we use the optimal
solution of the previous master problems’s primal and dual variable values and re-
calculate the slacks. The new primal variables are started at initial values of 0. The
numerical results are presented in Table 10.

6. Conclusion

In this paper, we discussed the use of an exact penalty approach to perform
warmstarts using an interior-point method. We showed that without such an ap-
proach, an interior-point method can stall when starting from the optimal solution
of a closely related problem and run into numerical troubles. The penalty approach
provides a regularization to prevent this behavior, and by carefully controlling the
penalty parameter, we can get fast convergence to the solution of the perturbed
problem. The approach is similar to using a shifted barrier approach, except the
shift is a variable that is driven to 0. The numerical performance of this approach
on the problems from the Netlib test suite and on a group of mixed integer linear
programming problems shows an average decrease of 40-50% in the number of it-
erations, which is quite encouraging. The average decrease is around 65-70% if the
primal and the dual solutions change by no more than a scaled difference of 10−3.

As mentioned in the introduction, the exact penalty approach has been useful
for nonlinear programming to handle ill-behaved problems. A natural extension of
the work in this paper is to the case of nonlinear programming, and we hope to
report on our findings in the near future.

Finally, it should be emphasized that there is a definite lack of test sets for
re-optimization purposes. We encourage researchers to submit problem instances
with meaningful data perturbations. Such a test set will be especially important for
nonlinear programming, where randomly changing the data may not be possible.

6.1. Acknowledgements. The authors would like to thank E. Alper Yildirim for
providing valuable insight into the preparation of the test set and Merrill Liechty
for sharing with us his expertise on random number generators.
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Problem δ #Pert WarmIters ColdIters ‖xI − xP ‖ ‖yI − yP ‖ ∆
adlittle 0.001 5.6 2.6 18 0.003202181752 0.000014586238 2
adlittle 0.01 5.6 3.8 17.8 0.036400409638 0.011466355782 4
adlittle 0.1 5.6 11 17 0.3924837644 1.813057443798 7.8
afiro 0.001 2.4 3.2 12 0.0011678264504 0.0947489358 1.2
afiro 0.01 2.4 3.2 12 0.0007989962986 0.089257872 1.4
afiro 0.1 2.4 3.6 12 0.014892467386 0.20098398 1.2
agg2 0.001 20.2 5 25.2 0.00034187646 0.00022341066 0
agg2 0.01 20.2 5 25.4 0.0034148048 0.00025784402 0
agg2 0.1 20.2 9.2 25.4 0.03478068 0.173200086 0
agg3 0.001 20.2 5 24 0.00044449582 0.00052089212 0.2
agg3 0.01 20.2 6.6 24 0.004965259 0.25230334344 11.6
agg3 0.1 20.2 9.6 24 0.04459604 0.92526735 23.4
bandm 0.001 20.2 10.4 19 0.000123982844 1.0857212 6.2
bandm 0.01 20.2 10.6 19.2 0.0012381135 0.9262959 0.8
bandm 0.1 20.2 11.2 20 0.0110012632 0.9239741 3.4
blend 0.001 7.8 4 16 0.000303079904 0.00007971808 0
