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An Exact Quantized Decentralized Gradient

Descent Algorithm
Amirhossein Reisizadeh , Aryan Mokhtari, Hamed Hassani, Member, IEEE, and Ramtin Pedarsani

Abstract—We consider the problem of decentralized consensus
optimization, where the sum of n smooth and strongly convex
functions are minimized over n distributed agents that form a
connected network. In particular, we consider the case that the
communicated local decision variables among nodes are quantized
in order to alleviate the communication bottleneck in distributed
optimization. We propose the Quantized Decentralized Gradient
Descent (QDGD) algorithm, in which nodes update their local de-
cision variables by combining the quantized information received
from their neighbors with their local information. We prove that
under standard strong convexity and smoothness assumptions for
the objective function, QDGD achieves a vanishing mean solution
error under customary conditions for quantizers. To the best of
our knowledge, this is the first algorithm that achieves vanishing
consensus error in the presence of quantization noise. Moreover,
we provide simulation results that show tight agreement between
our derived theoretical convergence rate and the numerical results.

Index Terms—Communication-efficiency, decentralized opti-
mization, gradient methods, quantization.

I. INTRODUCTION

D
ISTRIBUTED optimization of a sum of convex functions

has a variety of applications in different areas including

decentralized control systems [2], wireless systems [3], sensor

networks [4], networked multiagent systems [5], multirobot

networks [6], and large scale machine learning [7]. In such

problems, one aims to solve a consensus optimization problem

to minimize f(x) =
∑n

i=1 fi(x) cooperatively over n nodes

or agents that form a connected network. The function fi(·)
represents the local cost function of node i that is only known

by this node.
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Distributed optimization has been largely studied in the liter-

ature starting from seminal works in the 80s [8], [9]. Since then,

various algorithms have been proposed to address decentral-

ized consensus optimization in multiagent systems. The most

commonly used algorithms are decentralized gradient descent

or gradient projection method [10]–[13], distributed alternating

direction method of multipliers (ADMM) [14]–[16], decentral-

ized dual averaging [17], [18], and distributed Newton-type

methods [19]–[21]. Furthermore, the decentralized consensus

optimization problem has been considered in online or dynamic

settings, where the dynamic cost function becomes an online

regret function [22].

A major bottleneck in achieving fast convergence in decen-

tralized consensus optimization is limited communication band-

width among nodes. As the dimension of input data increases

(which is the current trend in large-scale distributed machine

learning), a considerable amount of information must be ex-

changed among nodes, over many iterations of the consensus

algorithm. This causes a significant communication bottleneck

that can substantially slow down the convergence time of the

algorithm [23], [24].

Quantized communication for the agents is brought into the

picture for bounded and stable control systems [25]. Further-

more, consensus distributed averaging algorithms are studied

under discretized message passing [26]. Motivated by the en-

ergy and bandwidth-constrained wireless sensor networks, the

work in [27] proposes distributed optimization algorithms under

quantized variables and guarantees convergence within a non-

vanishing error. Deterministic quantization has been considered

in distributed averaging algorithms [28] where the iterations

converge to a neighborhood of the average of initials. However,

randomized quantization schemes are shown to achieve the

average of initials, in expectation [29]. The work in [30] also

considers a consensus distributed optimization problem over

a cooperative network of agents restricted to quantized com-

munication. The proposed algorithm guarantees convergence

to the optima within an error which depends on the network

size and the number of quantization levels. Aligned with the

communication bottleneck described earlier, [31] provides a

quantized distributed load balancing scheme that converges to a

set of desired states while the nodes are constrained to remain

under maximum load capacities.

More recently, 1-Bit SGD [23] was introduced in which

at each time step, the agents sequentially quantize their local

gradient vectors by entry-wise signs while contributing the

quantization error induced in previous iteration. Moreover, in
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[32], the authors propose the Quantized-SGD (QSGD), a class of

compression scheme algorithms that is based on a stochastic and

unbiased quantizer of the vector to be transmitted. QSGD prov-

ably provides convergence guarantees, as well a good practical

performance. Recently, a different line of work has proposed

the use of coding theoretic techniques to alleviate the com-

munication bottleneck in distributed computation [33]–[36]. In

particular, distributed computing algorithms such as MapReduce

require shuffling of data or messages between different phases of

computation that incur large communication overhead. The key

idea to reducing this communication load is to exploit excess in

storage and local computation so that coded messages can be sent

in the phase of shuffling for reducing the communication load.

In this paper, our goal is to analyze the quantized decentral-

ized consensus optimization problem, where node i transmits a

quantized version of its local decision variable Q(xi) to the

neighboring nodes instead of the exact decision variable xi.

Motivated by the stochastic quantizer proposed in [32], we

consider two classes of unbiased random quantizers. While they

both share the unbiasedness assumption, i.e. E [Q(x)|x] = x,

the corresponding variance differs for the two classes. We

firstly consider variance bounded quantizers in which we have

E
[
‖Q(x)− x‖2|x

]
≤ σ2 for some fixed constant σ2. Further-

more, we consider random quantizers for which the variance is

bounded proportionally to the norm squared of the quatizer’s

input, that is E
[
‖Q(x)− x‖2|x

]
≤ η2‖x‖2 for a constant η2.

Our main contribution is to propose a Quantized Decentral-

ized Gradient Descent (QDGD) method, which involves a novel

way of updating the local decision variables by combining the

quantized message received from the neighbors and the local

information such that proper averaging is performed over the

local decision variable and the neighbors’ quantized vectors.

We prove that under standard strong convexity and smoothness

assumptions, for any unbiased and variance bounded quantizer,

QDGD achieves a vanishing mean solution error: for all nodes

i = 1, . . . , n we obtain that for any arbitrary δ ∈ (0, 1/2) and

large enough T , E
[
‖xi,T − x̃∗‖2

]
≤ O

(
1
T δ

)
, where xi,T is the

local decision variable of node i at iteration T and x̃∗ is the

global optimum. To the best of our knowledge, this is the first

decentralized gradient-based algorithm that achieves vanishing

consensus error in the presence of non-vanishing quantization

noise. We further generalize the convergence result to the second

class of unbiased quantizers for which the variance is bounded

proportionally to the norm squared of the quatizer’s input and

prove that the propsoed algorithm attains the same convergence

rate. We also provide simulation results – for both synthetic and

real data – that corroborate our theoretical results.

Notation: In this paper, we denote by [n] the set {1, . . . , n}
for any natural number n ∈ N. The gradient of a function f(x)
is denoted by ∇f(x). For non-negative functions g and h of t,
we denote g(t) = O(h(t)) if there exist t0 ∈ N and constant c
such that g(t) ≤ ch(t) for any t ≥ t0. We use ⌈x⌉ to indicate the

least integer greater than or equal to x.

Paper Organization: The rest of the paper is organized as

follows. In Section II, we precisely formulate the quantized

decentralized consensus optimization problem. We provide the

description of the Quantized Decentralized Gradient Descent al-

gorithm in Section III. The main theorems of the paper are stated

and proved in Section IV. In Section V, we study the trade-off

between communication cost and accuracy of the algorithm. We

provide numerical studies in Section VI. Finally, we conclude

the paper and discuss future directions in Section VII.

II. PROBLEM FORMULATION

In this section, we formally define the consensus optimization

problem that we aim to solve. Consider a set of n nodes that

communicate over a connected and undirected graphG = (V, E)
where V = {1, . . . , n} and E ⊆ V × V denote the set of nodes

and edges, respectively. We assume that nodes are only al-

lowed to exchange information with their neighbors and use

the notation Ni for the set of node i’s neighbors. In our set-

ting, we assume that each node i has access to a local convex

function fi : R
p → R, and nodes in the network cooperate to

minimize the aggregate objective function f : R
p → R taking

values f(x) =
∑n

i=1 fi(x). In other words, nodes aim to solve

the optimization problem

min
x∈Rp

f(x) = min
x∈Rp

n∑

i=1

fi(x). (1)

We assume the local objective functions fi are strongly convex

and smooth, and, therefore, the aggregate function f is also

strongly convex and smooth. In the rest of the paper, we use

x̃∗ to denote the unique minimizer of Problem (1).

