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Abstract. ID3’s information gain heuristic is well-known to be biased towards multi-valued attributes. This
bias is only partially compensated for by C4.5’s gain ratio. Several alternatives have been proposed and are
examined here (distance, orthogonality, a Beta function, and two chi-squared tests). All of these metrics are
biased towards splits with smaller branches, where low-entropy splits are likely to occur by chance. Both classical
and Bayesian statistics lead to the multiple hypergeometric distribution as the exact posterior probability of the
null hypothesis that the class distribution is independent of the split. Both gain and the chi-squared tests arise in
asymptotic approximations to the hypergeometric, with similar criteria for their admissibility. Previous failures
of pre-pruning are traced in large part to coupling these biased approximations with one another or with arbitrary
thresholds; problems which are overcome by the hypergeometric. The choice of split-selection metric typically
has little effect on accuracy, but can profoundly affect complexity and the effectiveness and efficiency of pruning.
Empirical results show that hypergeometric pre-pruning should be done in most cases, as trees pruned in this way
are simpler and more efficient, and typically no less accurate than unpruned or post-pruned trees.
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1. Introduction and Background

Top-Down Induction of Decision Trees, TDIDT (Quinlan, 1986), is a family of algorithms
for inferring classification rules (in the form of a decision tree) from a set of examples.
TDIDT makes a greedy choice of a candidate split (decision node) for a data set and
recursively partitions each of its subsets. Splitting terminates if all members of a subset are
in the same class or the set of candidate splits is empty.

Some algorithms, e.g., ID3 (Quinlan, 1986), have included criteria to stop splitting when
the incremental improvement is deemed insignificant. These stopping criteria are sometimes
collectively referred to as pre-pruning criteria. Other algorithms have added recursive
procedures for post-pruning (replacing a split with a terminal node). Some procedures
described as post-pruning go beyond mere pruning by replacing a split with some other
split, typically with a child of the replaced node, as in C4.5 (Quinlan, 1993).

Note that there are more than1013 ways to partition a set containing only 20 items.
Practical algorithms can explore only a small portion of such a vast space. Greedy hill-
climbing is a general strategy for reducing search, but here it must operate in the context of
exploring only a tiny subset of the possible splits. TDIDT builds complex trees by recursive
refinement of simpler trees, and it explores only simple splits at each decision node. At each
decision node, split selection is addressed as two separate but interdependent subproblems:

1. choosing a set of candidate splits

2. selecting a split (or, perhaps, none of them, if pre-pruning is used)
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The earliest TDIDT algorithms such as CART (Breiman, Friedman, Olshen, & Stone,
1984), ID3 (Quinlan, 1986), and C4.5 (Quinlan, 1993) restricted the candidates to splits
on the values of a single attribute having a small number of distinct values and only binary
splits for continuous attributes. More recent algorithms extend the candidate space in
various ways, including lookahead (e.g., Elder, 1995; Murthy & Salzberg, 1995; Quinlan
& Cameron-Jones, 1995), multi-way splits for continuous attributes (e.g., Fayyad & Irani,
1992b, 1993; Fulton, Kasif, & Salzberg, 1995), combinations of two discrete attributes
(Murphy & Pazzani, 1991), and linear combinations of continuous attributes (e.g., John,
1995; Murthy, Kasif, Salzberg, & Beigel, 1993; Park & Sklansky, 1990).

Choosing a split from among the candidates takes place in the context of, and may
interact strongly with, the choice of a set of candidates. At each decision point, both of
these processes take place in the context of all of the choices made at higher levels in the
tree. The interactions between the two phases of split selection, between the two phases
and the context created by earlier choices, and between the two phases, the context, and the
greedy search strategy create a very complex environment; one in which it is very difficult
to determine what the impact would be of changing some aspect of a procedure. It is equally
difficult to determine which aspects of a procedure may be responsible for poor or good
performance on any particular problem.

An important facet of the changing context for split selection is that the mean subset size
decreases with the depth of the decision node. A fundamental principle of inference is that
the degree of confidence with which one is able to choose between alternatives is directly
related to the number of examples. There is thus a strong tendency for inferences made
near the leaves of a TDIDT decision tree to be less reliable than those made near the root.

The strong interaction between the choice of the set of candidates and the selection among
candidates is exemplified by pre-pruning the exclusive-or (XOR) of two Boolean attributes.
Neither attribute, taken alone, appears to have any utility in separating the classes; yet the
combination of the two will completely separate the classes. If only single-attribute splits
are allowed, and pre-pruning based on apparent local utility is used, the resulting tree will
have a single leaf of only 50% accuracy (assuming equally frequent classes).

This example is often cited as an argument against pre-pruning. The difficulty is actually
the result of the interaction of pre-pruning and allowing only single-attribute splits, and
one could easily argue against a very restricted choice of a candidate set. For any given
set of candidates, pre-pruning will tend to preclude discovering a significantly better tree
for problems where the correct concept definition contains compound features similar to
XOR1. There are, however, at least two approaches which might lead to discovering a better
decision tree. One approach is not to pre-prune but, rather, to post-prune as appropriate.
The other approach is to expand the set of candidates. Both of these approaches increase the
learning time — if both ultimately discover equivalent trees, we should prefer the approach
entailing the least additional work.

Though we have mentioned expanding the candidate set as a possible means of dealing
with XOR and other difficulties arising from exploring only single-attribute splits, and will
touch on it again at the end of the paper, this paper does not explore this phase of split
selection experimentally. The main focus of this paper is on the second phase of split selec-
tion, the use of heuristic functions to select a split from among a set of candidates. Another
objective is to explore causes (other than the XOR difficulty) of the poor performance of
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Figure 1. Alternative Splits

pre-pruning in early empirical studies (Breiman, et al., 1984; Fisher & Schlimmer, 1988;
Quinlan, 1986).

Evaluation criteria for split selection involve tradeoffs of accuracy and complexity. There
is no single measure which combines these appropriately for every application. Measures
of complexity include the number of leaves and their average depth (weighted according to
the sample fraction covered by each leaf), and the time complexity of the algorithm. The
following terms will be used to distinguish between these: complexity≡ number of leaves;
efficiency≡ average depth (expected classification cost); and practicality≡ tree building,
pruning, and cross-validation time.

In referring to classifier accuracy, an important distinction is made between thepopulation
(all of the instances in the problem’s domain) and thesample(the classifier’s training/testing
data). The dominant goal is usually to infer trees where the population instances covered by
each leaf are, as nearly as possible, members of the same class. If each leaf is labeled with
some predicted class, the accuracy of the leaf is defined as the percentage of the covered
population instances for which the class is correctly predicted. The accuracy of the tree
is defined as the average accuracy of the leaves, weighted according to the fraction of the
population covered by each leaf. In most cases, accuracy can only be estimated, and it is
important to report a variance or confidence interval as well as the point estimate. Typically,
cross-validation (Breiman, et al., 1984) is used to estimate accuracy.

2. Impact of Different Choices Among Candidate Splits

Figure 1 shows two different decision trees for the same data set, choosing a different split
at the root. In this case, the accuracy of the two trees is the same (100%, if this is the entire
population), but one of the trees is more complex and less efficient than the other. For this
problem, the set of candidate splits is sufficient to fully separate the classes, and each of the
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candidate splits is necessary. The choice of one split over another is a matter of complexity
and efficiency, rather than of accuracy.

A set of candidate splits might be insufficient because of missing data, noise, or some
hidden feature. After introducing noise2 into the population of Figure 1, the average results
of splitting onA first versus splitting onB first are shown in Table 1a (averaged over 100
independent samples randomly drawn from this noisy population, each sample of size 100).
Here also, the difference between the alternative split orderings is a matter of complexity
and efficiency, not accuracy.

Returning to the noise-free population of Figure 1, if we add an irrelevant variable3 X
and split onA first thenB, or onB first thenA, we get the same trees shown in Figure 1
(the first two lines in Table 1b) and attributeX will not be used. The effects of splitting on
attributeX first, or splitting onX between the splits onA andB are also shown in Table 1b.
Again, the difference between the alternative split orderings is a matter of complexity and
efficiency, not accuracy.

Rather than the irrelevant attributeX, suppose that we added a binary attributeY , which
is equal to the classification 99% of the time, but opposite to the class 1% of the time,

Table 1.Effects of Split Order

a. Effects of Noise

Error Rate No. of Nodes No. of Leaves Wtd. Avg. Depth
A first 2.5% 9 6 2
B first 2.5% 8.7 5.4 1.8

b. Effects of An Irrelevant/Redundant Attribute

Error Rate No. of Nodes No. of Leaves Wtd. Avg. Depth
A,B 0 9 6 2
B,A 0 8 5 1.8
X,A,B 0 19 12 3
X,B,A 0 17 10 2.8

X,AB/BA 0 18 11 2.9
X,BA/AB 0 18 11 2.9
A,X,B 0 19 12 3
B,X,A 0 16 9 2.5

c. Combined Effects of Noise and Redundancy

37.5% Noise Level 10% Noise Level
Error No. of No. of Avg. Error No. of No. of Avg.

% Nodes Leaves Depth % Nodes Leaves Depth
A,B,Z 2.6 13.3 8.2 2.4 2.8 13.3 8.2 2.4
B,A,Z 2.8 13.0 7.5 2.8 2.8 13.0 7.5 2.2
A,Z,B 2.8 19.0 12.0 3.0 4.0 18.1 11.4 3.0
B,Z,A 3.0 17.2 9.6 2.6 3.9 16.3 9.2 2.5
Z,A,B 2.8 19.0 12.0 3.0 4.3 18.1 11.4 3.0
Z,B,A 2.8 17.7 10.3 2.8 3.9 16.6 9.8 2.7

Z,AB/BA 2.9 18.3 11.1 2.9 3.9 17.3 10.6 2.8
Z,BA/AB 2.8 18.3 11.1 2.9 3.9 17.7 10.8 2.9



AN EXACT PROBABILITY METRIC 261

randomly. Splitting on this attribute alone would give 99% accuracy, so it is clearly relevant,
but redundant (since the pair of attributesA andB give 100% accuracy). The results for
splitting onA, B, andY in different orders are identical to those given in Table 1b forA,
B, andX.