blend 0.01 7.8 4.6 16 0.0030224 0.00050603523 2.6
blend 0.1 7.8 8.4 16 0.0330820446 0.0322738007 0.8
boeing1 0.001 19.8 17 27.6 0.0039221134 0.40535092 44.4
boeing1 0.01 19.8 17 27.4 0.0041235082 0.71336096 21.4
boeing1 0.1 19.8 17.4 27.8 0.0184638934 2.185173 20.8
capri 0.001 19.8 17.2 25.2 0.00011520664 0.0104491832 3
capri 0.01 19.8 17 25 0.00083342632 0.0104612872 3
capri 0.1 19.8 17.6 25.8 0.0107436474 0.013281188 5.2
e226 0.001 19.6 21.4 24.6 17.7051726 1.96924962 2.2
e226 0.01 19.6 18 23.4 14.1649736 0.81973026 3
e226 0.1 19.6 18.4 22.8 6.6063288 1.55621424 7.8
grow15 0.001 20.6 12 21 0.060740534 0.0000004200672 0
grow15 0.01 20.6 12 21 0.060741118 0.0000004200672 0
grow15 0.1 20.6 12 21 0.06073097 0.0000004200673 0
grow7 0.001 14.2 7 20 0.0011366912 0.00000008207383 0
grow7 0.01 14.2 7 20 0.001136728 0.00000008207383 0
grow7 0.1 14.2 7 20 0.0011370982 0.000000082073828 0
israel 0.001 17.4 7 29 0.0028336566 0.0000000104360078 0
israel 0.01 17.4 8.2 29 0.0087307272 0.000000204793846 5.2
israel 0.1 17.4 15.8 29 0.0358459662 0.018162129758424 16.8
kb2 0.001 4.2 4 17 0.00000240630814 0.000000043956492 2
kb2 0.01 4.2 4 17 0.0000240627742 0.000000043692692 2
kb2 0.1 4.2 4.2 16.8 0.000240628326 0.0000000508571 1.6
lotfi 0.001 15.2 26.2 38 1.7512536 0.07372925 1.4
lotfi 0.01 15.2 25.6 38.4 1.7343354 0.084457026 10.4
lotfi 0.1 15.2 25.8 37.8 1.446603 0.107815326 7
sc105 0.001 9.6 8.2 15.4 0.00000400174778 0.38601766 4
sc105 0.01 9.6 8.2 15.2 0.000040045703 0.73229842 3.6
sc105 0.1 9.6 9.2 15.2 0.001181680612 0.91226018 4.2
sc205 0.001 18.4 11.4 17 0.0000423845518 2.2519524 6.4
sc205 0.01 18.4 11.2 17 0.00042382646 1.95001354 6.4
sc205 0.1 18.4 10 17 0.0042103408 2.34346894 9.2
sc50a 0.001 4.8 5.2 13.8 0.0000104318696 0.04535423749 4.4
sc50a 0.01 4.8 5.6 13.8 0.000104337232 0.15409781758 2.6
sc50a 0.1 4.8 7.6 13.8 0.00104335806 3.168897931354 2.8
sc50b 0.001 4.8 3 12 0.0000033665062 0.00009285385 12
sc50b 0.01 4.8 3 12 0.000033741186 0.000092854346 12.4
sc50b 0.1 4.8 3.6 12 0.00033751108 0.000093370066 4.8
scagr25 0.001 20.4 9.8 29.2 0.000128856676 0.00683496614 20.6
scagr25 0.01 20.4 11.2 29.4 0.00132497322 0.0085391073 11
scagr25 0.1 20.4 15.6 28.4 0.013220882 0.01434111488 18.8
scagr7 0.001 13 18.2 26 0.000382898824 0.000000089276834 0.8
scagr7 0.01 13 18 25.8 0.00342266954 0.00032196158677 0.4
scagr7 0.1 13 18 25.8 0.03173249408 0.00042891180376 0.8

Table 3. Numerical performance of LOQO on the Netlib test
suite when warmstarting a problem whose constraint right-hand
sides, b, have been modified. Each problem labeled under the col-
umn Problem, δ is the perturbation parameter, and #Pert is the
number of perturbed constraints. The average iteration counts for
the warmstart and coldstart solution of five perturbed problems
are given, and the last 3 columns are the scaled Euclidean norm of
the distance between the optimal solutions and the Lagrange mul-
tipliers of the initial and the perturbed problem and the number
of changes to the active set.