In decentralized settings, nodes have access to a single

summand of the global objective function f and to reach the

optimal solution x̃∗, communication with neighboring nodes is

inevitable. To be more precise, nodes need to minimize their

local objective functions, while they ensure that their local deci-

sion variables are equal to their neighbors’. This interpretation

leads to an equivalent formulation of Problem (1). If we define

xi as the decision variable of node i, the alternative formulation

of Problem (1) can be written as

min
x1,...,xn∈Rp

n∑

i=1

fi(xi)

subject to xi = xj , for all i, j ∈ Ni. (2)

Since we assume that the underlying network is a connected

graph, the constraint in (2) implies that any feasible solution

should satisfyx1 = · · · = xn. Under this condition the objective

function values in (1) and (2) are equivalent. Hence, it follows

that the optimal solutions of Problem (2) are equal to the optimal

solution of Problem (1), i.e., if we denote {x∗
i}ni=1 as the optimal

solutions of Problem (2) it holds that x∗
1 = · · · = x∗

n = x̃∗.
Therefore, we proceed to solve Problem (2) which is naturally

formulated for decentralized optimization in lieu of Problem (1).

The problem formulation in (2) suggests that each node i
should minimize its local objective function fi while keeping

its decision variable xi close to the decision variable xj of its

neighbors j ∈ Ni. This goal can be achieved by exchanging local

variables xi among neighboring nodes to enforce consensus

on the decision variables. Indeed, exchange of updated local

vectors between the distributed nodes induces a potentially

heavy communication load on the shared bus. To address this

issue, we assume that each node provides a randomly quantized
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Algorithm 1: QDGD at Node i.

Require: Weights {wij}nj=1, total iterations T
1: Set xi,0 = 0 and compute zi,0 = Q(xi,0)
2: for t = 0, . . . , T − 1 do

3: Send zi,t = Q(xi,t) to j ∈ Ni and receive zj,t
4: Compute xi,t+1 according to the update in (3)

5: end for

6: return xi,T

variant of its local updated variable to the neighboring nodes.

That is, if we denote byxi the decision variable of node i, then the

corresponding quantized variant zi = Q(xi) is communicated

to the neighboring nodes, Ni. Exchanging quantized vectors zi
instead of the true vectors xi indeed reduces the communication

burden at the cost of injecting noise to the information received

by the nodes in the network. The main challenge in this setting is

to ensure that nodes can still converge to the optimal solution of

Problem (2), while they only have access to a quantized variant

of their neighbors’ true decision variables.

III. QDGD ALGORITHM

In this section, we propose a quantized gradient based method

to solve the decentralized optimization problem in (2) and

consequently the original problem in (1) in a fully decentralized

fashion. To do so, consider xi,t as the decision variable of node i
at step t and zi,t = Q(xi,t) as the quantized version of the vector

xi,t. In the proposed Quantized Decentralized Gradient Descent

(QDGD) method, nodes update their local decision variables

by combining the quantized information received from their

neighbors with their local information. To formally state the

update of QDGD, we first define wij as the weight that node i
assigns to node j. If nodes i and j are not neighbors thenwij = 0,

and if they are neighbors the weight wij ≥ 0 is nonnegative. At

each time step t, each node i sends its quantized zi,t variant

of its local vector xi,t to its neighbors j ∈ Ni and receives their

corresponding vectors zj,t. Then, using the received information

it updates its local decision variable according to the update

xi,t+1 = (1− ε+ εwii)xi,t + ε
∑

j∈Ni

wijzj,t − αε∇fi(xi,t),

(3)

where ε and α are positive step-sizes.

The update of QDGD in (3) shows that the updated iterate

is a linear combination of the weighted average of node i’s
neighbors’ decision variable, i.e., ε

∑
j∈Ni

wijzj,t, and its local

variable xi,t and gradient ∇fi(xi,t). The parameter α behaves

as the stepsize of the gradient descent step with respect to local

objective function and the parameter ε behaves as an averaging

parameter between performing the distributed gradient update

ε(wiixi,t +
∑

j∈Ni
wijzj,t − α∇fi(xi,t)) and using the previ-

ous decision variable (1− ε)xi,t. By choosing a diminishing

stepsize α and averaging using the parameter ε we control ran-

domness induced by exchanging quantized variables. The steps

of the proposed QDGD method are summarized in Algorithm 1.

Remark 1: The proposed QDGD algorithm can be inter-

preted as a variant of the decentralized (sub)gradient descent

(DGD) method [10], [11] for quantized decentralized optimiza-

tion (see Section IV). Note that the vanilla DGD method con-

verges to a neighborhood of the optimal solution in the presence

of quantization noise where the radius of convergence depends

on the variance of quantization error [10], [11], [27], [30].

QDGD improves the inexact convergence of quantized DGD by

modifying the contribution of quantized information received

from neighboring noise as described in update (3). In particular,

as we show in Theorem 1, the sequence of iterates generated

by QDGD converges to the optimal solution of Problem (1) in

expectation.

Note that the proposed QDGD algorithm does not restrict

the quantizer, except for few customary conditions. However,

design of efficient quantizers has been taken into consideration.

Consider the following example as such quantizers.

Example 1: Consider a low-precision representation speci-

fied byγ ∈ R and b ∈ N. The range representable by scale factor

γ and b bits is {−γ · 2b−1, . . . ,−γ, 0, γ, . . . , γ · (2b − 1)}. For

any kγ ≤ x < (k + 1)γ in the representable range, the low-

precision quantizer outputs

Q(γ,b)(x) =

{
kγ w.p. 1− x−kγ

γ ,

(k + 1)γ w.p. x−kγ
γ .

(4)

For any x in the range, the quantizer is unbiased and variance

bounded, i.e. E[Q(γ,b)(x)] = x and E[‖Q(γ,b)(x)− x‖2] ≤ γ2

4 .

In Section IV, we formally state the required conditions for

the quantization scheme used in QDGD and show that a large

class of well-known quantizers satisfy the required conditions.

IV. CONVERGENCE ANALYSIS

In this section, we prove that for sufficiently large number of

iterations, the sequence of local iterates generated by QDGD

converges to an arbitrarily precise approximation of the op-

timal solution of Problem (2) and consequently Problem (1).

The following assumptions hold throughout the analysis of the

algorithm.

Assumption 1: Local objective functions fi are differentiable

and smooth with parameter L, i.e.,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, (5)

for any x,y ∈ R
p. 1

Assumption 2: Local objective functions fi are strongly con-

vex with parameter µ, i.e.,

〈∇fi(x)−∇fi(y),x− y〉 ≥ µ‖x− y‖2, (6)

for any x,y ∈ R
p.2

1Local objectives may have different smoothness parameters, however,
WLOG one can consider the largest smoothness parameter as the one for all
the objectives.

2Local objectives may have different strong convexity parameters, however,
WLOG one can consider the smallest strong convexity parameter as the one for
all the objectives.
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Assumption 3: The random quantizer Q(·) is unbiased and

has a bounded variance, i.e.,

E [Q(x)|x] = x, and E
[
‖Q(x)− x‖2|x

]
≤ σ2, (7)

for any x ∈ R
p; and quantizations are carried out independently

on distributed nodes.

Assumption 4: The weight matrix W ∈ R
n×n with entries

wij satisfies the following conditions

W = W⊤, W1 = 1, and null(I −W ) = span(1). (8)

The conditions in Assumptions 1 and 2 imply that the

global objective function f is strongly convex with parameter

µ and its gradients are Lipschitz continuous with constant L.

Assumption 3 poses two customary conditions on the quantizer,

that are unbiasedness and variance boundedness. Assumption 4

implies that weight matrix W is symmetric and doubly stochas-

tic. The largest eigenvalue of W is λ1(W ) = 1 and all the

eigenvalues belong to (−1, 1], i.e., the ordered sequence of

eigenvalues ofW are1 = λ1(W ) ≥ λ2(W ) ≥ · · · ≥ λn(W ) >
−1. We denote by 1− β the spectral gap associated to the

stochastic matrix W , where β = max {|λ2(W )|, |λn(W )|} is

the second largest magnitude of the eigenvalues of matrix W .