As a final example in this vein, consider the effects of adding both noise and irrelevant
or redundant attributes. Add a third attributeZ to the noisy population of Table 1a, one
that is just a noisier version of the original attribute underlying the noisy attributeA. If the
level of noise in this attribute is varied, its behavior ranges from being irrelevant at a 50%
noise level to being redundant as its noise level approaches that ofA (1%). (Note that, even
at 1% noise, attributeZ taken alone is less predictive of the class than was the redundant
attributeY in the previous paragraph). The effects of splitting onA, B, andZ in various
orders are shown in Table 1c. When attributeZ is more nearly irrelevant (37.5% noise),
the order of the attribute splits is largely a matter of complexity and efficiency, rather than
accuracy. AsZ becomes more relevant, but redundant (10% noise), splitting on attribute
Z before or between the splits on attributesA andB has a significant negative impact on
accuracy as well as on efficiency and complexity.

From the foregoing examples, for unpruned trees, the order in which various splits are
made is largely a matter of complexity and efficiency, rather than of accuracy. Accuracy
may be significantly affected when attributes are noisy and strongly correlated (i.e., redun-
dant). Insofar as the accuracy of unpruned trees is concerned, the ordering of the splits is
not a significant factor in most cases. This is one of the factors underlying the frequent
observations (e.g., Breiman, et al., 1984; Fayyad & Irani, 1992a) that various heuristic
functions for choosing among candidate splits are largely interchangeable.

It is important to note that if significant differences in accuracy occur, the difference in
accuracy would typically be of overriding importance. When the accuracies of various trees
are equivalent, however, there is certainly a preference for simpler and more efficient trees.
The differences in complexity and efficiency in the examples given above, and indeed in most
of the applications in the UCI data depository (Murphy & Aha, 1995), are relatively minor.
For more complex applications involving scores of attributes and thousands of instances,
these effects will be compounded, and may have a much greater impact. It should also
be noted that all of these differences in accuracy and complexity are being explored in
the context of having severely restricted the set of candidate splits for the sole purpose of
reducing an intractable problem to manageable proportions. Differences in complexity and
efficiency may be greatly magnified as the set of candidate splits is expanded.

Liu and White (1994) discuss the importance of discriminating between attributes which
are truly ‘informative’ and those which are not. The examples in Figure 1 and Table 1 do
not consider the possible effects of pruning. Consider the effects of pruning in Table 1c.
From Table 1a, we know that splitting on the noisy attributesA andB alone (and ignoring
attributeZ) achieves an error rate of 2.5%. Subsequently splitting on attributeZ does not
improve accuracy (it appears to be harmful), and adds significantly to the complexity of the
trees. There is strong evidence that the final split on attributeZ overfits the sample data
and should be pruned.

When the split on attributeZ does not come last, then simple pruning will not correct
the overfitting (it would, in fact, be very harmful). The pruning strategy used in Quinlan’s
(1993) C4.5 algorithm, replacing the split with one of its children and merging instances
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from the other children, would be beneficial here. This kind of tree surgery is by far less
practical than simple pruning (Martin & Hirschberg, 1996a), and could be avoided if the
candidate selection heuristic chose to split onZ last. The presence of this kind of tree
surgery in an algorithm suggests that the algorithm’s heuristic does not choose splits in the
best order from the point of view of efficient pruning.

This strong dependence of the effectiveness and efficiency of either pre- or post-pruning
on the order in which the splits are made appears to have been overlooked in previous
machine-learning studies comparing various split selection metrics, e.g., CART (Breiman,
et al., 1984) and Fayyad and Irani (1992a), which have consistently found various metrics to
be largely interchangeable with regard to the resulting tree’s accuracy. The examples given
here indicate that different split orderings can profoundly affect how effective a simple pre-
or post-pruning algorithm will be, and whether more elaborate and expensive algorithms
such as C4.5’s can be avoided.

Thus, we suggest that the following three criteria should be considered in choosing a
heuristic:

1. It should prefer splits that most improve accuracy and avoid those which are harmful.

2. For equivalent accuracies, it should prefer splits leading to simpler and more efficient
trees.

3. It should order the splits so as to permit effective simple pruning.

3. Functions for Selection Among Candidates

A natural approach is to label each of the split subsets according to their largest class and
choose the split which has the fewest errors. There are several problems with this approach,
see, e.g., CART (Breiman, et al., 1984), the most telling being that it simply has not worked
out well empirically.

Various other measures of split utility have been proposed. Virtually all of these measures
agree as to the extreme points, i.e., that a split in which the classes’ proportions are the same
in every subset (and, thus, the same as in the parent set) has no utility, and a split in which
each subset is pure (each contains only one class) has maximum utility. Intermediate cases
may be ranked differently by the various measures. Most of the measures fall into one of
the following categories:

1. Measures of the difference between the parent and the split subsets on some function
of the class proportions (such as entropy). These measures emphasize the purity of the
subsets, and CART (Breiman, et al., 1984) terms theseimpurity functions.

2. Measures of the difference between the split subsets on some function of the class
proportions (typically a distance or an angle). These measures emphasize thedisparity
of the subsets.

3. Statistical measures of independence (typically aχ2 test) between the class propor-
tions and the split subsets. These measures emphasize the weight of the evidence, the
reliability of class predictions based on subset membership.
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Suppose, for instance, that we randomly choose 64 items from a population and observe
that 24 items are classified positive and 40 negative. If we then observe that 1 of the
positive items is red and all other items (positive or negative) are blue, how reliable is
an inference that all red items are positive, or even a weaker inference that red items
tend to have a different class than blue ones?

Fayyad and Irani (1992a) cite several studies showing that various impurity measures are
largely interchangeable, i.e., that they result in very similar decision trees, and CART
(Breiman, et al., 1984) finds that the final (unpruned) tree’s properties are largely insensitive
to the choice of a splitting rule (utility measure).

A great variety of differing terminology, representations, and notation for splits is used
in the machine learning literature. To facilitate comparisons of the different metrics, only
one representation and notation is used here. A convenient representation for splits is a
contingency, or cross-classification, table:

sub-1 · · · sub-V Total
cat-1 f11 · · · f1V n1

...
...

. . .
...

...
cat-C fC1 · · · fCV nC
Total m1 · · · mV N

C is the number of categories
V is the number of subsets in the split
mv is the no. of instances in subsetv
fcv is the no. of those which are in classc
N is the total no. in the parent
nc is the total no. in classc

3.1. Approximate Functions for Selection Among Candidates

Variants of the information gain impurity heuristic used in ID3 (Quinlan, 1986) have become
thede factostandard metrics for TDIDT split selection. Information gain is the difference
(decrease) between the entropy at the parent and the weighted average entropy of the subsets.

gain =

(
C∑
c=1

[
−

(nc
N

)
log2

(nc
N

)])
(1)

−
(

V∑
v=1

(mv

N

) C∑
c=1

[
−

(
fcv
mv

)
log2

(
fcv
mv

)])
The gain ratio function used in C4.5 (Quinlan, 1993) partially compensates for the known

bias of gain towards splits having more subsets (largerV ).

gain ratio= gain

/
V∑
v=1

[
−

(mv

N

)
log2

(mv

N

)]
(2)

Lopez de Mantaras (1991) proposes a different normalization, a distance metric (1− d)

1− d = gain

/
V∑
v=1

C∑
c=1

[
−

(
fcv
N

)
log2

(
fcv
N

)]
(3)
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Fayyad and Irani (1992a) give an orthogonality (angular disparity) metric for binary
attributes

ORT = 1−
(

C∑
c=1

fc1 · fc2

) / [(
C∑
c=1

f2
c1

) (
C∑
c=1

f2
c2

)]1/2

(4)

Unlike gain ratio and1− d, ORT is not a function of gain.
Buntine (1990) derives a Beta-function splitting rule

e−W (α) =
Γ(Cα)V

Γ(α)CV

V∏
v=1

∏C
c=1 Γ(fcv + α)
Γ(mv + Cα)

(5)

The parameter,α, is user-specified (typicallyα = 0.5 or α = 1), and describes the
assumed prior distribution of the contingency table cells. Information gain appears as part
of an asymptotic approximation to this function4.

In addition to the above heuristics from the machine learning literature, the analysis of
categorical data has long been studied by statisticians. The Chi-squared statistic (Agresti,
1990)

X2 =
C∑
c=1

V∑
v=1

(fcv − ecv)2
ecv

, whereecv = (nc mv/N) (6)

is distributedapproximatelyasχ2 with (C − 1) × (V − 1) degrees of freedom5. The
quantitiesecv are the expected values of the frequenciesfcv under thenull hypothesis
that the class frequencies are independent of the split. This test is admissible6 only when
Cochran’s criteria(Cochran, 1952) are met (all of theecv are greater than 1 and no more
than 20% are less than 5). We note that because of the recursive partitioning inherent in
TDIDT, Cochran’s criteriacannotbe satisfied by all splits in a tree of depth> log2(N0/5)
(whereN0 is the size of the tree’s training set), and the criteria are unlikely to be satisfied
even in shallower trees with unbalanced splits.

The Likelihood-Ratio Chi-squared statistic (Agresti, 1990)

G2 = 2
C∑
c=1

V∑
v=1

fcv ln
(
fcv
ecv

)
(7)

is alsoapproximatelyχ2 with (C − 1) × (V − 1) degrees of freedom. The convergence
of G2 is slower thanX2, and theχ2 approximation forG2 is usually poor whenever
N < 5 CV (Agresti, 1990), as was also the case forX2.