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Problem δ #Pert WarmIters ColdIters ‖xI − xP ‖ ‖yI − yP ‖ ∆
scfxm1 0.001 22 14.6 26.2 0.02370614 3.798183 29.4
scfxm1 0.01 22 14.6 26.4 0.030488384 4.415954 16
scfxm1 0.1 22 14.6 26.2 0.05384319 4.4868972 8.6
scsd1 0.001 8.2 9.4 16.6 0.096794814 0.111085056 34.6
scsd1 0.01 8.2 8.8 16.4 0.098801772 0.111035914 34.6
scsd1 0.1 8.2 12.8 15.6 0.21426694 0.128279912 35.4
sctap1 0.001 20.6 8 20.8 0.042360862 0.22468786 48
sctap1 0.01 20.6 8 20.6 0.041823544 0.22457918 51
sctap1 0.1 20.6 12.8 19 0.14872671 0.22883418 52.6
share1b 0.001 11.6 18 41.4 0.0000731204072 0.000000059338672 0
share1b 0.01 11.6 18 40.2 0.000731183464 0.000000099496234 0
share1b 0.1 11.6 18.6 41 0.00747868162 0.0080980673404 2.6
share2b 0.001 8.8 5.8 15.4 0.0101454252 0.0002785847 2.4
share2b 0.01 8.8 6 15.6 0.006371865 0.00040580978 2
share2b 0.1 8.8 6.8 15.6 0.0256612606 0.00041397668 0.6
stair 0.001 20.6 21 19 3.2124368 0.005843676 0.2
stair 0.01 22.6 20.4 19 3.1126782 0.0057625792 0.2
stair 0.1 22.6 20.2 19.8 3.3041412 0.1209035974 6.8
stocfor1 0.001 11.6 5.6 18 0.0000200767266 0.04280102012 5.2
stocfor1 0.01 11.6 5.4 18.2 0.000200754128 0.042390892396 4.6
stocfor1 0.1 11.6 5 17.8 0.00200753612 0.042389969544 4.6

Table 4. Numerical performance of LOQO on the Netlib test
suite when warmstarting a problem whose constraint right-hand
sides, b, have been modified. Each problem labeled under the col-
umn Problem, δ is the perturbation parameter, and #Pert is the
number of perturbed constraints. The average iteration counts for
the warmstart and coldstart solution of five perturbed problems
are given, and the last 3 columns are the scaled Euclidean norm of
the distance between the optimal solutions and the Lagrange mul-
tipliers of the initial and the perturbed problem and the number
of changes to the active set.
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Problem δ #Pert WarmIters ColdIters ‖xI − xP ‖ ‖yI − yP ‖ ∆
adlittle 0.001 9 5 18.2 0.135710876 0.01638875038 7.4
adlittle 0.01 9 6.2 18.2 0.145065362 0.0394711904 0
adlittle 0.1 9 8.2 16.4 0.223525338 0.121248116 1
afiro 0.001 2.8 3.6 12.2 0.1270756455828 0.036102098 0.4
afiro 0.01 2.8 3.8 12 0.12707638895 0.01945450558 0
afiro 0.1 2.8 4.4 12 0.1270766100472 0.0553325986 0
agg 0.001 15.8 12 23 0.035645717 1.665991 0
agg 0.01 15.8 12.4 23 0.1803810822 4.3241394 0
agg 0.1 15.8 13.8 23 0.1996938048 10.2106634 0
agg2 0.001 20.6 26.2 53.6 0.094664568 0.0302227282 15.6
agg2 0.01 20.6 12.2 26.6 0.183489666 2.825332006 2
agg2 0.1 20.6 13.8 26.6 0.31286746 5.07462946 28.8
agg3 0.001 20.6 10.2 27.4 0.133549792 0.98392198 32.4
agg3 0.01 20.6 14 25.4 0.183808204 4.7505676 33
agg3 0.1 20.6 14.2 25.2 0.30053 25.5355478 30.4
bandm 0.001 20.2 10 19 0.000000225161542 0.97298358 1.8
bandm 0.01 20.2 9.8 19 0.0041196892616 1.13319632 3.2