It is also customary to assume rank(I −W ) = n− 1 such that

null(I −W ) = span(1). We let WD denote the diagonal matrix

consisting of the diagonal entries of W , i.e. {w11, . . . , wnn}.

In the following theorem we show that the local iterations

generated by QDGD converge to the global optima, as close as

desired.

Theorem 1: Consider the distributed consensus optimization

Problem (1) and suppose Assumptions 1–4 hold. Consider δ as

an arbitrary scalar in (0, 1/2) and set ε = c1
T 3δ/2 and α = c2

T δ/2

where c1 and c2 are arbitrary positive constants (independent

of T ). Then, for each node i, the expected difference between

the output of Algorithm 1 after T iterations and the solution of

Problem (1), i.e. x̃∗ is upper bounded by

E

[
‖xi,T − x̃∗‖2

]
≤ O

((
4nc22D

2 (3 + 2L/µ)2

(1− β)2

+
2c1nσ

2‖W −WD‖2
µc2

)
1

T δ

)
, (9)

if the total number of iterations satisfies T ≥ T0, where T0 is a

function of δ, c1, c2, µ, L, and λn(W ). Moreover,

D2 = 2L
n∑

i=1

(fi(0)− f ∗
i ) , f ∗

i = min
x∈Rp

fi(x). (10)

Theorem 1 demonstrates that the proposed QDGD provides

an approximation solution with vanishing deviation from the

optimal solution, despite the fact that the quantization noise does

not vanish as the number of iterations progresses.

By the first glance at the expression in (9) one might suggest

to set δ = 1/2 to obtain the best possible sublinear convergence

rate which is O
(

1
T 1/2

)
. However, T0, which is a lower bound

on the total number of iterations T , is an increasing function

of 1/(1− 2δ), and by choosing δ very close to 1/2, the total

number of iterations T should be very large to obtain a fast

convergence rate close to O
(

1
T 1/2

)
. Therefore, there is a trade-

off between the convergence rate and the minimum number of

required iterations. By setting δ close to 1/2 we obtain a fast

convergence rate but at the cost of running the algorithm for a

large number of iterations, and by selecting δ close to 0 the lower

bound on the total number of iterations becomes smaller at the

cost of having a slower convergence rate. We will illustrate this

trade-off in the numerical experiments.

Moreover, note that the result in (9) shows a balance between

the variance of quantization and the mixing matrix. To be more

precise, if the variance of quantization σ2 is small nodes should

assign larger weights to their neighbors which decreases (1−
β)−2 and increases‖W −WD‖2. Conversely, when the variance

σ2 is large, to balance the terms in (9) nodes should assign larger

weights to their local decision variables which decreases the term

‖W −WD‖2 and increases (1− β)−2.

A. Proof of Theorem 1

To analyze the proposed QDGD method, we start by rewriting

the update rule (3) as follows

xi,t+1 = xi,t − ε

⎛
⎝(1− wii)xi,t −

∑

j �=i

wijzj,t + α∇fi(xi,t)

⎞
⎠.

(11)

Note that to derive the expression in (11), we simply use the fact

that wij = 0 when j /∈ Ni.

The next step is to write the update (11) in a matrix form.

To do so, we define the function F : R
np → R as F (x) =∑n

i=1 fi(xi) where xi ∈ R
p and x = [x1; · · · ;xn] ∈ R

np is

the concatenation of the local variables xi. It is easy to verify

that the gradient of the function F is the concatenation of

local gradients evaluated at the local variable, that is ∇F (xt) =
[∇f1(x1,t); · · · ;∇fn(xn,t)]. We also define the matrix W =
W ⊗ I ∈ R

np×np as the Kronecker product of the weight ma-

trix W ∈ R
n×n and the identity matrix I ∈ R

p×p. Similarly,

defineWD = WD ⊗ I ∈ R
np×np, whereWD = [wii] ∈ R

n×n

denotes the diagonal matrix of the entries on the main diagonal

of W . For the sake of consistency, we denote by the boldface I

the identity matrix of size np. According to above definitions,

we can write the concatenated version of (11) as follows,

xt+1 = xt − ε
((
I−WD

)
xt +

(
WD −W

)
zt + α∇F (xt)

)
.

(12)

As we discussed in Section II, the distributed consensus

optimization Problem (1) can be equivalently written as Problem

(2). The constraint in the latter restricts the feasible set to the

consensus vectors, that is {x = [x1; · · · ;xn] : x1 = · · · = xn}.

According to the discussion on rank of the weight matrix W ,

the null space of the matrix I −W is null(I −W ) = span(1).
Hence, the null space of I−W is the set of all consensus

vectors, i.e., x ∈ R
np is feasible for Problem (2) if and only if

(I−W)x = 0, or equivalently (I−W)1/2x = 0. Therefore,

the alternative Problem (2) can be compactly represented as the
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following linearly-constrained problem,

min
x∈Rnp

F (x) =
n∑

i=1

fi(xi)

subject to (I−W)1/2x = 0.

(13)

We denote by x∗ = [x̃∗; . . . ; x̃∗] the unique solution to (13).

Now, for given penalty parameter α > 0, one can define

the quadratic penalty function corresponding to the linearly

constraint problem (13) as follows,

hα(x) =
1

2
x⊤(I−W

)
x+ αF (x). (14)

Since I−W is a positive semi-definite matrix and F is L-

smooth and µ-strongly convex, the function hα is Lα-smooth

andµα-strongly convex on R
np havingLα = 1− λn(W ) + αL

and µα = αµ. We denote by x∗
α the unique minimizer of hα(x),

i.e.,

x∗
α = arg min

x∈Rnp

hα(x) = arg min
x∈Rnp

1

2
x⊤(I−W

)
x+ αF (x).

(15)

In the following, we link the solution of Problem (15) to the

local variable iterations provided by Algorithm 1. Specifically,

for sufficiently large number of iterationsT , we demonstrate that

for proper choice of step-sizes, the expected squared deviation

of xT from x∗
α vanishes sub-linearly. This result follows from

the fact that the expected value of the descent direction in (12)

is an unbiased estimator of the gradient of the function hα(x).
Lemma 1: Consider the optimization Problem (15) and sup-

pose Assumptions 1–4 hold. Then, the expected deviation of

the output of QDGD from the solution to Problem (15) is upper

bounded by

E

[
‖xT − x∗

α‖2
]
≤ O

(
c1nσ

2‖W −WD‖2
µc2

1

T δ

)
, (16)

for ε = c1
T 3δ/2 , α = c2

T δ/2 , any δ ∈ (0, 1/2) and T ≥ T1, where

c1 and c2 are positive constants independent of T , and

T1 := max

{
ee

1

1−2δ
,
⌈
(c1c2µ)

1

2δ

⌉
,

⌈(
c1(2 + c2L)

2

c2µ

) 1

δ

⌉}
.

(17)

Proof: See Appendix A. �

Lemma 1 guarantees convergence of the proposed iterations

according to the update in (3) to the solution of the later-defined

Problem (15). Loosely speaking, Lemma 1 ensures that xT is

close to x∗
α for large T . So, in order to capture the deviation of

xT from the global optima x∗, it suffices to show that x∗
α is close

to x∗, as well. As the problem in (15) is a penalized version of

the original constrained program in (1), the solutions to these

two problems should not be significantly different if the penalty

coefficient α is small. We formalize this claim in the following

lemma.

Lemma 2: Consider the distributed consensus optimization

Problem (1) and the problem defined in (15). If Assumptions 1,

2 and 4 hold, then the difference between the optimal solutions

to (13) and its penalized version (15) is bounded above by

‖x∗
α − x∗‖ ≤ O

(√
2nc2D (3 + 2L/µ)

1− β

1

T δ/2

)
, (18)

for α = c2
T δ/2 and T ≥ T2, where c2 is a positive constant

independent of T , δ ∈ (0, 1/2) is an arbitrary constant, and

T2 := max

{⌈(
c2L

1 + λn(W )

) 2

δ

⌉
,
⌈
c42(µ+ L)

2

δ

⌉}
. (19)

Proof: See Appendix B. �

The result in Lemma 2 shows that if we set the penalty co-

efficient α small enough, i.e., α = O(T−δ/2), then the distance

between the optimal solutions of the constrained problem in (1)

and the penalized problem in (15) is of O( α
1−β ).