Replacingecv by (nc mv/N) in Equation 7 and rearranging the terms leads toG2 =
2 ln(2)N gain. In the arguments supporting adoption of information gain, minimum de-
scription length (MDL), and general entropy-based heuristics, the product of the parent set
size and the information gain from splitting (N × gain) is approximately the number of
bits by which the split would compress a description of the data. The gain approximation
is closely related to conventional maximum likelihood analysis, and message compression
has a limitingχ2 distribution that converges less quickly than the more familiarX2 test.
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Mingers (1987) discusses theG2 metric, and White and Liu (1994) recommend that theχ2

approximation to eitherG2 or X2 be used instead of gain, gain ratio, etc. We note again
that Cochran’s criteria for applicability of theχ2 approximation are seldom satisfied for all
splits in a decision tree.

3.2. An Exact Test

Fisher’s Exact Test for2× 2 contingency tables (Agresti, 1990) is based on the hypergeo-
metric distribution, which gives the exact probability of obtaining the observed data under
the null hypothesis, conditioned on the observed marginal totals (nc andmv).

P0 ≡
(
n1

f11

) (
n2

f21

) / (
N
m1

)
(8)

The achieved level of significance,α (the confidence level of the test is1 − α), is the
sum of the hypergeometric probabilities for the observed data and for all hypothetical data
having the same marginal totals (nc andmv) which would have given a lower value for
P0. Fisher’s test is uniformly the most powerful unbiased test (Agresti, 1990), i.e., in the
significance level approach to hypothesis testing, no other test will out-perform Fisher’s
exact test (the power of a test is the probability that the null hypothesis will be rejected
when some alternative hypothesis is really true).

White and Liu (1994) note that Fisher’s exact test should be used for smallecv instead of
theχ2 approximation, and suggest that a similar test for larger tables could be developed.
The extension of Fisher’s test for tables larger than2 × 2 is the multiple hypergeometric
distribution (Agresti, 1990)

P0 =

(∏C
c=1 nc!
N !

)
V∏
v=1

(
mv!∏C
c=1 fcv!

)
(9)

This exact probability expression can be derived either from classical statistics, as the prob-
ability of obtaining the observed data given that the null hypothesis is true (Agresti, 1990),
or from Bayesian statistics (Martin, 1995), as the probability that the null hypothesis is
true given the observed data. The Bayesian derivation ofP0 differs from Buntine’s Beta
derivation primarily by conditioning on both the row and column totals of the contingency
table, and by eliminating theα parameter.

For choosing among several candidate splits of the same set of data,P0 is a more ap-
propriate metric than the significance level. If we are seeking the split for which it is least
likely that the null hypothesis is true, that is measured directly byP0, whereas significance
measures the cumulative likelihood of obtaining the given split or any more extreme split.
(This is consistent with Minger’s (1987) suggested use ofG2).

The following approximate relationships can be derived (Martin, 1995), showing thatX2,
G2, and gain arise as terms in alternative approximations to the statistical reliability of class
predictions based on split subset membership (split reliability):

2 ln(2) N gain≈ −2 ln(P0) − (C − 1)(V − 1) ln(2πN)
+ (terms increasing as the interaction sum of squares)∗ (10)
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X2 ≈ −2 ln(P0) − (C − 1)(V − 1) ln(2πN)
+ (terms increasing as the main-effects sum of squares)∗ (11)

∗In neither case should it be assumed that these terms vanish, even asN→∞.
Both factors are positive, indicating that these measures tend to overestimate the
reliability of very non-uniform splits. The sum of squares terminology used here
arises in analysis of variance (ANOVA) — main-effects refers to the variances of
the marginal totals,mv andnc, and interaction refers to the additional variance of
thefcv terms over that imposed by themv andnc totals.

3.3. Some Other Measures of Attribute Relevance

This section reviews two noteworthy measures of attribute relevance which are not intended
to be used for selecting a split attribute or for stopping, but rather to screen out irrelevant
attributes or to predict whether stopping would result in reduced accuracy.

Fisher and Schlimmer (1988) propose a variation of Gluck and Corter’s (1985)category
utility measure (which is itself the basis of Fisher’s (1987) COBWEB incremental learning
system):

F-S= average of
∑
v

{
mv

N

∑
c

[(
fcv
mv

)2

−
(nc
N

)2
]}

Category utility expresses the extent to which knowledge of one attribute’s value predicts
the values of all of the other attributes (including the class). This variant (F-S) focuses on
predicting only the class, and averages the utility of the other attributes in this regard. F-S
is not proposed for choosing the split feature, nor for stopping, but to determine the average
relevance of a candidate set as a predictor of whether a stopped tree would be less accurate
than an unpruned tree (using information gain for splitting andχ2 for stopping).

In that same context, Fisher (1992) proposes using the average value of Lopez de Mantaras
(1991)(1− d) distance measure (Equation 3), rather than F-S, as the predictor for(1− d)-
splitting andχ2-stopping. Thoughd has the mathematical properties of a distance metric,
it is perhaps easier to understand in information-theoretic terms. Maximizing information
gain minimizes the average number of bits needed to specify the class once it is known
which branch of the decision tree was taken. A similar question asks how many bits are
needed on the average to specify the branch given the class.d is the sum of the number of
bits needed to specify the class knowing the branch and the number needed to specify the
branch knowing the class, normalized to the interval [0,1]. Maximizing(1− d) minimizes
this collective measure.

Kira and Rendell’s (1992) RELIEF algorithm proposes a somewhat different measure (K-
R), again not for choosing the split feature, nor for stopping, but for eliminating irrelevant
attributes from the candidate set.

K-R = average overm randomly chosen items,i, of:∑ [
diff(i,Mi)2 − diff(i,Hi)2

]
(12)
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whereHi is the Euclidean nearest neighbor which has the same class as instancei; Mi is
the nearest neighbor which has the opposite class from instancei; for a nominal attribute

diff(i, j) =
{

0, if instancesi andj have the same value
1, if instancesi andj have different values

and, for a numeric attribute

diff(i, j) = |value(i)− value(j) | / | range|

This K-R measure is nondeterministic because of the random choice ofm instances from
the sizeN sample, and because of tie-breaking when choosingHi andMi. This nondeter-
minism can lead to a very high variance of K-R for small data sets, and in some cases the
decision whether to exclude an attribute from the candidate set can change depending on
the random choices made.

Kononenko (1994) proposes extensions of K-R as metrics for choosing the split attribute,
primarily lettingm = N for small datasets and averaging overk nearest instancesHi and
k nearestMi. Unfortunately, Kononenko’s paper mis-states Kira and Rendell’s formula
(compare Equation 12) as:

K-R = average overm randomly chosen items,i, of:∑
[diff(i,Mi)− diff(i,Hi)]

which could have a profound effect for numeric attributes (though not for the binary at-
tributes tested by Kononenko). Kononenko’s results indicate that a localized metric such as
K-R may have an advantage in problem domains such as parity, where XOR-like features
are common. However, neither Kononenko nor Kira and Rendell seem to have tested their
proposed measures on numeric data, so that it is not clear how well these measures will
work for numeric data.

4. Correlations Among the Various Measures

Values of each of the primary measures (P0, gain, gain ratio, distance, orthogonality, chi-
squared, and Beta) were calculated for over 1,0002 × 2 tables7. These data (see Martin,
1995) confirmed the analyses given above (see the discussions around Equations 6 through
11 in Sections 3.1 and 3.2):

• when Cochran’s criteria are satisfied (in this case, alleij ≥ 5), G2 ≈ X2 andX2 ≈
−2.927 − 2 ln(P0); when they are not,X2 andG2 tend to be spuriously high, and
overestimate split reliability

• a similar linear relation toln(P0) is found for the other measures, with an even stronger
tendency to overestimate split reliability whenX2 ≈ χ2 is not valid

• very high values of information gain and the other measures occur frequently when
the null hypothesis cannot be rejected(P0 ≥ 0.5) — occurrence of these high values
is strongly correlated with circumstances under which theX2 ≈ χ2 approximation is
invalid
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Table 2.A Troublesome Data Set

Cat Attr A Attr B Attr C Attr D Attr E Attr F Attr G Attr H

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
P 23 1 17 7 19 5 3 21 11 13 18 6 15 9 9 15
N 40 0 34 6 35 5 10 30 25 15 35 5 31 9 21 19

Total 63 1 51 13 54 10 13 51 36 28 53 11 46 18 30 34

Attr min info gain 1− d ORT W(1) G2 X2 P0

eij gain ratio ÷N

A ¶ 0.4 .022 .193 .021 .502 .686 1.99 1.69 .375
B 4.9 .020 .028 .012 .078 .693 1.81 1.86 .101
C 3.8 .009 .014 .006 .041 .700 .77 .79 .185
D 4.9 .017 .024 .010 .051 .697 1.53 1.45 .131
E 10.5 .019 .019 .010 .045 .697 1.69 1.69 .090
F 4.1 .018 .027 .011 .079 .694 1.60 1.65 .119
G 6.8 .018 .022 .010 .056 .696 1.64 1.67 .099
H 11.3 .015 .015 .008 .034 .700 1.37 1.36 .106

¶ TheX2 andG2 tests are unreliable here.

Attr Normalized Rank (apparent best = 1, worst = 8)
info gain 1− d ORT W(1) G2 X2 P0

gain ratio

A 1 1 1 1 1 1 2.1 8
B 2.0 7.4 5.0 7.3 4.4 2.0 1 1.3
C 8 8 8 7.9 7.8 8 8 3.3
D 3.6 7.6 5.7 7.8 6.5 3.6 3.7 2.0
E 2.7 7.8 6.1 7.8 6.6 2.7 2.1 1
F 3.2 7.5 5.5 7.3 4.8 3.2 2.4 1.7
G 3.0 7.7 5.9 7.7 5.9 3.0 2.2 1.2
H 4.6 7.9 6.9 8 8 4.6 4.3 1.4

• whenX2 ≈ χ2 (Cochran’s criteria) is valid, all of the measures converge (rank splits
in roughly the same order, though differing in detail) — whenX2 ≈ χ2 is invalid, the
split rankings can be quite divergent

Consider a data set which produces the trial splits shown at the top of Table 2. The middle
portion of the table gives the values of each of the split selection metrics (forW (1) andP0,
the lower the value the better the split is taken to be; for the other metrics, the higher the
value the better). For easier comparison, the bottom portion of the table gives a normalized
rank, 1 indicating the heuristic’s best split and 8 the poorest split. The rank,R, is defined
asRi = a+ bXi, whereXi is the split’s heuristic value and

b =
{
−7/ (max(Xi)−min(Xi)) if max(Xi) is best
+7/ (max(Xi)−min(Xi)) if min(Xi) is best
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a =
{

1− bmax(Xi) if max(Xi) is best
1− bmin(Xi) if min(Xi) is best

i.e.,a andb assign the value 1 to the best split and 8 to the poorest split, and rank the other
splits linearly between them.