bandm 0.1 20.2 11.8 19.6 0.014135233895302 0.64995658 5.8
beaconfd 0.001 20 3.6 14 0.097714860852 0.61656227446 0
beaconfd 0.01 20 6.4 14 0.141751120816 8.98905990512 0.4
beaconfd 0.1 20 7 14 0.164060189734 0.47591091454 0
blend 0.001 8.6 4.2 16 0.00544061752 0.000530666724 2.6
blend 0.01 8.6 4.6 16 0.005477636028 0.00199724728 0
blend 0.1 8.6 7.6 16 0.02731423806 0.0226377252 1
boeing1 0.001 20.2 16 27.4 0.012759034 2.2167058 28
boeing1 0.01 20.2 16.6 27.6 0.0147586332 2.2220476 1.6
boeing1 0.1 20.2 16.6 28 0.081041606 2.1617016 39.6
boeing2 0.001 14.6 15.2 21 0.1844679 6.9880136 0
boeing2 0.01 14.6 14.4 20.8 0.18433618 7.1433668 0
boeing2 0.1 14.6 13.2 20 0.18462308 1.5341246 5
bore3d 0.001 21.2 10 21 0.00000223061184 0.88693624 0
bore3d 0.01 21.2 11 21.6 0.11544673507682 3.41384604 0
bore3d 0.1 21.2 12 21 0.3547573390784 8.06042338 0.2
brandy 0.001 20.6 8.8 19 0.039623248 0.34686414 8.8
brandy 0.01 20.6 9 19 0.046975972 0.79027314 12.4
brandy 0.1 20.6 11.2 18.8 0.502859746 1.01120956 14.4
capri 0.001 20.4 18.4 26.2 0.00016831052 0.0072130768 0
capri 0.01 20.4 17.8 26 0.00016677984 0.007665238 1.6
capri 0.1 20.4 18 26.6 0.25046158722 0.0155090318 0.2
degen2 0.001 20.2 3 17 0.000005645633 0.0000796302 20.8
degen2 0.01 20.2 7 17.2 0.0000031817642 0.84839611872 0
degen2 0.1 20.2 11.2 17 0.1181135960782 1.1345114 4
e226 0.001 20.4 19 24 7.5850646 0.97988628 0.8
e226 0.01 20.4 15.8 23 1.86746298 0.34696046 4.8
e226 0.1 20.4 18.8 22.8 19.8835146 1.933322 12
grow15 0.001 18.4 16.2 25.4 0.1865341 0.000085384567 0
grow15 0.01 18.4 17.2 26.6 0.19973484 0.000854905 0
grow15 0.1 18.4 17.8 28.2 0.22845346 0.00855273388 0
grow7 0.001 20.6 12.2 23.6 0.186796516 0.000016800818 0
grow7 0.01 20.6 14.2 25.8 0.228411068 0.000163084214 0
grow7 0.1 20.6 14.8 25.2 0.246693378 0.0016308457 0
israel 0.001 14.2 8.4 30 0.020295981 0.000346152246 5.6
israel 0.01 14.2 9.8 30.2 0.0286291916 0.00343975728 7.8
israel 0.1 14.2 11.4 30 0.056422872 0.030134059 11.2
kb2 0.001 3.8 4 16.6 0.000000019004656 0.0007842734 2
kb2 0.01 3.8 5 16.6 0.000369616376414 0.00856494636 1.6
kb2 0.1 3.8 8.2 17.2 0.020672638639716 0.1821661314 0.8
lotfi 0.001 21.6 25.8 38 1.7805836 0.120510004 1.8
lotfi 0.01 21.6 24.2 35.8 1.40789576 2.76309842 45.2
lotfi 0.1 21.6 23.8 35.8 1.530596 170.6490454 96.6

Table 5. Numerical performance of LOQO on the Netlib test
suite when warmstarting a problem whose objective function co-
efficients, c, have been modified. Each problem labeled under the
column Problem, δ is the perturbation parameter, and #Pert is
the number of perturbed coefficients. The average iteration counts
for the warmstart and coldstart solution of five perturbed problems
are given, and the last 3 columns are the scaled Euclidean norm of
the distance between the optimal solutions and the Lagrange mul-
tipliers of the initial and the perturbed problem and the number
of changes to the active set.