Having set the main lemmas, now it is straightforward to prove

the claim of Theorem 1. For the specified step-sizes ε and α
and large enough iterations T ≥ T0 := max {T1, T2}, Lemmas

1 and 2 are applicable and we have

E
[
‖xT − x∗‖2

]
= E

[
‖xT − x∗

α + x∗
α − x∗‖2

]

≤ 2E
[
‖xT − x∗

α‖2
]
+ 2‖x∗

α − x∗‖2

≤ O
(

1

T δ

)
+O

(
1

T δ

)

= O
(

1

T δ

)
, (20)

where we used ‖a+ b‖2 ≤ 2
(
‖a‖2 + ‖b‖2

)
to derive the first

inequality; and the constants can be found in the proofs of

the two lemmas. Since E[‖xi,T − x̃∗‖2] ≤ E[‖xT − x∗‖2] for

any i = 1, . . . , n, the inequality in (20) implies the claim of

Theorem 1.

B. Extension to More Quantizers

Based on the condition in Assumption 3, so far we have

been considering only unbiased quantizers for which the vari-

ance of quantization is bounded by a constant scalar, i.e.,

E
[
‖Q(x)− x‖2|x

]
≤ σ2. However, there are widely used rep-

resentative quantizers where the quantization noise induced on

the input is bounded proportionally to the input’s magnitude,

i.e., E
[
‖Q(x)− x‖2|x

]
≤ O

(
‖x‖2

)
[32].

Indeed, this condition is more challenging since the set of

iterates norm ‖xt‖ are not necessarily bounded, and we cannot

uniformly bound the variance of the noise induced by quantiza-

tion. In this subsection, we show that the proposed algorithm is

converging with the same rate for quantizers satisfying this new

assumption. Let us first formally state this assumption.

Assumption 5: The random quantizer Q(·) is unbiased and

its variance is proportionally bounded by the input’s squared

norm, that is,

E [Q(x)|x] = x, and E
[
‖Q(x)− x‖2|x

]
≤ η2‖x‖2, (21)

for a constant η2 and any x ∈ R
p; and quantizations are carried

out independently on distributed nodes.
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Before characterizing the convergence properties of the pro-

posed QDGD method under the conditions in Assumption 5, let

us review a subset of quantizers that satisfy this condition.

Example 2 (Low-precision quantizer): Consider the low

precision quantizer QLP : R
p → R

p which is defined as

QLP
i (x) = ‖x‖ · sign(xi) · ξi(x, s), (22)

where ξi(x, s) is a random variable defined as

ξi(x, s) =

⎧
⎨
⎩

l
s w.p. 1− q

(
|xi|
‖x‖ , s

)
,

l+1
s w.p. q

(
|xi|
‖x‖ , s

)
,

(23)

and q(a, s) = as− l for any a ∈ [0, 1]. In above, the tuning

parameter s corresponds to the number of quantization levels

and l ∈ [0, s) is an integer such that |xi|/‖x‖ ∈ [l/s, (l + 1)/s].
It is not hard to check that [32] the low precision quantizer QLP

defined in (22) is an unbiased estimator of the vector x and the

variance is bounded above by

E
[
‖QLP(x)− x‖2

]
≤ min

(
p

s2
,

√
p

s

)
‖x‖2. (24)

The bound in (24) illustrates the trade-off between communica-

tion cost and quantization variance. Choosing a large s reduces

the variance of quantization at the cost of increasing the levels of

quantization and therefore increasing the communication cost.

The following example provides another quantizer which

satisfies the conditions in Assumption 5.

Example 3 (Gradient sparsifier): The gradient sparsifier de-

noted by QGS : R
p → R

p is defined as

QGS
i (x) =

{
xi/qi w.p. qi,
0 otherwise,

(25)

where qi is probability that coordinate i ∈ [p] is selected. It

is easy to verify that this quantizer is unbiased, as for each i,
E
[
QGS

i (x)
]
= xi. Moreover, one can show that the variance of

this quantizer is bounded as follows,

E
[
‖QGS(x)− x‖2

]
=

p∑

i=1

(
1

qi
− 1

)
x2
i ≤

(
1

qmin

− 1

)
‖x‖2,

(26)

where qmin denotes the minimum of probabilities {q1, . . . , qp}.

In the following theorem, we extend our result in Theorem 1 to

the case that variance of quantizer may not be uniformly bounded

and is proportional to the squared norm of quantizer’s input.

Theorem 2: Consider the distributed consensus optimization

Problem (1) and suppose Assumptions 1, 2, 4, 5 hold. Then, for

each node i, the expected squared difference between the output

of the QDGD method outlined in Algorithm 1 and the optimal

solution of Problem (1), i.e. x̃∗ is upper bounded by

E

[
‖xi,T − x̃∗‖2

]
≤ O

((
4nc22D

2 (3 + 2L/µ)2

(1− β)2

+
4c1nB̃

2η2‖W −WD‖2
µc2

)
1

T δ

)
, (27)

for ε = c1
T 3δ/2 , α = c2

T δ/2 , any δ ∈ (0, 1/2) and T ≥ T̃0, where

c1, c2 and T̃0 are positive constants independent of T , and

B̃2 =
4c22D

2 (3 + 2L/µ)2

(1− β)2
+

4(f0 − f ∗)

µ
. (28)

Proof: See Appendix C. �

The result in Theorem 2 shows that under Assumption 5,

the proposed QDGD method converges to the optimal solution

at a sublinear rate of O
(
T−δ

)
which matches the result in

Theorem 1. However, the lower bound on the total number of

iterations T̃0 for the result in Theorem 2 is in general larger than

T0 for the result in Theorem 1. The exact expression of T̃0 could

be found in Appendix C.

V. OPTIMAL QUANTIZATION LEVEL FOR REDUCING OVERALL

COMMUNICATION COST

In this section, we aim to study the trade-off between number

of iterations until achieving a target accuracy and quantization

levels. Indeed, by increasing quantization levels the variance

of quantization reduces and the total number of iterations to

reach a specific accuracy decreases, but the communication

overhead of each round is higher as we have to transmit more

bits. Conversely, if we use a quantization with a small number

of levels the communication cost per iteration will be low;

however, the total number of iterations could be very large. The

fundamental question here is how to choose the quantization

levels to optimize the overall communication cost which is the

product of number of iterations and communication cost of each

iteration.

In this section, we only focus on unbiased quantizers for which

the variance is proportionally bounded with the squared norm

of the quantizer’s input vector, i.e., for any x ∈ R
p it holds that

E [Q(x)|x] = x and E
[
‖Q(x)− x‖2|x

]
≤ η2‖x‖2 for some

fixed constant η. Theorem 2 characterizes the (order-wise) con-

vergence of the proposed algorithm considering this assumption.

More precisely, using the result in Theorem 2 and (27) we can

write for each node i:

E
[
‖xi,T − x̃∗‖2

]

≤
[
4nc22D

2 (3 + 2L/µ)2

(1− β)2
+

4c1nB̃
2η2‖W −WD‖2

µc2

]
1

T δ
,

(29)

where the approximation is due to considering dominant terms

in B1(T ) and B2(T ) (See Appendix B and C for notations

and details of derivations). Therefore, given a target relative

deviation error ρ and using (29) , the algorithm needs to iterate

at least T (ρ) where

T (ρ) :=

[
4nc22D

2 (3 + 2L/µ)2

(1− β)2

+
4c1nB̃

2η2‖W −WD‖2
µc2

]1/δ(
1

ρ‖x̃∗‖2
)1/δ

.