Note the strong correlation (0.999) between gain ratio and orthogonality. Likewise,(1−d)
andW (1) are strongly correlated (0.965), as are gain,G2, andX2 (1.000 forG2 vs. gain
and 0.950 forX2 vs. either gain orG2). The correlation of gain,G2, andX2 follows
from their definitions and was noted in the previous section. The strength of the correlation
between gain ratio and orthogonality and that between(1− d) andW (1) was unexpected,
as it is not obvious in their definitions that this should be the case.

Information gain chooses attributeA for the first split, as do all of the metrics exceptX2

andP0 (gain,G2, andX2 differ primarily over the question of which of the attributesA
andB is best and which second best).

There is but a single instance ofA = 1 in these data. Intuitively, splitting off single
instances in this fashion is hardly efficient. Suppose there wereno instances ofA = 1,
either because of noise or random chance in drawing the sample. Then, clearly, attribute
A would be of no use in separating the data and would have had the lowest gain (zero).
Likewise, if there were two instances ofA = 1, one in each class, attributeA would again
have the lowest gain. Apparently, when the relative frequencies of the attribute values are
very non-uniform, as here, information gain is hyper-sensitive to noise and to sampling
variation.

Gain ratio, distance, orthogonality, and the Beta function allemphaticallychoose attribute
A for these data (especially gain ratio and orthogonality), evidence that these measures also
suffer (even more) from this hyper-sensitivity. Mingers (1989b) has previously noted and
expressed concern about this tendency to favor unbalanced splits.

This attribute (A) is clearly more suited to making subtle distinctions at the end of a chain
of other tests than to making coarser cuts near the root of the tree. OnlyP0 is qualitatively
different from the other metrics, ranking attributeA dead last and clearly a poorer choice
than the other attributes.

Hypothesis 1 —The chi-squared statistics, information gain, gain ratio, distance, and
orthogonality all implicitly assume an infinitely large sample — i.e., that continuous pop-
ulation parameters are adequately approximated by their discrete sample estimates (e.g.,
substitutingnc/N for pc, the proportion of classc in the population), and that a discrete (e.g.,
binomial) distribution is adequately approximated by a continuous normal distribution.

When Cochran’s criteria are not satisfied, these assumptions may be incorrect, and these
heuristics inadmissible. For such ill-conditioned data, use of these metrics entails a high
likelihood of rejecting the null hypothesis when it is really true. (A data set is ill-conditioned
for an analysis when slight changes in the observations would cause large perturbations of
the estimated quantities.)

Hypothesis 2 —Buntine’s Beta function derivation explicitly assumes that the class
distributions in the subsets of a split area priori independent of one another. While this
assumption can be admitted for a single split considered in isolation, it is not appropriate
when comparing alternative splits of a given population.

For example, given a population where each item has 3 binary attributes:

class = (pos, neg)
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color = (blue, red) size= (large, small)

Let α(i, j) = Prob{class= i | color = j} γ(j) = Prob{color = j}
β(i, k) = Prob{class= i | size= k} δ(k) = Prob{size= k}

and θ(i) = Prob{class= i}
Now, θ(i) = α(i, blue) × γ(blue) + α(i, red) × γ(red) (13)

= β(i, small) × δ(small) + β(i, large) × δ(large)

Because of Equation 13, the two statements “α(i, blue) is independent ofα(i, red)” and
“β(i, small) is independent ofβ(i, large)” cannot both be true of the same population.

Hypothesis 3 —The null hypothesis probability functionP0 appears to be a measure
which properly incorporates all these factors (finite sample size, a discrete, non-normal
distribution, Cochran’s criteria, and the non-independence of split subsets), and may be a
more suitable split selection metric than gain, gain ratio, distance, orthogonality, Beta, or
chi-squared.

Viewing these hypotheses in terms of our three criteria for choosing a heuristic function
(prefer splits which improve accuracy, prefer splits leading to simpler and more efficient
trees, and order the splits to permit practical pruning), since none of the metrics directly
measures either accuracy or complexity, the conjecture in Hypothesis 3 must be tested
empirically, rather than analytically. Because pruning is a very complex (and often contro-
versial) subject, we chose to do a partial evaluation at this point for the first two criteria in
terms of unpruned decision trees, and to defer evaluation of the third criteria (the effective-
ness and efficiency of pruning) until later in the paper, after a more extensive discussion of
pruning issues.

5. Empirical Comparisons of the Measures for Unpruned Binary Trees

A Common Lisp implementation of ID3 obtained from Dr. Raymond Mooney was used in
the experiments described here, substituting different split selection and pruning methods
for ID3’s information gain andχ2 tests.

Sixteen data sets were used to evaluate the split metrics. They are described in a technical
report (Martin, 1995), and were chosen to give a good variety of application domains,
sample sizes, and attribute properties. None of the data sets has any missing values. Two
issues arise with respect to the attributes:

• Numeric attributes must be converted to a form having only a few distinct values, i.e.,
cut into a small number of sub-ranges. Various procedures have been proposed for this,
differing along dimensions of

1. arbitrary vs. data-driven cuts

2. once-and-for-all vs. re-evaluating cut-points at every level in the tree

3. a priori (considering only the attribute’s distribution) vs.ex postcut-points (also
considering the classification)

4. multi-valued vs. binary cuts

5. the function used to evaluate potential cut-points
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The particular method used may have important consequences for both efficiency and
accuracy, and can interact with selection and stopping criteria in unpredictable ways.

• Orthogonality is defined (Equation 4) only for binary splits, and each attribute having
V > 2 values must be converted to binary splits for this measure. This can be done
most simply by creatingV binary attributes. Quinlan (1993) describes a procedure for
iteratively merging branches of a split using gain or gain ratio. Other procedures are
given by Breiman, et al. (1984) and Cestnik, Kononenko, and Bratko (1987).

In order to control the splitting context and to avoid bias in comparing the selection metrics,
two a priori, once-and-for-all, multi-valued strategies were used here to convert a numeric
attribute to a discrete attribute:

1. ‘natural’ cut-points determined by visual examination of smoothed histograms

2. arbitrary cut-points at approximately the quartiles (approximate because the cut-points
are not allowed to separate instances with equal values — quartiles because the ‘natural’
cut-points typically give about 4 subsets per attribute).

The resulting cut-points are not intended to be optimum (and may not even be “good”),
merelya priori, consistent, and unbiased. Results obtained here should be compared only
to one another, and not to published results using other (especiallyex post) strategies on the
same data set.

These two procedures were applied to every attribute in each of the ten datasets which
contained numeric attributes, resulting in 20 new datasets which contained only discrete
attributes. With the 6 original datasets which had no numeric attributes, there were 26
discrete-attribute datasets to be evaluated.

All but two of these datasets (Word Sense and natural cut-points WAIS, for which all
attributes are binary) have some attributes with arityV > 2. For all 24 of these datasets,
a new dataset was created in which all attributes havingV > 2 values were replaced
with V binary attributes. The 26 all-binary datasets permitted a fair comparison of the
orthogonality measure to the other measures using exactly the same binary candidate sets.
This binarization imposes a significant time penalty for tree-building and post-pruning
relative to trees built from the un-binarized data set (see Section 8 and Martin and Hirschberg
(1996a)).

In each experiment, a tree was grown using all of the instances, and the complexity and
efficiency of this tree were determined. The accuracy of this tree was then estimated by
10-fold cross-validation (Martin and Hirschberg (1996b) show that 10-fold or greater cross-
validation usually gives a nearly unbiased estimate of the accuracy oftheclassifier inferred
from the entire sample).

It is hard to make a rigorous statement about the significance of the difference in accuracy
between any two of the trees because the trees and accuracy estimates repeatedly sub-sample
the same small dataset and are not statistically independent (see Martin & Hirschberg
(1996c) for a full discussion of this question). In this study, we use the 2-SE heuristic
test for significance proposed by Weiss and Indurkhya (1994) — the difference in two
accuracy estimates,A1 andA2, is heuristically significant at the 95% confidence level if
|A2−A1 | ≥ 2 SE, where SE=

√
A(1−A)/N andA = (A1 +A2)/2.
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The results for unpruned trees using the various metrics are shown in Table 3. Only
summaries of complexity, efficiency, and practicality are shown here, full results are given
in a technical report (Martin, 1995). Two values are shown for the Beta metric’sαparameter:
1, the uniform prior; and 0.5, the Jeffreys prior recommended by Buntine. TheG2 andX2

trees were built without regard to significance or to admissiblity (Cochran’s criteria).

None of the differences in accuracy between split metrics is statistically significant at
the 95% level. The accuracy summary figures are averages weighted by the sample sizes.
These averages are sensitive to systematic differences between the metrics. The ‘overall’
figure includes the six datasets which do not have a natural/quartiles distinction, and is
therefore not simply the average of the natural and quartiles averages. The difference in
accuracy between arbitrary and ‘natural’ nominalizations is very small, except for the Glass
and WAIS data, and sometimes positive, sometimes negative.

Except for two of the datasets, the trees inferred using the various metrics all have about the
same number of leaves. For the BUPA liver disease and Pima diabetes datasets, the number
of leaves varies more widely between the metrics, with theG2 andX2 trees consistently
having the fewest leaves for these two datasets. Note the large difference between the
overall total number of leaves and the sum of the natural and quartiles totals — the trees for
the Word Sense and the Solar Flare C and M datasets are very complex (around 250 leaves
for Word Sense, and 60-80 leaves each for the Solar Flare trees).