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Problem δ #Pert WarmIters ColdIters ‖xI − xP ‖ ‖yI − yP ‖ ∆
sc105 0.001 9.4 6 14 0.0000000090200132 0.096662278 0.4
sc105 0.01 9.4 6.6 14.2 0.009727429689914 1.41571990642 0.4
sc105 0.1 9.4 10.6 15.2 0.844300438 5.3586719 9.4
sc205 0.001 18.8 10.2 16.2 0.0100416708095964 7.5806026 3.2
sc205 0.01 18.8 14.4 21.2 3.339876804 192.510708 11.2
sc205 0.1 18.8 14.4 20.2 3.64762244 106.203382 20.4
sc50a 0.001 4.8 3.8 13 0.000000016398826 0.000088376558 1.4
sc50a 0.01 4.8 4 13 0.000000014525946 0.00020353714 0
sc50a 0.1 4.8 7.2 13.4 0.033163870830478 5.762721344 1
sc50b 0.001 4.8 3.8 12 0.000000015517022 0.000094448346 2.4
sc50b 0.01 4.8 4 12 0.000000013537162 0.00019306788 0
sc50b 0.1 4.8 6.8 12.6 0.119834681284491 4.60649102 3.6
scagr25 0.001 20 9.8 29 0.00000285870502 0.00012296934 18
scagr25 0.01 20 9.4 29.2 0.00826375588036 0.00033113884 54.2
scagr25 0.1 20 11.6 29.6 0.039512082 0.00328769164 17.4
scagr7 0.001 14.2 18 26 0.000019408696 0.000068523248 0.6
scagr7 0.01 14.2 18 26 0.00006011668 0.000685447222 0.4
scagr7 0.1 14.2 18.2 26.2 0.0621536287312 0.00720193758 0.2
scfxm1 0.001 20.2 13.2 25 0.017501582 2.5048588 11
scfxm1 0.01 20.2 13.2 25 0.020984438 2.483063 0
scfxm1 0.1 20.2 13 25.8 0.020431872 3.4034368 13
scorpion 0.001 21 2.8 16 0.0000113990926 0.001766280248 1.2
scorpion 0.01 21 4.2 16 0.000000702533632 0.051455088 0
scorpion 0.1 21 6.8 16 0.088872504976634 0.3754302498 4
scsd1 0.001 18.2 5.6 14.2 0.030131356 0.0032454821 0
scsd1 0.01 18.2 5.6 14.2 0.031630776 0.00369138608 0
scsd1 0.1 18.2 6.2 14.2 0.030782104 0.01019002166 0
sctap1 0.001 20.2 12.4 24.4 1.1860689 0.0039026358 7.2
sctap1 0.01 20.2 19.2 23 1.18318768 0.0039616488 2.2
sctap1 0.1 20.2 18 22.2 1.18225046 0.0104209616 1
share1b 0.001 18.4 18 42 0.000361202950494 0.000259397786 0.8
share1b 0.01 18.4 17.6 41.4 0.001467506287294 0.00691697746 3.4
share1b 0.1 18.4 17.4 40.8 0.002776452505214 0.0301112166 0.8
share2b 0.001 8.2 7.4 16.6 0.086333116 0.00016688116 1.4
share2b 0.01 8.2 6.8 16.2 0.113452678 0.00095789916 2
share2b 0.1 8.2 8.8 15.8 0.159204882 0.0103449676 1
stair 0.001 20.4 20.4 19 3.3805094 0.0056217272 1
stair 0.01 20.4 20 19.6 3.8394062 0.0572294056 1.2
stair 0.1 20.4 20.6 21 4.4421358 0.41332886 28.6
stocfor1 0.001 10.6 3 17 0.0000000021162428 0.000097536572 0
stocfor1 0.01 10.6 3 17 0.0000000020014738 0.00045571615 0.6
stocfor1 0.1 10.6 3.4 17 0.0000000137254068 0.004760905648 3.8
tuff 0.001 19 30.6 27.8 0.416179104 39.6999 36.2
tuff 0.01 19 27.6 28.8 0.56144268 42.527566 50
tuff 0.1 19 28.2 31.6 1.5340454 45.267418 84.8
vtp.base 0.001 18.8 19 33.8 0.000000000068848036 11.968334 0
vtp.base 0.01 18.8 19 34.2 0.000000000068848036 11.968334 0
vtp.base 0.1 18.8 19 34.6 0.000000000068848036 11.968334 0

Table 6. Numerical performance of LOQO on the Netlib test
suite when warmstarting a problem whose objective function co-
efficients, c, have been modified. Each problem labeled under the
column Problem, δ is the perturbation parameter, and #Pert is
the number of perturbed coefficients. The average iteration counts
for the warmstart and coldstart solution of five perturbed problems
are given, and the last 3 columns are the scaled Euclidean norm of
the distance between the optimal solutions and the Lagrange mul-
tipliers of the initial and the perturbed problem and the number
of changes to the active set.