(30)
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It is shown in [32] that for the low-precision quantizer defined

in (22) and (23) there exists an encoding scheme Codes such that

for any x ∈ R
p and s2 +

√
p ≤ p/2, the communication cost of

the quantized vector satisfies

E
[
|Codes(Q

LP(x))|
]

≤ b+

(
3 +

3

2
log∗

(
2(s2 + p)

s2 +
√
p

))
(s2 +

√
p), (31)

where log∗(x) = log(x) + log log(x) + · · · = (1 + o(1)) log
(x) and b denotes the number bits for representing one floating

point number (b ∈ {32, 64} are typical values). For large s,

[32] also proposes a simple encoding scheme Code′s which is

proved to impose no more than the following communication

cost on the quantized vector

E
[
|Code′s(Q

LP(x))|
]

≤ b+

(
5

2
+

1

2
log∗

(
1 +

s2 +min(d, s
√
p)

p

))
p. (32)

Now we can easily derive the expected total communication

cost (in bits) of a quantized decentralized consensus optimiza-

tion in order for each agent to achieve a predefined target error.

For instance, assume that the low-precision quantizer described

above is employed for the quanization operations. Using this

quantizer, the expected communication cost (in bits) for trans-

mitting a single p-dimensional real vector is represented in (31)

and (32) for two sparsity regimes of the tuning parameter s.

On the other hand, in order for each agent to obtain a rel-

ative error ρ, the proposed algorithm iterates T (ρ) times as

denoted in (30). Therefore, the total (expected) communication

cost across all of the n agents is upper-bounded by nT (ρ) ·
E
[
|Codes(Q

LP(x))|
]

and nT (ρ) · E
[
|Code′s(Q

LP(x))|
]

for

small and large s, respectively.

Remark 2: We can derive the total communication cost for

the vanilla DGD method ([11]), as well. DGD method updates

the iterations as follows:

xi,t+1 = wiixi,t +
∑

j∈Ni

wijxj,t − α∇fi(xi,t), (33)

whereα = c/
√
T is the stepsize. DGD guarantees the following

convergence rate for strongly convex objectives:

‖xi,T − x̃∗‖2 ≤ (3 + 2L/µ)2D2

(1− β)2
α2

=
c2(3 + 2L/µ)2D2

(1− β)2
1

T
. (34)

Hence, to reach the ρ approximation of the global optimal, DGD

requires the total number of iterations

TDGD(ρ) =
c2(3 + 2L/µ)2D2

(1− β)2
1

ρ‖x̃∗‖2 . (35)

Given that each decision vector requires bp number of bits in

an implementation of DGD (without quantization), the DGD

method induces the communication cost of nTDGD(ρ)bp.

In the following, we numerically evaluate the communication

cost of the proposed QDGD method for the following least

TABLE I
QUANTIZATION-COMMUNICATION TRADE-OFF FOR LEAST SQUARES PROBLEM

squares problem

min
x∈Rp

f(x) =
n∑

i=1

1

2
‖Aix− bi‖2. (36)

We assume that the network contains n = 50 agents that collab-

oratively aim to solve problem (36) over the real field of size

p = 200. The elements of the random matrices Ai ∈ R
p×p and

the solution x̃∗ are picked from the normal distribution N (0, 1).
Moreover, we let bi = Aix̃

∗ +N (0, 0.1Ip). All nodes update

their local variables with respect to the proposed algorithm

and send the quantized updates to the neighbors using a low-

precision quantizer with s quantization levels and b = 64 bits

for representing one floating point number, until they satisfy the

predefined relative error ρ = 10−2. The underlying graph is an

Erdős-Rényi with edge probability pc = 0.35. The edge weight

matrix is picked asW = I − 2
3λmax(L)LwhereL is the Laplacian

with λmax(L) as its largest eigenvalue. We also set δ = 0.1.

Table I represents the total expected communication cost

(in bits, as computed using (30), (31) and (32)) induced by

the proposed algorithm to solve (36) using the low-precision

quantizer –as described above– for four representative cases.

As observed from this table and expected from the theoretical

derivations, larger number of quantization levels translates to

less noisy quantization and hence fewer iterations. Also, larger

number of quantization levels induces more communication

cost for each transmitted quantized data variable which results

in larger code length per vector. However, the average total

communication cost does not necessarily follow a monotonic

trend. As Table I shows, the optimal s∗ = 77 induces the smallest

total communication cost among all levels s ≥ 1. Moreover,

Table I demonstrates the significant gain of picking the optimal

levels s∗ compared to the larger ones.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed

QDGD Algorithm on decentralized quadratic minimization and

ridge regression problems and demonstrate the effect of various

parameters on the relative expected error rate. We carry out

the simulations on artificial and real data sets corresponding

to quadratic minimization and ridge regression problems, re-

spectively. In both cases, the graph of agents is a connected

Erdős-Rényi with edge probability pc. We set the edge weight
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Fig. 1. Relative optimal squared error for three values of quantization noise
variance: σ2 ∈ {2, 20, 200}, compared with the order of upper bound.

matrix to be W = I − 2
3λmax(L)L where L is the Laplacian with

λmax(L) as its largest eigenvalue.

A. Decentralized Quadratic Minimization

In this section, we evaluate the performance of the proposed

QDGD Algorithm on minimizing a distributed quadratic objec-

tive. We pictorially demonstrate the effect of quantization noise

and graph topology on the relative expected error rate.

Consider the quadratic optimization problem

min
x∈Rp

f(x) =

n∑

i=1

1

2
x⊤Aix+ b⊤

i x, (37)

where fi(x) =
1
2x

⊤Aix+ b⊤
i x denotes the local objective

function of node i ∈ [n]. The unique solution to (37) is therefore

x̃∗ = − (
∑n

i=1 Ai)
−1

(
∑n

i=1 bi). We pick diagonal matrices

Ai such that p/2 of the diagonal entries of each Ai are drawn

from the set {1, 2, 22} and the other p/2 diagonal entries are

drawn from the set {1, 2−1, 2−2}, all uniformly at random.

Entries of vectors bi are randomly picked from the interval

(0,1). In our simulations, we let an additive noise model the

quantization error, i.e. Q(x) = x+ η where η ∼ N (0, σ2

p Ip).
We first consider a connected Erdős-Rényi graph of n = 50

nodes and connectivity probability of pc = 0.35 and dimension

p = 20. Fig. 1 shows the convergence rate corresponding to three

values of quantization noise σ2 ∈ {2, 20, 200} and δ = 3/8,

compared to the theoretical upper bound derived in Theorem 1

in the logarithmic scale. For each plot, stepsizes are pick as

ε = c1/T
3δ/2 and α = c2/T

δ/2 where the constants c1, c2 are

finely tuned. As expected, Fig. 1 shows that the error rate linearly

scales with the quantization noise; however, it does not satu-

rate around a non-vanishing residual, regardless the variance.

Moreover, Fig. 1 demonstrates that the convergence rate closely

follows the upper bound derived in Theorem 1. For instance, for

the plot corresponding to σ2 = 200, the relative errors are eval-

uated as eT1
/e0 = 0.1108 and eT2

/e0 = 0.0634 for T1 = 800
and T2 = 3200, respectively. Therefore, eT2

/eT1
≈ 0.57 which

is upper bounded by (T1

T2

)δ ≈ 0.59.

To observe the effect of graph topology, quantization noise

variance is fixed to σ2 = 200 and we varied the connectivity

ratio by picking three different values, i.e. pc ∈ {0.35, 0.5, 1}

Fig. 2. Relative optimal squared error for three vales of graph connectivity
ratio: pc ∈ {0.35, 0.5, 1}, compared with the order of upper bound.

where pc = 1 corresponds to the complete graph case. We also

fix the parameter δ = 3/8 and accordingly pick the stepsizes

ε = c1/T
3δ/2 and α = c2/T

δ/2 where the constants c1, c2 are

finely tuned. As Fig. 2 depicts, for the same number of iterations,

deviation from the optimal solution tends to increase as the graph

is gets sparse. In other words, even noisy information of the

neighbor nodes improves the gradient estimate for local nodes.

It also highlights the fact that regardless of the sparsity of the

graph, the proposed QDGD algorithm guarantees the consensus

to the optimal solution for each local node, as long as the graph

is connected.