All of the measures build shallower trees with more leaves for the quartiles splits than
for the natural splits. This reflects the fact that a classifier must be more complex to deal
with an arbitrary (quartiles) division into subsets. The quartile trees are all about the same
depth. For the natural cut-points, theP0 trees are consistently shallower and the gain ratio
and orthogonality trees are consistently deeper than those of the other metrics for all of the
datasets, reflecting a tendency for all the metrics exceptP0 to be ‘fooled’ into using splits
with one or more very small subsets (which occur frequently in the natural subsets data).

With a single exception (the WAIS data, where the natural subsets are binary), the quar-
tile subsets reduce training time, 40-50% on the average. This time savings is directly
attributable to the reduced dimensionality (number of attribute-value pairs) of the quartile
subsets. The large difference between the overall total time and the sum of the natural and
quartile totals is due almost entirely to the Word Sense dataset — in every case, this one
dataset (which has 100 binary attributes) took longer than all of the others combined.

P0 is more practical (faster) in virtually every case (the sole exception being the quartiles
BUPA dataset, where theX2 andG2 metrics were slightly faster).P0 reduced training time
by 30% on the average over the nearest competitor (X2) and by 60% over the least practical
(gain ratio). Martin and Hirschberg (1996a) give a theoretical analysis of the worst-case
and average-case time complexity of TDIDT, which was confirmed empirically using the
detailed data underlying Table 3.

These data support the conjecture that in virtually every case unpruned trees grown using
P0 are less complex (in terms of the number of leaves), more efficient (expected classification
time) and more practical (learning time), and no less accurate than trees grown using the
other metrics. They also reinforce the conclusion that for unpruned trees, the choice of
metric is largely a matter of complexity and efficiency, and has little effect on accuracy.
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Table 3.Unpruned Trees, Binary Splits

Data Set Gain Gain 1− d Ort W (1) W (.5) G2 X2 P0

Ratio

Cross-Validation Accuracy, %

BUPA Nat 54 56 51 52 58 59 54 55 60
Qua 66 59 60 59 64 62 61 62 62

Finance 1 Nat 77 75 75 71 71 71 73 79 75
Qua 72 77 75 77 65 73 77 77 75

Finance 2 Nat 91 92 95 94 94 91 91 95 92
Qua 86 95 91 91 94 92 92 94 92

Solar Flare C 87 87 87 86 87 85 85 86 86
Solar Flare M 85 85 84 82 83 85 87 83 85
Solar Flare X 97 96 96 97 96 97 97 97 97
Glass Nat 51 50 50 50 50 47 51 51 53

Qua 72 70 69 72 69 72 70 66 70
Iris Nat 95 95 93 96 96 95 94 94 95

Qua 91 91 91 92 91 89 91 91 90
Obesity Nat 56 58 56 60 51 49 53 47 58

Qua 40 51 49 47 56 44 44 51 51
Pima Nat 72 71 73 70 70 71 72 71 70

Qua 65 67 68 64 66 67 69 67 65
Servo Motors 95 95 95 96 95 96 93 95 95
Soybean 98 98 98 98 98 98 98 98 98
Thyroid Nat 91 91 90 90 91 90 91 91 89

Qua 93 93 93 92 93 92 93 94 93
WAIS Nat 84 84 84 84 82 84 84 84 80

Qua 61 67 61 65 57 63 67 71 65
Wine Nat 91 92 89 86 91 92 90 94 91

Qua 93 90 89 89 89 94 92 94 89
Word Sense 64 64 64 63 64 63 64 65 64

Overall 75.1 74.9 74.8 73.7 74.7 74.8 75.3 75.3 75.0
Natural 72.8 72.6 72.1 70.9 72.5 72.4 72.5 72.9 73.0

Quartiles 73.2 73.1 73.1 71.9 73.0 73.5 74.3 73.8 72.6

Total Number of Leaves

Overall 1295 1267 1191 1351 1318 1272 1070 1061 1213
Natural 371 365 371 369 324 311 262 259 298

Quartiles 531 488 424 562 536 527 421 421 502

Weighted Average Depth

Overall 9.9 14.0 10.1 15.8 10.3 9.1 8.1 9.1 7.3
Natural 13.6 16.6 13.9 17.1 10.6 9.6 8.9 9.0 6.6

Quartiles 6.5 6.7 5.9 7.5 6.7 6.5 5.8 5.8 6.2

Total Run Time (sec)

Overall 5852 7883 6585 7394 5004 4956 4490 4410 3028
Natural 1236 1711 1606 1242 1036 1049 998 943 746

Quartiles 778 936 959 655 621 652 606 536 428
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6. Stopping Criteria

A characteristic of these kinds of inductive algorithms is a tendency to overfit noisy data
(noise in the form of sampling variance, incorrect classifications, errors in the attribute
values, or the presence of irrelevant attributes). Breiman, et al. (1984) initially searched for
a minimum gain threshold to prevent this overfitting. Since(N × gain) has approximately
aχ2 distribution (which has very complex thresholds), setting a simple threshold for gain
was not successful.

Quinlan (1986) originally proposed that theX2 ≈ χ2 significance test (Equation 6) be
used to prevent overfitting in ID3 by stopping the process of splitting a branch if the ‘best’
split so produced were not statistically significant. Besides the unfortunate interaction
exemplified by the XOR problem, there are two reasons that this strategy does not work
well:

1. theχ2 approximation toX2 should not be used for splits with smallecv components
(there are similar difficulties withG2 and with gain) — the divide-and-conquer strategy
of TDIDT creates ever smaller subsets, so that this difficulty is certain to arise after at
mostlog2(N0/5) splits have been made (N0 is the size of the entire data set)

2. X2 and gain converge at different rates and may rank splits in different orders — gain
probably does not order the splits correctly for pre-pruning byX2

Both of these approaches were abandoned in favor of some form of post-pruning, such as
cost-complexity pruning (CART, Breiman, et al., 1984), reduced-error pruning (Quinlan,
1988), or pessimistic pruning (C4.5, Quinlan, 1993). There have been a number of studies
in this area (e.g., Buntine & Niblett, 1992; Cestnik & Bratko, 1991; Fisher & Schlimmer,
1988; Mingers, 1989a, 1989b; Niblett, 1987; Niblett & Bratko, 1986; Schaffer, 1993).
Among the notable findings are:

• in general, it seems better to post-prune using an independent data set than to pre-prune
as originally proposed in ID3

• k-fold cross-validation seems to work better for pruning than point estimates such as
X2

• the decision to prune is a form of bias — whether pruning will improve or degrade
performance depends on how appropriate the bias is to the problem at hand

• pruning, whether byX2 or cross-validation, may have a negative effect on accuracy
when the training data are sparse (i.e., ill-conditioned)

Note— A decision to prune the data opens the possibility of committingType II errors
(accepting the null hypothesis when some alternative hypothesis is really true, as in pre-
pruning in the XOR problem). A decision not to prune when using real data almost certainly
introducesType Ierror (overfitting — rejecting the null hypothesis when it is really true).

Consider, for example, the following potential splits:
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Figure 2. Alternative Split/Stop Strategies

AttributeA AttributeB
A = 0 A = 1 Total B = 0 B = 1 Total

ClassN 185 315 500 ClassN 3 497 500
ClassP 215 285 500 ClassP 10 490 500

Total 400 600 1000 Total 13 987 1000
info. gain=.00271 info. gain=.00290

X2=3.750 P0=.0079 X2=3.819 P0=.0343

Attribute B has a slightly larger gain (.00290) than does attributeA (.00271), and so
attributeB would be chosen for the first split of an unpruned ID3 tree (gain ratio, orthog-
onality, (1− d), andW (1) all also would choose attributeB). X2 for this split (3.819) is
slightly below the 95% confidence cut-off (3.841), as isX2 for attributeA (3.75), and so
both splits are disallowed by this criterion and ID3 (splitting on gain and stopping onX2)
stops without generating any tree.

Splitting on gain and post-pruning (by C4.5’s pessimistic method) leads to the rule[(B =
0) ∧ (A = 0) ⇒ (ClassP )] (see the left-hand tree in Figure 2) .P0 < 0.05 for both
splits, and the more balanced attributeA is the better choice (.008 forA versus .034 for
B). Splitting and stopping usingP0 (see the right-hand tree in Figure 2) leads to the more
general rule[(A = 0)⇒ (ClassP )] more directly, without generating and later pruning a
subtree on the right hand branch of the root.

Hypothesis 4 —The previous negative results concerning pre-pruning (e.g., Breiman,
et al., 1984; Quinlan, 1988; Schaffer, 1993) may be due to use of different inadmissible
statistics for split selection and stopping, and to interaction with the restricted split can-
didates set, rather than to any inherent fault of pre-pruning. Use of theP0 function for
both selection and stopping might permit more practical construction of simpler and more
efficient decision trees without loss of predictive accuracy (except for problems such as
parity, where the XOR problem might require an expanded candidate set if the tree is to be
stopped).
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7. Empirical Studies of Pre- and Post-Pruning

As was the case for our earlier conjecture (see Hypothesis 3, p. 270), the conjecture in
Hypothesis 4 must be tested empirically. In this section we present and contrast results
from post-pruning using C4.5’s pessimistic pruning method (Quinlan, 1993); splitting and
pre-pruning usingP0; and splitting using one of the other metrics and pre-pruning using a
χ2 criterion.

7.1. Effects of Post-Pruning

Quinlan’s (1993) pessimistic post-pruning method (C4.5) was used at the default 0.25
confidence factor level. The results are summarized in Table 4. Some of the noteworthy
features of these data are:

1. Using the 2-SE criterion (Section 5), there are no significant differences in accuracy
between unpruned and post-pruned trees, nor between the various metrics. That is, the
choice of a splitting heuristic and whether or not to post-prune are largely matters of
complexity, efficiency, and practicality, not of accuracy.

2. The differences in complexity and efficiency between metrics are much smaller after
post-pruning. The trees that ‘overfit’ most benefit most from post-pruning, though some
‘overfitting’ remains after post-pruning.