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Problem δ #Pert WarmIters ColdIters ‖xI − xP ‖ ‖yI − yP ‖ ∆
adlittle 0.001 20 5.8 18.8 0.23004568 0.0307304172 4
adlittle 0.01 20 7.4 18.8 0.2423504 0.079378044 12.2
adlittle 0.1 20 10.4 17.4 0.26085276 0.2326881 2.2
afiro 0.001 8.6 2.2 12 0.000081411596 0.0012162842 1.4
afiro 0.01 8.6 3.4 12 0.00093170246 0.0098871706 0.2
afiro 0.1 8.6 5.2 11.8 0.0138997684 0.119891346 0.4
agg 0.001 17.8 12 23.2 0.0016293708 1.7770602 0
agg 0.01 17.8 12.4 23.2 0.0023571514 4.1736046 0
agg 0.1 17.8 12.4 23 0.0058083328 3.9331038 0.6
agg2 0.001 18.6 5.6 25.2 0.015322110548 0.00483277902 0
agg2 0.01 18.6 7.2 25.2 0.017689878706 0.06946087488 28.8
agg2 0.1 18.6 8 25.2 0.019425219474 0.34482405216 1.4
agg3 0.001 18.4 6 24 0.020046419958 1.23183767408 0
agg3 0.01 18.4 6.2 24 0.020141893888 0.5744438939 0
agg3 0.1 18.4 6.6 24 0.02136065331 2.50835156138 0
bandm 0.001 18 10 19 0.0001677733578 0.97037126 2.8
bandm 0.01 18 10.6 19.2 0.002256803846 1.01341196 0.2
bandm 0.1 18 12 19 0.02387359544 1.36662542 5.2
beaconfd 0.001 18.2 3 14 0.001084700882 0.00077815982 8.2
beaconfd 0.01 18.2 3.6 14 0.03035784145 0.02878392712 8.4
beaconfd 0.1 18.2 6.6 14.2 0.20251008 1.83049378 4.2
blend 0.001 19.6 6 16 0.0236584826 0.00125026344 0
blend 0.01 19.6 8.2 16.4 0.028081222 0.0036489594 0.2
blend 0.1 19.6 11 15.6 0.068060578 0.06687189 3.2
boeing1 0.001 17.4 16 27 0.0058299596 2.1942368 0
boeing1 0.01 17.4 16 27 0.0057763142 2.0608648 18.4
boeing1 0.1 17.4 16.4 26.8 0.0085252768 2.2106048 24.6
boeing2 0.001 19.8 14.8 20.8 0.162697554 5.1748438 0.4
boeing2 0.01 19.8 13.8 20.4 0.170450074 1.54258968 10.2
boeing2 0.1 19.8 14.2 21.2 0.171995624 1.23068666 3.4
bore3d 0.001 19.4 28 21 0.0785505912382 213.37428428 0
bore3d 0.01 19.4 28 21 0.07719931111 3113.18141414 0
bore3d 0.1 19.4 28.2 22.2 0.09650122318 27539.2610609 8
brandy 0.001 20.8 9.4 19 0.099916238 0.40077668 9.8
brandy 0.01 20.8 9.2 19.2 0.109523462 0.3771333 10.6
brandy 0.1 20.8 13.8 18.8 1.632442678 3.41448172 14
capri 0.001 18.4 17.4 25.4 0.000421063788 0.0138256384 2
capri 0.01 18.4 17.8 25.2 0.00401641782 0.0147313122 2.6
capri 0.1 18.4 18.4 25.8 0.0441783178 0.0349884738 10.8
e226 0.001 18.2 18.8 24.2 8.11769 1.55227514 1.4
e226 0.01 18.2 19.2 24 10.1792914 1.2938678 0.6
e226 0.1 18.2 15.8 23 3.7509858 0.43574222 4.8
grow15 0.001 19.2 16.2 25.4 0.17699266 0.0001555718526 0
grow15 0.01 19.2 16.8 26.2 0.20803348 0.064972741064 0
grow15 0.1 19.2 17.2 26.2 0.2168174 0.06225957088 0
grow7 0.001 19.2 11.6 24.4 0.17873502 0.0000501711682 0
grow7 0.01 19.2 13.8 26.4 0.26178442 0.000501958564 0
grow7 0.1 19.2 15.8 26.4 0.27726752 0.03709622704 0
israel 0.001 18.6 7.8 29.4 0.0024163726 0.0000163038748 4.2
israel 0.01 18.6 8 29.2 0.0039731858 0.000163013298 0.2
israel 0.1 18.6 11 28.4 0.0394124382 0.00234963732 5.6
kb2 0.001 20.6 9.8 17.2 0.00210601376 0.00577251792 0