B. Decentralized Ridge Regression

Consider the ridge regression problem:

min
x∈Rp

f(x) =

D∑

j=1

‖ajx− bj‖2 +
λ

2
‖x‖22, (38)

over the data setD = {(aj , bj) : j = 1, . . . , D}where each pair

(aj , bj)denotes the predictors-response variables corresponding

to data point j ∈ [D] where aj ∈ R
1×p, bj ∈ R and λ > 0 is the

regularization parameter. To make this problem decentralized,

we pick n agents and uniformly divide the data set D among the

n agents, i.e., each agent is assigned with d = D/n data points.

Therefore, (38) can be decomposed as follows:

min
x∈Rp

f(x) =

n∑

i=1

fi(x), (39)

where the local function corresponding to agent i ∈ [n] is

fi(x) = ‖Aix− bi‖2 +
λ

2n
‖x‖2, (40)

and

Ai = [a(i−1)d+1; · · · ;aid] ∈ R
d×p, (41)

bi = [b(i−1)d+1; · · · ; bid] ∈ R
d. (42)

The unique solution to (39) is

x̃∗ =

(
n∑

i=1

A⊤
i Ai + λI

)−1( n∑

i=1

A⊤
i bi

)
. (43)



4942 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 19, OCTOBER 1, 2019

Fig. 3. Relative optimal squared error for two vales of δ: δ ∈ {0.175, 0.275}.

Fig. 4. Relative optimal squared error for Erdős-Rényi random graphs with
two vales of graph connectivity ratio: pc ∈ {0.25, 0.45}, complete graph and
cycle graph.

To simulate the decentralized ridge regression (39), we pick

“Pen-Based Recognition of Handwritten Digits Data Set” [37]

and use D = 5000 training samples with p = 16 features and

10 possible labels corresponding to digits {‘0’, ‘1’, . . . , ‘9’}.

We pick λ = 2 and consider a connected Erdős-Rényi graph

with n = 50 agents and edge probability pc, i.e. each assigned

with d = 100 data points. The decision variables are quantized

according to the low-precision quantizer with quantization level

s, as described in Example 2.

Firstly, we fix pc = 0.25 and s = 1 and vary the tuning pa-

rameter δ. Fig. 3 depicts the convergence trend corresponding to

two values δ ∈ {0.175, 0.275}. For each pick of δ, the stepsizes

are set to ε = c1/T
3δ/2 and α = c2/T

δ/2 with finely tuned

constants c1, c2.

Secondly, to observe the effect of graph density, we let the

quantization level be s = 1 and vary the graph configuration.

For δ = 0.275, Fig. 4 shows the resulting convergence rates for

Erdős-Rényi random graphs with two vales of graph connectiv-

ity ratio pc ∈ {0.25, 0.45}, complete graph and cycle graph.

C. Logistic Regression

To further evaluate the proposed method with other bench-

marks, in this section we consider the logistic regression where

the goal is to learn a classifier x to predict the labels bj ∈
{+1,−1}. More specifically, consider the regularized logistic

Fig. 5. Comparing the proposed QDGD method and the naive DGD with
quantization (see (45)); and varying the quantizations levels s ∈ {1, 20}.

regression problem as follows:

min
x∈Rp

f(x) =
1

n

D∑

j=1

log (1 + exp (−bjajx)) +
λ

2
‖x‖22, (44)

where bj ∈ {+1,−1} denotes the label of the jth data-point

corresponding to the feature vectoraj ∈ R
1×p. The totalD data-

points are distributed among the n nodes such that each node

is assigned with d = D/n samples. The underlying network

is an Erdös-Rényi graph with n = 50 nodes and connectivity

probability pc = 0.45. We generate a data-set of D = 5000
samples as follows. Each sample with label +1 is associated

with a feature vector of p = 4 random gaussian entries with

mean µ and variance γ2. Similarly, samples with labels −1 are

associated with a feature vector of random gaussian entries with

mean −µ and variance γ2. We let µ = 3 and γ2 = 1.

In the implementation of the QDGD method, we pick the

parameter δ = 0.45 and accordingly pick the stepsizes ε =
c1/T

3δ/2 and α = c2/T
δ/2 where the constants c1, c2 are finely

tuned.

As a benchmark, we compare our proposed QDGD method

with the naive DGD algorithm [11] in which we let the nodes

exchange quantized decision variables. That is, the update rule

at node i and iteration t in this benchmark is

xi,t+1 = wiixi,t +
∑

j∈Ni

wijzj,t − α∇fi(xi,t), (45)

where we pick the stepsize α=c/T with finely tuned constant c.
In both methods, we use the low-precision quantizer in (22)

with s levels of quantization. Note that unlike the proposed

QDGD, the update rule in this benchmark employs only one step-

size α. In addition to this comparison, we illustrate the effect of

the quantization level s on the convergence of the two methods.

Fig. 5 demonstrates the loss values resulting from the two meth-

ods for five picks of T ∈ {750, 1000, 1250, 1500, 1750}. As we

mentioned earlier, the proposed QDGD is an exact method, i.e.

the local models converge to the global optimal model with any

desired optimality gap. However, a naive generalization of the

existing methods (e.g. DGD) with quantization (e.g. in (45))

will result in a convergence to a neighborhood of the global

optimal.
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Fig. 5 also shows that for less noisy quantizers (larger s), nodes

receive more accurate models from the neighbors and hence they

achieve a smaller loss within a fixed number of iterations.

VII. CONCLUSION

We proposed the QDGD algorithm to tackle the problem of

quantized decentralized consensus optimization. The algorithm

updates the local decision variables by combining the quantized

messages received from the neighbors and the local information

such that proper averaging is performed over the local decision

variable and the neighbors’ quantized vectors. Under customary

conditions for quantizers, we proved that the QDGD algorithm

achieves a vanishing consensus error in mean-squared sense, and

verified our theoretical results with numerical studies. Following

our preliminary work [1], there has been a growing interest

in developing quantized decentralized optimization methods

[38]–[40]. In particular, in [38] authors propose to use adaptive

quantization which is kept tuned during the convergence. Au-

thors in [40] relax the convexity assumption and develop another

quantized method for a more general class of objective functions.

An interesting future direction is to establish a fundamental

trade-off between the convergence rate of quantized consensus

algorithms and the communication. More precisely, given a

target convergence rate, what is the minimum number of bits that

one should communicate in decentralized consensus? Another

interesting line of research is to develop novel source coding

(quantization) schemes that have low computation complexity

and are information theoretically near-optimal in the sense that

they have small communication load and fast convergence rate.

Lastly, developing such communication-efficient decentralized

optimization methods for convex or non-convex functions are

highly critical given the rise of deep neural networks in the

learning literature, which is another line in our future directions.

APPENDIX A

PROOF OF LEMMA 1

To prove the claim in Lemma 1 we first prove the following

intermediate lemma.

Lemma 3: Consider the non-negative sequence et satisfying

the inequality

et+1 ≤
(
1− a

T 2δ

)
et +

b

T 3δ
, (46)

for t ≥ 0, where a and b are positive constants, δ ∈ [0, 1/2),
and T is the total number of iterations. Then, after T ≥
max{a1/(2δ), exp(exp(1/(1− 2δ)))} iterations the iterate eT
satisfies

eT ≤ O
(

b

aT δ

)
. (47)

Proof: Use the expression in (46) for steps t− 1 and t to

obtain

et+1 ≤
(
1− a

T 2δ

)2

et−1

+
[
1 +

(
1− a

T 2δ

)] b

T 3δ
, (48)

where T ≥ a1/(2δ). By recursively applying these inequalities

for all steps t ≥ 0 we obtain that

et ≤
(
1− a

T 2δ

)t

e0

+
b

T 3δ

[
1 +

(
1− a

T 2δ

)
+ · · ·+

(
1− a

T 2δ

)t−1
]

≤
(
1− a

T 2δ

)t

e0 +
b

T 3δ

[
t−1∑

s=0

(
1− a

T 2δ

)s
]

≤
(
1− a

T 2δ

)t

e0 +
b

T 3δ

[ ∞∑

s=0

(
1− a

T 2δ

)s
]

=
(
1− a

T 2δ

)t

e0 +
b

T 3δ

[
1

1−
(
1− a

T 2δ

)
]