3. Post-pruning had virtually no effect on the complexity and efficiency of the trees built
usingP0 as the splitting metric, and very little effect on the trees built usingG2 and
X2. Post-pruning these trees was largely wasted effort.

4. Post-pruning can be very expensive, and is not cost-effective. Trees with comparable
accuracy, complexity, and efficiency can be obtained at half the run-time (or less) by
usingP0 as the splitting metric without post-pruning, rather than using another metric
and post-pruning.

It was somewhat surprising that C4.5’s pessimistic pruning method was not more effective.
Pessimistic post-pruning had little effect (less than 6% reduction in the total number of
leaves) on the quartiles cut-points trees for any of the metrics. For the natural cut-points,
by contrast, the number of leaves was reduced by 28-34% for the gain, gain ratio,1 − d,
and orthogonality trees (the reduction was lower for the other metrics, and only 2% for the
P0 trees).

It appears that the pessimistic post-pruning method is fairly effective in dealing with the
very unbalanced splits which are common in the natural cut-points data (especially when
using gain or gain ratio and similar metrics), but is less effective in pruning the more balanced
trees built usingP0, G2, orX2. That is, while gain and gain ratio, etc. are biased towards
choosing very unbalanced splits, pessimistic post-pruning has the opposite bias (against the
unbalanced splits) and offsets the bias of these metrics to achieve in the end a tree with
roughly the same complexity as the unprunedG2,X2, andP0 trees. This cancelling of the
biases illustrates our third criterion (see Section 2) for choosing a split selection heuristic,
i.e., that the heuristic should order the splits so as to permit effective simple pruning.



AN EXACT PROBABILITY METRIC 277

Table 4.Post-Pruned Trees, Binary Splits

Data Set Gain Gain 1− d Ort W (1) W (.5) G2 X2 P0

Ratio

Cross-Validation Accuracy, %

BUPA Nat 59 57 54 59 59 58 53 55 59
Qua 60 63 59 61 63 62 60 59 64

Finance 1 Nat 71 75 67 67 73 71 71 71 73
Qua 71 83 69 69 69 69 75 77 71

Finance 2 Nat 94 94 94 95 94 94 91 94 94
Qua 89 92 92 89 92 94 89 91 91

Solar Flare C 87 85 86 87 87 89 86 85 86
Solar Flare M 85 86 86 85 87 85 85 86 84
Solar Flare X 95 96 96 96 98 97 98 97 97
Glass Nat 48 54 52 52 52 50 51 50 51

Qua 70 69 68 72 69 66 73 70 66
Iris Nat 95 95 95 95 95 95 95 95 96

Qua 90 92 93 91 91 91 92 92 91
Obesity Nat 51 49 53 51 53 58 58 64 51

Qua 53 38 53 44 56 51 56 58 58
Pima Nat 71 72 72 71 71 72 73 72 71

Qua 65 67 65 65 64 68 67 68 66
Servo Motors 95 95 93 96 95 94 95 96 95
Soybean 98 98 98 98 98 98 98 98 98
Thyroid Nat 90 89 90 88 91 91 90 90 91

Qua 94 93 93 92 92 94 95 93 92
WAIS Nat 84 84 84 84 84 84 80 84 84

Qua 69 59 59 61 65 63 65 65 59
Wine Nat 90 93 92 84 90 91 89 90 91

Qua 89 90 92 89 91 92 91 92 89
Word Sense 65 64 63 64 63 64 65 64 64

Overall 74.7 75.3 74.5 74.6 75.0 75.5 75.4 75.2 75.1
Natural 72.5 73.4 72.7 72.2 73.1 73.3 72.4 72.9 73.2

Quartiles 72.2 73.3 72.1 72.3 72.5 73.8 74.0 73.8 73.0

Total Number of Leaves

Overall 1155 1051 1039 1142 1141 1171 1025 1019 1203
Natural 267 240 253 263 257 262 243 244 292

Quartiles 504 462 410 529 519 521 406 409 499

Weighted Average Depth

Overall 7.6 10.0 8.1 10.3 8.4 8.1 7.7 8.6 7.2
Natural 7.0 9.9 8.5 9.5 7.7 7.5 7.9 8.1 6.4

Quartiles 6.4 6.2 5.7 7.0 6.5 6.5 5.7 5.8 6.2

Total Run Time (sec)

Overall 7448 26868 9165 43506 9301 7787 6676 9794 5261
Natural 1769 4669 2539 5783 2189 1960 1727 1717 1086

Quartiles 1244 1340 1255 1135 1017 1016 1000 866 867
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The run-times for tree building and post-pruning are roughly proportional to the data
set size and exponential in the (weighted average) unpruned tree depth8. The post-pruned
trees built usingP0 had the shortest run-times in all but one case (the quartiles BUPA data,
as in Table 3). The gain ratio and orthogonality metrics consistently have above-average
run-times, though this is somewhat exaggerated in the summary figures due to extremely
long run-times for these two metrics on the Word Sense and Pima (natural cut points) data
sets — both are large samples with many attributes and several very small split subsets.

7.2. Effects of Stopping

The effects of stopping based onP0 are summarized in Table 5. Though accuracy for the
Servo and Obesity problems is reduced by pruning at the 0.05 level, the differences are not
statistically significant by our 2-SE heuristic (see Section 5). The improved accuracy of the
pre-pruned quartiles Pima data is highly significant (the difference is approximately 5-SE,
where≥ 2-SE is deemed significant).

The decreased accuracy for the Servo data is largely due to pruning an XOR-like subtree.
As mentioned earlier, pre-pruning when the candidate set is univariate is subject to this
XOR difficulty. Post- rather than pre-pruning, or lookahead, or some other scheme for
expanding the candidate set (see Section 10) would be beneficial for this dataset.

For the Obesity data, linear discriminant analysis fails, suggesting that the classes are not
homogeneous (this will be discussed further in Section 10, and see Figure 7). The Obesity
attributes are very noisy and correlated, and the data are very sparse (only 45 instances)
relative to the concept being studied. A pruning strategy of varying the pruning threshold
according to sample size would be beneficial for this dataset (this strategy will be discussed
later, in Section 9).

The overall accuracy in Table 5 is mildly concave, peaking at around theP0 = 0.05 level.
Growing and stopping decision trees usingP0 at the 0.05 level usually does no harm and
may, in fact, be mildly beneficial to accuracy.

At the 0.05 level, the number of leaves is reduced by 75% from the unprunedP0 and gain
trees. The average depth is reduced by 35% over the unprunedP0 trees, and by 50% over
unpruned gain trees. Training time is reduced by 30% over unprunedP0 trees, by 60% over
unpruned gain trees, and by 75% over post-pruned gain trees.

The overall effects of splitting and stopping usingP0 versus splitting using the various
metrics and then post-pruning by the pessimistic method are shown in Figure 3. Thex-axis
labels in Figure 3 indicate which metric was used to select splits in building the trees.

The overall summary figures from Tables 3, 4, and 5 are plotted on they-axes of Figure 3
as three bars for each metric, showing the results for unpruned, post-pruned, and pre-pruned
trees. Note that they-axis scale in Figure 3d is logarithmic, and equal increments on this
axis represent a doubling of the learning time.

TheP0 trees in Figure 3 were pre-pruned usingP0 at the 0.05 level. Trees for the other
metrics were pre-pruned using theχ2 criterion provided in Mooney’s ID3 implementation
(disallow a split if Cochran’s criteria are satisfied andX2 is less than the 95% critical value
ofχ2 for the split, but stopiff all candidates are disallowed). Thisχ2 rule rarely resulted in a
tree different from the unpruned tree —χ2-stopping was largely ineffective because theχ2

test is rarely admissible (Cochran’s criteria are rarely met) after the first few splits (i.e., the
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Table 5.Effects of Stopping, Binary Splits

Unpruned Pruning Threshold Level
data set Nominalize conf. limits 0.5 0.1 0.05 0.01 0.005 0.001

Cross-Validation Accuracy, %

BUPA Natural 60 53-67 58 61 57 54 58 58
Quartiles 62 55-69 65 59 57 64 62 54

Finance 1 Natural 75 57-90 73 77 77 65 69 60
Quartiles 75 57-90 79 79 79 71 64 ¶ 44

Finance 2 Natural 92 80-99 97 94 94 94 94 94
Quartiles 92 80-99 88 97 97 92 97 94

Solar Flare C 86 80-91 89 88 88 89 89 89
Solar Flare M 85 79-90 85 89 90 90 90 90
Solar Flare X 97 94-99 98 98 98 98 98 98
Glass Natural 53 44-62 50 52 52 52 44 46

Quartiles 70 61-78 68 67 70 65 61 63
Iris Natural 95 89-99 95 95 95 96 96 96

Quartiles 90 82-96 91 92 92 94 94 92
Obesity Natural 58 37-77 47 44 49 40 ¶ 33 ¶ 13

Quartiles 51 31-71 42 49 49 40 ¶ 29 36
Pima Natural 70 65-74 70 72 72 70 73 71

Quartiles 65 60-70 68 § 73 § 73 § 74 § 74 § 75
Servo Motors 95 89-98 93 91 89 89 90 ¶ 81
Soybean 98 88-100 98 98 96 98 98 98
Thyroid Natural 89 82-94 91 93 93 91 91 90

Quartiles 93 87-97 94 93 92 92 91 91
WAIS Natural 80 62-93 82 84 84 78 76 76

Quartiles 65 45-82 67 65 63 63 74 76
Wine Natural 91 84-96 92 93 92 92 86 87

Quartiles 89 82-95 90 89 88 86 89 85
Word Sense 64 59-68 65 66 66 67 65 64

Overall 75.0 73.4-76.4 75.3 76.4 76.4 75.9 75.5 74.1
Natural 73.0 70.2-75.6 72.5 74.0 73.4 71.7 71.7 70.7

Quartiles 72.6 69.8-75.2 74.0 74.9 75.1 75.0 74.8 73.1

¶ below the 95% confidence limits § above the 95% confidence limits

Total Number of Leaves

Overall 1213 895 406 295 192 164 125
Natural 298 231 122 82 58 48 39

Quartiles 502 394 151 109 68 60 44

Weighted Average Depth

Overall 7.30 6.71 5.21 4.78 3.83 3.57 2.96
Natural 6.67 5.78 4.29 4.12 3.16 2.95 2.40

Quartiles 6.22 6.06 4.77 4.19 3.30 2.99 2.42

Total Run Time (sec)

Overall 3028 2799 2387 2242 1960 1889 1733
Natural 746 684 569 520 461 437 386

Quartiles 428 409 335 307 259 252 221
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Figure 3. Stopping vs. Post-Pruning

most beneficial splits) have been made.χ2-stopping was effective only for the trees built
using Buntine’s Beta function and the quartiles trees (but not the natural cut-points trees)
built using information gain. The fact thatP0 is always admissible butχ2 rarely is accounts
for the large difference in the effectiveness ofP0-stopping versusχ2-stopping in Figure 3.
χ2-stopping likely would have resulted in smaller trees if theχ2 criterion informed pruning
irrespective of Cochran’s criteria, although probably not as small as when usingP0 since
splits tend to look more informative whenχ2 is not admissible. Another option to consider
would be to always prune in cases where Cochran’s criteria are not satisfied.