kb2 0.01 20.6 10.2 17.2 0.0053032874 0.014157776 0.8
kb2 0.1 20.6 16.8 16.6 0.265510688 1880.918933588 2.4
lotfi 0.001 19.4 30.6 39.8 1.6736976 0.037889778 0.8
lotfi 0.01 19.4 25.6 38 1.602055 0.038145572 0.8
lotfi 0.1 19.4 25.6 42.2 1.39840218 0.060610612 7.6
recipe 0.001 18.4 11.2 13 4.2583008 9.4780032 0
recipe 0.01 18.4 11.2 13 4.8460016 8.323369 0
recipe 0.1 18.4 11.4 13.2 5.6405112 10.6306476 0

Table 7. Numerical performance of LOQO on the Netlib test
suite when warmstarting a problem whose constraint coefficients,
A, have been modified. Each problem labeled under the column
Problem, δ is the perturbation parameter, and #Pert is the num-
ber of perturbed coefficients. The average iteration counts for the
warmstart and coldstart solution of five perturbed problems are
given, and the last 3 columns are the scaled Euclidean norm of the
distance between the optimal solutions and the Lagrange multi-
pliers of the initial and the perturbed problem and the number of
changes to the active set.
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Problem δ #Pert WarmIters ColdIters ‖xI − xP ‖ ‖yI − yP ‖ ∆
sc105 0.001 20 6.4 14 0.00069372118 0.153107678 0
sc105 0.01 20 7.4 14 0.0069127822 1.1976098 0
sc105 0.1 20 10.8 14.2 0.06527052 6.4907776 0.4
sc205 0.001 20 9.4 16 0.00027682266 2.02464148 0
sc205 0.01 20 9 16 0.002766188 0.423780368 0
sc205 0.1 20 10.8 16.6 0.02770365 1.7525939 1.2
sc50a 0.001 13 3.4 13 0.00037282702 0.000101846704 4.6
sc50a 0.01 13 4.4 13 0.0037243434 0.00089431732 4.8
sc50a 0.1 13 9.2 13.4 0.036835694 4.1847840722 1.6
sc50b 0.001 11.6 3.4 12 0.00046263898 0.000093891172 8.4
sc50b 0.01 11.6 4.2 12 0.0046249472 0.00037081124 0.8
sc50b 0.1 11.6 6 12 0.04618263 0.707129808 0
scagr25 0.001 18.2 9.6 29 0.00020719086 0.00021514086 18
scagr25 0.01 18.2 11.2 28.8 0.0149594926 0.00358720982 3.2
scagr25 0.1 18.2 15.4 30 0.045162464 0.0560662974 36.4
scagr7 0.001 20.4 18.4 26 0.00134188584 0.000114529798 0.8
scagr7 0.01 20.4 18 26 0.0049032864 0.00118178268 0
scagr7 0.1 20.4 18.2 25.4 0.201980066 0.0126154122 0.2
scfxm1 0.001 18.6 13 25 0.01682499 2.6291784 3.2
scfxm1 0.01 18.6 13 25 0.015106814 2.118531 0
scfxm1 0.1 18.6 12.8 25.4 0.01846191 2.4163766 3.8
scsd1 0.001 18.4 6.2 14.2 0.08413639 0.00715237406 0
scsd1 0.01 18.4 6.4 14.2 0.077907088 0.00689536048 0
scsd1 0.1 18.4 7 14.2 0.088189282 0.02312750224 0
sctap1 0.001 18.8 10.6 20.4 0.26710713912 0.00349713106 2.4
sctap1 0.01 18.8 12.8 19.8 0.273224044 0.0043261482 3.2
sctap1 0.1 18.8 14.2 19 0.273168796 0.050630594 0.4
share1b 0.001 19.4 18 41 0.0014607127582 0.00149440534 0
share1b 0.01 19.4 18.2 39.8 0.012810718898 0.0359196054 8
share1b 0.1 19.4 20.2 42.2 0.0988513284 0.4266846438 3
share2b 0.001 19 6 15.6 0.0374120312 0.001074656708 2.8
share2b 0.01 19 7.2 15.6 0.0669569982 0.01214286038 0.4
share2b 0.1 19 13.4 15.6 0.27288212 0.1687331604 4.6