=
(
1− a

T 2δ

)t

e0 +
b

aT δ
. (49)

Therefore, for the iterate corresponding to step t = T we can

write

eT ≤
(
1− a

T 2δ

)T

e0 +
b

aT δ

≤ exp
(
−aT (1−2δ)

)
e0 +

b

aT δ
(50)

= O
(

b

aT δ

)
, (51)

and the claim in (47) follows. Note that for the last inequality

we assumed that the exponential term in is negligible comparing

to the sublinear term. It can be verified for instance if 1− 2δ
is of O (1/ log(log(T ))) or greater than that, it satisfies this

condition. Moreover, setting δ = 1/2 results in a constant (and

hence non-vanishing) term in (50). �

Now we are at the right position to prove Lemma 1. We

start by evaluating the gradient function of hα at the concate-

nation of local variables at time t ≥ 1, that is ∇hα(xt) =
(
I−

W
)
xt + α∇F (xt). Consider the vector zt = [z1,t; . . . ; zn,t] as

the concatenation of the quantized variant of the local updates

xt = [x1,t; . . . ;xn,t]. Then, we obtain that the expression on the

right hand side of (12), i.e.,

∇̃hα(xt)=
(
WD−W

)
zt +

(
I−WD

)
xt+α∇F (xt), (52)

defines a stochastic estimate of the true gradient of hα at time t,
i.e., ∇hα(xt). We let F t denote a sigma algebra that measures

the history of the system up until time t and take the conditional

expectation E[·|F t] from both sides of (52). It yields

E

[
∇̃hα(xt)|F t

]

= (WD −W)E
[
zt|F t

]
+ (I−WD)xt + α∇F (xt),

= (I−W)xt + α∇F (xt)

= ∇hα(xt), (53)

where we used the fact that E [zt|F t] = xt (Assumption 3).

Hence, ∇̃hα is an unbiased estimator for the true gradient ∇hα.
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Now, we can rewrite the update rule (12) as

xt+1 = xt − ε∇̃hα(xt), (54)

which resembles the stochastic gradient descent (SGD) update

with step-size ε for minimizing the objective function hα(x)
over x ∈ R

np. Intuitively, one can expect that, for proper pick

of step-size, the the sequence {xt; t = 1, 2, . . . } produced by

update rule (54) converges to the unique minimizer of hα(x).
More precisely, we can write for t ≥ 1,

E
[
‖xt+1 − x∗

α‖2|F t
]

= E

[
‖xt − ε∇̃hα(xt)− x∗

α‖2|F t
]

= ‖xt − x∗
α‖2 − 2ε

〈
xt − x∗

α,E
[
∇̃hα(xt)|F t

]〉

+ ε2E
[
‖∇̃hα(xt)‖2|F t

]

= ‖xt − x∗
α‖2 − 2ε 〈xt − x∗

α,∇hα(xt)〉

+ ε2E
[
‖∇̃hα(xt)‖2|F t

]

≤ (1− 2µαε) ‖xt − x∗
α‖2 + ε2E

[
‖∇̃hα(xt)‖2|F t

]
.

(55)

We have used the facts that ∇̃hα is unbiased and hα is strongly

convex with parameter µα. Next, we bound the second term in

(55), that is

E

[
‖∇̃hα(xt)‖2|F t

]

= E
[
‖(WD −W) zt + (I−WD)xt + α∇F (xt)‖2|F t

]

≤ ‖∇hα(xt)‖2 + E
[
‖(WD −W) (zt − xt)‖2|F t

]

≤ L2
α‖xt − x∗

α‖2 + nσ2‖W −WD‖2, (56)

where we used the smoothness of hα and boundedness of

quantization noise. Plugging (56) into (55) yields

E
[
‖xt+1 − x∗

α‖2|F t
]
≤
(
1− 2µαε+ ε2L2

α

)
‖xt − x∗

α‖2

+ ε2nσ2‖W −WD‖2. (57)

Let us define the sequence et := E
[
‖xt − x∗

α‖2
]

as the expected

squared deviation of the local variables from the optimal solution

x∗
α at time t ≥ 1. By taking the expectation of both sides of (57)

with respect to all sources of randomness from t = 0 we obtain

that

et+1 ≤
(
1− 2µαε+ ε2L2

α

)
et + ε2nσ2‖W −WD‖2

=
(
1− ε(2µα − εL2

α)
)
et + ε2nσ2‖W −WD‖2. (58)

Notice that for the specified choice of ε and T ≥ T1, we have

T δ ≥ T δ
1 ≥ c1(1+c2L)2

c2µ
and therefore

ε =
c1

T 3δ/2

≤ c2µ

(1 + c2L)2
· 1

T δ/2

≤ µα(
1− λn(W ) + αL

)2

≤ µα

L2
α

. (59)

Therefore, (58) can be written as

et+1 ≤
(
1− ε

(
2µα − εL2

α

))
et + ε2nσ2‖W −WD‖2

≤ (1− µαε) et + ε2nσ2‖W −WD‖2

=
(
1− c1c2µ

T 2δ

)
et +

c21nσ
2‖W −WD‖2

T 3δ
. (60)

Now we let a = c1c2µ and b = c21nσ
2‖W −WD‖2 and employ

Lemma 3 to conclude that

eT = E
[
‖xT − x∗

α‖2
]

≤ O
(

b

aT δ

)

= O
(
c1nσ

2‖W −WD‖2
µc2

1

T δ

)
, (61)

and the proof of Lemma 1 is complete.

APPENDIX B

PROOF OF LEMMA 2

First, recall the penalty function minimization in (15). Fol-

lowing sequence is the update rule associated with this problem

when the gradient descent method is applied to the objective

function hα with the unit step-size γ = 1,

ut+1 = ut − γ∇hα(ut) = Wut − α∇F (ut). (62)

From analysis of GD for strongly convex objectives, the se-

quence {ut : t = 0, 1, · · · } defined above exponentially con-

verges to the minimizer of hα, x∗
α, provided that 1 = γ ≤ 2

Lα
.

The latter condition is satisfied if we make α ≤ 1+λn(W )
L , im-

plying Lα = 1− λn(W ) + αL ≤ 2. Therefore,

‖ut − x∗
α‖2 ≤ (1− µα)

t‖u0 − x∗
α‖2

= (1− αµ)t‖u0 − x∗
α‖2. (63)

If we take u0 = 0, then (63) implies

‖uT − x∗
α‖2 ≤ (1− αµ)T ‖x∗

α‖2

≤ 2(1− αµ)T
(
‖x∗ − x∗

α‖2 + ‖x∗‖2
)

= 2(1− αµ)T
(
‖x∗ − x∗

α‖2 + n‖x̃∗‖2
)
, (64)

where f0 = f(0) and f ∗ = minx∈Rpf(x) = f(x̃∗). On the

other hand, it can be shown [11] that if α ≤ min{ 1+λn(W )
L ,

1
µ+L}, then the sequence {ut : t = 0, 1, · · · } defined in (63)

converges to the O( α
1−β )-neighborhood of the optima x∗, i.e.,

‖ut − x∗‖ ≤ O
(

α

1− β

)
. (65)
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If we take α = c2
T δ/2 , the condition T ≥ T2 implies that α ≤

min{ 1+λn(W )
L , 1

µ+L}. Therefore, (65) yields

‖uT − x∗‖ ≤ O
(

α

1− β

)
. (66)

More precisely, we have the following (See Corollary 9 in [11]):

‖uT − x∗‖ ≤ √
n

(
cT3 ‖x̃∗‖+ c4√

1− c23
+

αD

1− β

)
, (67)

where

c23 = 1− 1

2
· µL

µ+ L
α, (68)

c4√
1− c23

=
αLD

1− β

√

4

(
µ+ L

µL

)2

− 2 · µ+ L

µL
α

≤ 2αD

(1− β)
(1 + L/µ) . (69)

From (67) and (66), we have for T ≥ T2

‖x∗
α − x∗‖2 = ‖x∗

α − uT + uT − x∗‖2

≤ 2‖x∗
α − uT ‖2 + 2‖uT − x∗‖2

≤ 4(1− αµ)T
(
‖x∗ − x∗

α‖2 + n‖x̃∗‖2
)