Splitting and stopping usingP0 was more practical, and resulted in trees which were
simpler, more efficient, and typically no less accurate than splitting using any of the other
metrics and eitherχ2-stopping or pessimistic post-pruning.

8. Binary vs. Multi-way Splits

An additional set of experiments was conducted to determine the effects of having used
binary as opposed to multi-way splits. These data are summarized in Table 6. The multi-
way trees have two or three times as many leaves as the binary trees, are only one-half to
one-third as deep, and reduce training and validation time by 80-85%. The time savings is
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a straightforward consequence of the increased branching factor reducing the height of the
tree and of roughly halving the dimensionality.

A substantial time penalty is incurred whenV -ary attributes are forced intoV binary
splits. Overall, learning time increases quadratically in the dimensionality of the data.
Approaches such as those suggested by Weiss and Indurkhya (1991) to reduce dimension-
ality and optimum binarization techniques such as those used in C4.5 (Quinlan, 1993) and
ASSISTANT (Cestnik, et al., 1987) should be pursued. With thecaveatthat the method of
handling numeric attributes and steps to reduce dimensionality can influence accuracy and
interact with stopping in unpredictable ways.

There is a slight decrease in accuracy for the multi-way splits which becomes smaller as
the stopping threshold level decreases (and, in fact, is sometimes reversed below the 0.01
level). The effect is more pronounced for data sets with lower accuracy. Shavlik, Mooney,
and Towell (1991) report a similar increase in accuracy of ID3 for binary encoding of the
attributes.

The loss in accuracy and the better performance of pre-pruning when using the multi-way
splits can be explained by taking note of the very large number of leaves typically found
in the multi-way trees. Each multi-way split has more subsets and, on the average, smaller
subsets than a binary split. Subsequently splitting the smaller subsets is more likely to
overfit due to chance attribute/class association, andP0-stopping is effective in preventing
overfitting in these over-fragmented trees.

These findings suggest that a strategy such as that available as an option in C4.5 (Quinlan,
1993) for merging the values of an attribute to reduce its arity and produce more nearly
balanced splits would be beneficial. Finding an optimum or near-optimum strategy based
onP0 rather than on C4.5’s gain ratio test is a promising topic for future research.

9. When and How Strongly to Pre-prune

Fisher and Schlimmer (1988) and Fisher (1992) report thatχ2-stopping tends to improve
accuracy if the average relevance of a candidate set’s attributes is very low, and tends to be
detrimental otherwise with an increasing detriment as the average relevance increases. In
those studies, average relevance was measured either by the average of Lopez de Mantaras’s
(1 − d) measure or by the F-S measure of the candidate set (see Section 3.3), and theχ2

test was applied without regard to Cochran’s criteria.
Figures 4a and b show the results of a similar study forP0-stopping. They-axis in Figure 4

is the ratio of the unprunedP0 tree’s accuracy to the accuracy of theP0-stopped tree (data
taken from Table 5). Ay value of 1 indicates no difference in accuracy; a value< 1 that
stopping improved accuracy; and a value> 1 that stopping reduced accuracy. Thex-axis
value in Figure 4 is the average of(1− d) over each split considered at the root of the tree
for each data set.

The intercept of the regression line in Figure 4a is> 1, suggesting thatP0-stopping is
harmful when the average attribute relevance is low. The negative slope of the regression
line indicates thatP0-stopping slowly becomes more effective as the average relevance
increases.

In Fisher’s (1992) study for trees built using1−d and pruned usingχ2, the corresponding
regression line was0.944 + 1.085x, with r2 = 0.438 (the positive slope+1.085 was
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Table 6.Binary vs. Multi-way Splits

Data Set Binary Multi-way
unpruned P0 pruned unpruned P0 pruned

Gain P0 0.05 0.01 0.005 Gain P0 0.05 0.01 0.005

Cross-Validation Accuracy %

BUPA Nat 54 60 57 54 58 55 57 59 51 57
Qua 63 62 57 63 62 57 58 57 58 57

Finance 1 Nat 77 75 ¶ 77 65 69 67 65 ¶ 58 67 54
Qua ¶ 72 75 79 ¶ 71 64 ¶ 52 71 71 ¶ 52 56

Finance 2 Nat 91 92 94 94 94 95 92 91 91 92
Qua 86 92 97 92 97 89 89 97 97 97

Flare C 87 76 88 89 89 85 87 88 88 88
Flare M 85 85 90 89 89 85 85 89 89 90
Flare X 97 97 98 98 98 97 97 97 97 97
Glass Nat 51 ¶ 53 52 52 44 47 ¶ 44 51 50 50

Qua 72 70 70 65 61 66 69 62 62 57
Iris Nat 95 95 95 96 96 95 93 97 97 97

Qua 91 90 92 94 94 92 90 90 93 93
Obesity Nat 56 58 49 § 40 § 33 51 58 56 § 62 § 56

Qua 40 51 49 40 § 29 49 40 44 58 § 63
Pima Nat 72 70 72 70 73 70 70 71 72 72

Qua 68 65 73 74 74 67 67 71 74 74
Servo 95 95 89 89 90 96 95 93 92 93
Soybean 98 98 96 98 98 98 98 96 98 98
Thyroid Nat 91 89 93 91 91 91 91 91 91 91

Qua 93 93 92 92 91 92 93 92 92 92
WAIS † Qua 61 65 63 63 73 65 67 73 71 71
Wine Nat 90 90 92 92 86 89 90 88 91 90

Qua 93 89 89 § 86 93 91 92 90 § 93 91

Overall 77.1 76.7 78.0 77.4 77.4 75.5 76.1 77.1 77.5 77.4
Natural 72.6 72.8 73.2 71.6 71.6 71.0 71.1 72.6 71.9 72.2

Quartiles† 74.1 72.7 75.4 75.3 74.9 71.9 72.7 73.1 75.0 74.1

¶ binary is better (95% confidence level) § multi-way is better (95% confidence level)

Number of Leaves

Overall 944 955 216 140 120 2155 2384 717 487 425
Natural 366 292 80 56 46 880 911 311 237 199

Quartiles† 422 502 109 68 60 975 1136 327 210 186

Weighted Average Depth

Overall 8.8 6.2 3.9 3.0 2.7 3.5 3.6 2.6 2.3 2.1
Natural 13.9 6.8 4.2 3.2 3.0 4.3 4.2 3.0 2.7 2.5

Quartiles† 5.8 6.2 4.2 3.3 3.0 3.1 3.3 2.6 2.3 2.2

Training & Validation Time (sec)

Overall 2074 1354 944 809 771 323 201 170 159 156
Natural 1234 745 519 460 436 127 83 72 68 67

Quartiles† 585 428 307 259 252 127 72 64 58 57

† Not included in Quartiles summary. WAIS (Natural) and Word Sense are binary.
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Figure 4. Relative Accuracy vs. Average Relevance

significant). For theP0 stopping shown in Figure 4, the slope is slightly, but not significantly,
negative. Very similar results were found for other stopping thresholds and for other
measures of average relevance (F-S and− lnP0).

These results provide further evidence that usingP0 both to choose the split and to
stop growing the tree is qualitatively different from the older, e.g., ID3 (Quinlan, 1986),
strategy of splitting based on information gain or a similar measure and stopping based
onχ2. In contrast to Fisher and Schlimmer’s results, there is no significant evidence here
of a systematic relationship between the average attribute relevance and the accuracy of a
P0-stopped tree compared to the unstoppedP0 tree.

Figures 5a and b show the effects ofP0-stopping as a function of the dataset size. Though
the correlation (r2) is low, it is significant. Stopping tends to be detrimental for very small
datasets (though the results are highly variable, and stopping is sometimes beneficial even
with a very small dataset). For the largest datasets,P0-stopping is beneficial and the effect
tends to be more certain.

These latter results are consistent with the findings of Schaffer (1993), Fisher (1992), and
Fisher and Schlimmer (1988) concerning the effect of dataset size on pre-pruning, and with
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Fisher’s (1992) suggestion of a more optimistic (non-pruning) strategy for small datasets
and a more pessimistic (strong pre-pruning) strategy for large datasets. Figure 5c shows
the generally beneficial net effects of the following simple strategy of varying the stopping
threshold with the dataset size:

Dataset P0-stopping
Size Threshold

N < 50 do not stop
50 ≤ N < 100 0.5
100 ≤ N < 200 0.1
200 ≤ N < 500 0.05

N ≥ 500 0.01

Comparing Figure 5c to Figures 5a and b, note that in Figures 5a and b the outcome is very
uncertain for the smallest datasets, but stopping is slightly harmful on the average for these
small datasets (more uncertain and more harmful on the average the more severely the tree
is pruned, i.e., the lower theP0 threshold). The variable strategy in Figure 5c eliminates
both the uncertainty and the slightly harmful average effect by simply not stopping for the
very small datasets.