stair 0.001 18.2 21 19 3.0647778 0.0012958324 0
stair 0.01 18.2 20.2 19 3.0503776 0.0018312654 4
stair 0.1 18.2 20.4 19.2 3.4561404 0.0242050408 0.4
stocfor1 0.001 20.2 4.6 17.2 0.000160629168 0.01661990654 0.8
stocfor1 0.01 20.2 4.8 17.4 0.00160079038 0.0216713722 1.8
stocfor1 0.1 20.2 8.2 17.8 0.0155442492 0.03954027 3
tuff 0.001 19 29.2 27 0.0049594306 28.749366 0
tuff 0.01 19 29.8 27.2 0.00521817 29.915192 0
tuff 0.1 19 26.8 24.6 0.0135730138 28.544668 7.6
vtp.base 0.001 19 19 34.2 0.000075436772 11.478906 0.2
vtp.base 0.01 19 19 35 0.00075576422 10.774968 0.2
vtp.base 0.1 19 18.2 34.8 0.00765695436 11.2667912 0.6

Table 8. Numerical performance of LOQO on the Netlib test
suite when warmstarting a problem whose constraint coefficients,
A, have been modified. Each problem labeled under the column
Problem, δ is the perturbation parameter, and #Pert is the num-
ber of perturbed coefficients. The average iteration counts for the
warmstart and coldstart solution of five perturbed problems are
given, and the last 3 columns are the scaled Euclidean norm of the
distance between the optimal solutions and the Lagrange multi-
pliers of the initial and the perturbed problem and the number of
changes to the active set.
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Problem WarmIters ColdIters ∆
Diet-2 6 11 1
Diet-3 6 10 1
Diet-4 6 10 1
Diet-5 6 10 1
Diet-6 6 11 1
Diet-7 6 11 1
Diet-8 6 10 2
Diet-9 6 11 1
Diet-10 7 11 1
Diet-11 6 10 1
HL415-2 7 12 1
HL415-3 8 11 2
HL415-4 (inf) (inf) (inf)
HL415-5 9 10 1
HL415-6 7 11 1
HL415-7 7 11 1
Synthes3-2 11 15 5
Synthes3-3 9 14 4
Synthes3-4 11 15 1
Synthes3-5 9 14 2
Synthes3-6 9 13 3
Synthes3-7 10 13 1
Synthes3-8 10 15 2
Synthes3-9 9 13 3
Synthes3-10 11 14 1
Synthes3-11 10 16 4
Synthes3-12 9 15 4
Synthes3-13 10 15 1
Synthes3-14 9 14 2
Synthes3-15 10 15 2

Table 9. Numerical performance of LOQO on the LPs at each
node of a branch and bound tree arising in the solution of three
problems. Each problem is warmstarted from the optimal solution
of its parent problem. The iteration counts for the warmstart and
coldstart solution of each problem are given, as well as the number
of changes to the active set from the parent node’s problem. (inf)
indicates that the subproblem was found to be infeasible.

Problem WarmIters ColdIters ∆
Master-2 6 11 5
Master-3 6 11 5
Master-4 6 11 5

Table 10. Numerical performance of LOQO on the master prob-
lems of the cutting stock model. Each problem has one additional
variable which is initialized to 0. All other primal and dual vari-
ables and slacks are initialized from the optimal solution of the
previous master problem. The iteration counts for the warmstart
and coldstart solution of each master problem are given, as well as
the number of changes to the active set from the previous master
problem.
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