+ 2n

((
1− 1

2
· µL

µ+ L
α

)T/2

‖x̃∗‖

+
αD

1− β
(3 + 2L/µ)

)2

. (70)

Note that for our pick α = c2
T δ/2 , we can write

(1− αµ)T ≤ exp
(
−c2T

1−δ/2
)
=: e1(T ),

(
1− 1

2
· µL

µ+ L
α

)T/2

≤ exp

(
−1

2
· µL

µ+ L
c2T

1−δ/2

)

=: e2(T ). (71)

Therefore, from (70) we have

‖x∗
α − x∗‖2 ≤ 1

(1− 4e1(T ))

{
4e1(T )n‖x̃∗‖2

+ 2ne22(T )‖x̃∗‖2

+ 4ne2(T )‖x̃∗‖ αD

1− β
(3 + 2L/µ)

+ 2nD2 (3 + 2L/µ)2
(

α

1− β

)2
}

≤ 4n
(
2e1(T ) + e22(T )

)

(1− 4e1(T ))

f0 − f ∗

µ

+
4
√
2ne2(T )

(1− 4e1(T ))

√
f0 − f ∗

µ

αD

1− β
(3 + 2L/µ)

+
2nD2 (3 + 2L/µ)2

(1− 4e1(T ))

(
α

1− β

)2

, (72)

where we used the fact that ‖x̃∗‖2 ≤ 2(f0 − f ∗)/µ. Let B1(T )
denote the bound in RHS of (72). Given the fact that the terms

e1(T ) and e2(T ) decay exponentially, i.e. e1(T ) = o
(
α2
)

and

e2(T ) = o
(
α2
)
, we have

‖x∗
α − x∗‖ ≤ O

(√
2nD (3 + 2L/µ)

(
α

1− β

))

= O
(√

2nc2D (3 + 2L/µ)

1− β

1

T δ/2

)
(73)

which concludes the claim in Lemma 2. Moreover, due to the

exponential decay of the two terms e1(T ) and e2(T ), we have

B1(T ) ≈ 2nD2 (3 + 2L/µ)2
(

α

1− β

)2

(74)

=
2nc22D

2 (3 + 2L/µ)2

(1− β)2
1

T δ
. (75)

APPENDIX C

PROOF OF THEOREM 2

Note that the steps of the proof are similar to the one for The-

orem 1. There, we derived the convergence rate of each worker,

i.e.E[‖xi,T − x̃∗‖2]by bounding two quantitiesE[‖xT − x∗
α‖2]

and ‖x∗
α − x∗‖ as in Lemma 1 and 2 respectively. Here, replac-

ing Assumption 3 by Assumption 5 acquires only the former

quantity to revisit. From (55), we have that for t ≥ 1,

E
[
‖xt+1 − x∗

α‖2|F t
]
≤ (1− 2µαε)‖xt − x∗

α‖2

+ ε2E
[
‖∇̃hα(xt)‖2|F t

]
. (76)

Considering Assumption 5, the second term in RHS of (56) can

be bounded as follows,

E

[
‖∇̃hα(xt)‖2|F t

]

= E
[
‖(WD −W) zt + (I−WD)xt + α∇F (xt)‖2|F t

]

≤ ‖∇hα(xt)‖2 + E
[
‖(WD −W) (zt − xt)‖2|F t

]

≤ L2
α‖xt − x∗

α‖2 + η2‖W −WD‖2‖xt‖2

= L2
α‖xt − x∗

α‖2 + η2‖W −WD‖2‖xt − x∗
α + x∗

α‖2

≤
(
L2
α + 2η2‖W −WD‖

)
‖xt − x∗

α‖2

+ 2η2‖W −WD‖2‖x∗
α‖2. (77)

Moreover, since the solution to Problem (1), i.e. ‖x̃∗‖ (hence

‖x∗‖) is assumed to be bounded, the (unique) minimizer of

hα(·), i.e. ‖x∗
α‖ is also bounded as follows,

‖x∗
α‖2 = ‖x∗

α − x∗ + x∗‖2

≤ 2‖x∗
α − x∗‖2 + 2‖x∗‖2



4946 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 19, OCTOBER 1, 2019

≤ 2B1(T ) +
4n(f0 − f ∗)

µ

≤ 2B1(1) +
4n(f0 − f ∗)

µ
=: nB̃2. (78)

Plugging (77) and (78) into (76) yields

E
[
‖xt+1 − x∗

α‖2|F t
]

≤
(
1− 2µαε+ ε2

(
L2
α ++2η2‖W −WD‖2

))
‖xt − x∗

α‖2

+ ε2nB̃2‖W −WD‖2. (79)

Let us pick

T̃1 := max

{
ee

1

1−2δ
,
⌈
(c1c2µ)

1/(2δ)
⌉
,

⌈(
c1((2 + c2L)

2 + 2η2‖W −WD‖2)
c2µ

)1/δ
⌉}

. (80)

For T ≥ T̃1, we have

ε =
c1

T 3δ/2

≤ c2µ

(2 + c2L)2 + 2η2‖W −WD‖2 · 1

T δ/2

≤ µα(
1− λn(W ) + αL

)2
+ 2η2‖W −WD‖2

=
µα

L2
α + 2η2‖W −WD‖2 , (81)

which together with (79) yields

E
[
‖xt+1 − x∗

α‖2
]
≤ (1− µαε)E

[
‖xt+1 − x∗

α‖2
]

+ 2ε2nB̃2η2‖W −WD‖2. (82)

Finally, from Lemma 3 with a = c1c2µ and b = 2c21nB̃
2η2

‖W −WD‖2, we have that

E
[
‖xT − x∗

α‖2
]
≤ 2c1nB̃

2η2‖W −WD‖2
µc2

1

T δ

+ exp
(
−c1c2µT

δ
)√

nB̃. (83)

Let B2(T ) denote the bound in RHS of (83). Due to the expo-

nential decay of the second term in B2(T ), we have

E
[
‖xT − x∗

α‖2
]
≤ O

(
2c1nB̃

2η2‖W −WD‖2
µc2

1

T δ

)
, (84)

and

B2(T ) ≈
2c1nB̃

2η2‖W −WD‖2
µc2

1

T δ
. (85)

Hence, by putting (84) together with Lemma 2 we conclude the

claim for any T ≥ T̃0 := max{T̃1, T2}.

REFERENCES

[1] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quantized de-
centralized consensus optimization,” in Proc. IEEE Conf. Decis. Control,
2018, pp. 5838–5843.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress
in the study of distributed multi-agent coordination,” IEEE Trans. Ind.

Inform., vol. 9, no. 1, pp. 427–438, Feb. 2013.
[3] A. Ribeiro, “Ergodic stochastic optimization algorithms for wireless com-

munication and networking,” IEEE Trans. Signal Process., vol. 58, no. 12,
pp. 6369–6386, Dec. 2010.

[4] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Proc. 3rd Int. Symp. Inf. Process. Sensor Netw., 2004, pp. 20–27.

[5] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–
233, Jan. 2007.

[6] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in
multivehicle cooperative control,” IEEE Control Syst. Mag., vol. 27, no. 2,
pp. 71–82, Apr. 2007.

[7] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed
optimization: Practical issues and applications in large-scale machine
learning,” in Proc. 50th Annu. Alleton Conf. Commun., Control, Comput.,
2012, pp. 1543–1550.

[8] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms,” IEEE Trans.

Autom. Control, vol. AC-31, no. 9, pp. 803–812, Sep. 1986.
[9] J. N. Tsitsiklis, “Problems in decentralized decision making and com-

putation,” Ph.D. dissertation, Lab. Inf. Decis. Syst., Massachusetts Inst.
Technol., Cambridge, MA, USA, 1984.

[10] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On distributed
averaging algorithms and quantization effects,” IEEE Trans. Autom. Con-

trol, vol. 54, no. 11, pp. 2506–2517, Nov. 2009.
[11] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized

gradient descent,” SIAM J. Optim., vol. 26, no. 3, pp. 1835–1854, 2016.
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