For the largest data sets, the effects of stopping are more certain and more certain not to
be harmful to accuracy, even for fairly severe pruning (0.01P0 threshold). The variable
strategy maintains both this advantage and the reduced complexity the pruning yields.

For the intermediate dataset sizes, the primary effect of the variable threshold strategy
is to reduce the uncertainty of the accuracy outcome, as evidenced by the lower scatter of
Figure 5c relative to Figures 5a and b in the region100 ≤ N ≤ 200, while maintaining the
advantage of reduced complexity.

The high level of uncertainty in Figures 5a and b is largely a consequence of the fact
thatP0 and the other metrics are discrete variables, though we treat them as if they were
continuous. For small samples, the increments between the discrete values ofP0 are large
and small perturbations of the data may cause a large change inP0, affecting both the choice
of the split attribute and whether to stop. The statistics on which our decisions are made are
very sensitive to noise and unstable under the perturbations caused by cross-validation re-
sampling in small samples, and the variable threshold strategy simply takes this sensitivity
and instability into account.

In Fisher’s (1992) terminology, the variable threshold strategy is optimistic for the smallest
datasets, and more pessimistic as dataset size increases. The strategy can also be viewed
from the standpoint of risk management. Defining risk as the likelihood that stopping will
result in reduced accuracy and uncertainty as the variance of they-axis in Figure 5, the
strategy is more cautious when the risk and uncertainty of stopping are high (i.e., for very
small datasets) and increasingly bold as the risk and uncertainty decrease with increasing
dataset size.
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Figure 5. Relative Accuracy vs. Dataset Size

10. Impact of Different Choices of Candidate Split Sets

We have seen in the XOR example that the choice of a candidate set can interact strongly with
other factors, particularly with pre-pruning, to preclude or strongly bias against discovering
accurate decision trees for some problems. Figure 6 illustrates a different aspect of the
choice of candidate sets. Here, there are 2 continuous attributes (x andy) and 2 classes,
and the boundary between the two classes is linear (class = 1 if y > x, else class = 0).
If the candidate splits are restricted to splitting on a single attribute, each of the decision
tree leaves covers a rectangular area with sides parallel to the axes. The oblique boundary
between the two classes can at best be approximated as a step function, and the accuracy
of the tree is directly related to the complexity of the tree and to the sample size (the more
leaves and the smaller the area covered by each leaf, the better — the shaded area in Figure 6
is equal to the error rate in the region0 ≤ x ≤ 1 and0 ≤ y ≤ 1). If the splits are further
restricted so as to allow only binary splits on continuous attributes, a deeper tree will be
required in order to achieve the same accuracy.
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Figure 6. Linear Class Boundaries

a.  Linear Class Boundaries
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Figure 7. Linear Class Boundaries and XOR

If splits on linear combinations of continuous attributes (e.g., discriminant functions) are
allowed, then, for the same sample size, both better accuracy and a simpler tree can be
obtained, and trees with accuracy equivalent to single attribute splits can be obtained from
smaller samples. See, for instance, Weiss and Indurkhya (1991), Murthy, et al. (1993),
Park and Sklansky (1990), and John (1995) for some approaches to handling such linear
combinations.

Another feature of this problem is that if only binary splits on a single attribute are allowed,
the incremental improvement that could be achieved by any particular split is small. Pre-
pruning might preclude splits on continuous attributes in these cases. Again, this is caused
by the interaction of pre-pruning with the restrictions on candidate splits, rather than by
pre-pruningper se.
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The choice of a candidate set defines a language for describing the boundaries between
classes. If an accurate description of the true class boundaries in this language is very
complex (as in XOR or approximating a linear boundary with a step function), then pre-
pruning is likely to have a deleterious effect because pre-pruning may prevent discovery of
these very complex decision trees.

The point of pruning is to prevent or correct overfitting, the building of trees that are more
complex than can be supported by the available data using principles of sound statistical
inference. When only very simple candidate splits are allowed, empirical evidence from
earlier studies (Breiman, et al., 1984; Quinlan, 1986) indicates that better results are obtained
from building overly complex trees and post-pruning than from pre-pruning. The results of
our analysis of the XOR and linear boundaries problems indicates that both better accuracy
and simpler trees might be obtained by expanding the set of candidate splits. It is not clear
whether it is more effective in general to expand the candidate splits and pre-prune, to build
more complex trees and post-prune, or to combine the two approaches.

Expanding the set of candidate splits is not a panacea. In the first place, exhaustive search
is impractical. Further, when continuous attributes are involved, the set of possible functions
combining several attributes is unbounded. It is still necessary to restrict the candidates
to relatively simple functions by bounding the number of attributes in a combination and
limiting continuous functions to, for instance, linear or quadratic forms.

Expanding the candidate set is not always straightforward. In Figure 7, for instance (class
= 1 if | y − x |> 0.2, else class = 0), the class boundaries are linear. Linear discriminant
analysis (Weiss & Indurkhya, 1991) fails in this case (all of the instances are predicted to be
class 1, a 40% error rate) because the simple discriminant analysis assumptions (that each
class is adequately described by a single multivariate normal distribution, and that the class
means are different) do not hold for these data. This problem (Figure 7) is called the ‘par-
allel oblique lines’ problem and is dealt with effectively in the OC1 (Murthy, et al., 1993)
algorithm.

In addition to having linear class boundaries, this problem has a trait in common with the
XOR problem — diagonally opposite corners of the attribute space have the same class.
Ordinary linear discriminant analysis seeks a single line separating two classes, and may
fail to find a satisfactory boundary when two lines are required. In this case, the effect of
linear discriminant analysis is the same as the effect of pre-pruning in the XOR problem.

In summary, expanding the set of candidate splits is a very powerful tool and can per-
mit discovering decision trees that are both more accurate and less complex. In terms of
increasing the number of problems for which reasonably accurate and simple trees can
be learned, expanding the set of candidates (within reasonable bounds on the increased
search space) is likely to be more effective than is using post-pruning. However, there
are no guarantees, and there is no one-size-fits-all strategy for expanding the candidate
set. There have also recently been some disquieting results on the effectiveness of looka-
head (Murthy & Salzberg, 1995), and on the potentially harmful effects of over-expanding
the candidate set, termed ‘oversearching’ by Quinlan and Cameron-Jones (1995).
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11. Conclusions

The following conclusions are drawn from the results and analyses of the experiments
performed here:

1. Information gain, gain ratio, distance, orthogonality, chi-squared, and Beta each down-
play some part of the influence of the marginal totals of the classes and attribute values.
Whenever one or more of the expected values in a split is small, these measures are
prone to overestimate the reliability of the split. The divide-and-conquer strategy of
building classification trees often leads to very small subtrees where these measures are
inadmissible.

2. TheP0 null hypothesis probability measure proposed here overcomes the difficulties
encountered when the classes and attribute values are unevenly distributed or the ex-
pected frequencies are small. The unpruned treesP0 builds are typically simpler, more
efficient, and no less accurate than those built by the other measures.

3. The ordering of the attribute splits within a tree can profoundly affect the effectiveness
and efficiency of pruning (either pre- or post-pruning). This is particularly the case
when different heuristics are used for selecting the split and deciding whether to prune
or stop splitting.

4. TheP0 measure can be used to stop splitting. This is more practical than post-pruning,
particularly C4.5’s pessimistic post-pruning routine (Quinlan, 1993), and the resulting
trees are typically simpler, more efficient, and no less accurate than unpruned or post-
pruned trees. A stopping threshold level which decreases (prunes more severely) as the
sample size increases is recommended.

5. The arguments against stopping are equally arguments against use of very sparse (or
otherwise ill-conditioned) data, biased heuristics, different inadmissible heuristics for
splitting and stopping, and very restricted candidate sets. Assuming a sample size of 50
or more, there is no point in continuing the inductive process when the class distribution
is probably independent of the candidate splits (P0 > 0.5), and in most domains there
is little point in continuing whenP0 > 0.05.

The paper also describes the biases of the various heuristic splitting and stopping metrics
and why they are inadmissible. It also largely explains the reasons (other than the well-
known XOR problem) for the failure of attempts to formulate a satisfactory stopping strategy
using these inadmissible heuristics.
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Notes

1. XOR is prototypical of themyopiaof greedy search, a symptom which may be alleviated by lookahead, as in
post-pruning rather than stopping. TDIDT’s search strategy is also irrevocable and narrowly focused, problems
which may not be alleviated by lookahead and post-pruning.

2. We introduce noise by randomly reversing the class of 1% of the instances, by reversing 1% of the values ofA
independently of the class noise, and by altering 1% of the values ofB independently of the class and attribute
A noise, lettingB = 0 andB = 2 change to 1, andB = 1 change to either 0 or 2 with equal likelihood.

3. The irrelevant variable is one which is binary and random, and completely independent of the class and of the
values ofA andB.

4. In this regard, it should be noted that the incomplete Beta function also has a strong relationship to theχ2,
hypergeometric, binomial, Student’st, andF (variance-ratio) distributions. Which is to say that all sensible
measures of split utility asymptotically rank attributes in the same order. Hence the repeated empirical findings
(e.g., Breiman, et al., 1984; Fayyad & Irani, 1992a) that the various measures are largely interchangeable.

5. If X1, . . . , Xν are independent random variables, each having a standard (zero mean, unity variance) normal
distribution, then

∑ν

i=1
X2
i has a chi-squared (χ2) distribution with ν degrees of freedom. Here, the

Xi ≡ (fcv − ecv)/
√
ecv terms are approximately standard normaliff the null hypothesis is true and all of

theecv are large.
6. We say that a statistical procedure isrobustif the actual significance level is close to the procedure’s estimated

level, even under deviations from assumptions. An inference procedure isbiasedif its mean deviation from the
actual confidence level is not zero. A non-robust biased procedure isinadmissible, otherwise, the procedure
is admissible.

7. N = (2, 4, 8, . . . , 64), n1 = (1 . . . N/2),m1 = (1 . . . n1), f11 = (0 . . .m1).

8. See Martin and Hirschberg (1996a) for a thorough analysis of the time complexity of this post-pruning
algorithm.
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