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An exact solution approach for disassembly line balancing problem
under uncertainty of the task processing times

Mohand Lounes Bentaha*, Olga Battaïa and Alexandre Dolgui

École Nationale Supérieure des Mines, CNRS UMR6158, LIMOS, Saint-Étienne, France

The purpose of this work is to efficiently design disassembly lines taking into account the uncertainty of task processing 
times. The main contribution of the paper is the development of a decision tool that allows decision-makers to choose 
the best disassembly alternative (process), for an End of Life product (EOL), and assign the corresponding disassembly 
tasks to the workstations of the line under precedence and cycle time constraints. Task times are assumed to be random 
variables with known normal probability distributions. The case of presence of hazardous parts is studied and cycle time 
constraints are to be jointly satisfied with at least a certain probability level, or service level, fixed by the decision-maker. 
An AND/OR graph is used to model the precedence relationships among tasks. The objective is to minimise the line cost 
composed of the workstation operation costs and additional costs of workstations handling hazardous parts of the EOL 
product. To deal with task time uncertainties, lower and upper-bounding schemes using second-order cone programming 
and approximations with convex piecewise linear functions are developed. The applicability of the proposed solution 
approach is shown by solving to optimality a set of disassembly problem instances (EOL industrial products) from the 
literature.

Keywords: sustainable manufacturing; disassembly process planning; line design; chance constraints; uncertainty

1. Introduction

Disassembly lines as disassembly systems, play a crucial role in End of Life (EOL) product recovery (Güngör and
Gupta 2002; Ilgin and Gupta 2010). This paper addresses the design of disassembly lines under uncertainty of task
times of the disassembly process. Such a line consists of an ordered sequence of workstations connected by a material
handling system which allows the transportation of work pieces from one workstation to another (Güngör and Gupta
2002; Meacham, Uzsoy, and Venkatadri 1999). At each workstation, an EOL product or one or more of its subassem-
blies are separated into their components and subassemblies for recycling, remanufacturing and reuse. Certain parts or
subassemblies may be hazardous and require a particular treatment incurring a supplementary cost.

The studied optimisation problem aims to assign a given set of disassembly tasks (a set I), which models all possible
disassembly processes of an EOL product, to an ordered sequence of workstations (a set J), to be determined, while
respecting precedence and cycle time constraints. Task times are assumed to be random variables with known normal
probability distributions. Therefore, cycle time constraints are to be jointly satisfied with at least a certain probability
level 1 − α fixed by the decision-maker. In industrial terms, the probability level 1 − α reflects the level of the EOL
product (components and subassemblies) demand satisfaction; hence, it defines the level of the customers’ satisfaction.
Indeed, the joint satisfaction of cycle time constraints with the probability level 1 − α means that the line to be designed
would be a paced line in 1� að Þ � 100½ �% of its total operating time.

The deterministic version of the disassembly line design problem is commonly known as Disassembly Line Balanc-
ing Problem (DLBP) introduced by Güngör and Gupta (1999) and has been proven to be NP-complete in Mcgovern
and Gupta (2007).

In the literature, only few studies dealing with the uncertainty of disassembly task times have appeared. Task times,
in fact, may vary during the disassembly process because of multiple factors, such as: operator skill, motivation and fati-
gue, the structure and quality of EOL products, changes in material composition of product items, workstation character-
istics, etc. (Battaïa and Dolgui 2013).

A collaborative ant colony metaheuristic for stochastic mixed-model U-shaped DLBP was developed by Agrawal
and Tiwari (2008). Task times were assumed to be uncertain with known independent normal probability distributions
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and the objective was to minimise the probability of line stoppage. A genetic algorithm to solve a non-linear binary
bi-objective programme was developed in Aydemir-Karadag and Turkbey (2013) for disassembly line design and balanc-
ing under uncertainty of the task times. In (Bentaha, Battaïa, and Dolgui 2014a, 2014b, 2014c; Bentaha et al. 2014),
mathematical models for designing this line under uncertainty of task processing times were developed. In (Bentaha,
Battaïa, and Dolgui 2014a), uncertainty was modelled using the notion of recourse cost and a sample average approxi-
mation method was developed to solve the studied optimisation problem. In (Bentaha et al. 2014), uncertainty was mod-
elled using workstation expectation times instead of direct station times. In (Bentaha, Battaïa, and Dolgui 2014b), the
joint problem of DLB and sequencing was studied. In (Bentaha, Battaïa, and Dolgui 2014c), a lagrangian relaxation
was proposed to maximise the disassembly line profit.

Other aspects of uncertainty in DLBP were also considered in the literature. A fuzzy optimisation model was
proposed in Tripathi et al. (2009) with the objective to maximise the net revenue of the disassembly process under
uncertainty of the quality of EOL products. A ‘self-guided ants’ metaheuristic was proposed as a solution method. To
deal with the imprecise or fuzzy nature of decision-makers’ targeted goals in DLBP and help to find the criteria priority
in multi-objective DLBP, fuzzy multi-objective programming and fuzzy AHP approaches were, respectively, proposed in
Paksoy et al. (2013) and Avikal, Mishra, and Jain (2014). Tuncel, Zeid, and Kamarthi (2012) used a Monte Carlo-based
reinforcement learning technique to solve the multi-objective DLBP under demand variations of the EOL products. A
MIP based predictive-reactive approach to deal with task failures was also developed in Altekin and Akkan (2011) for
DLBP aiming to maximise the profit generated by a disassembly line. Güngör and Gupta (2001) proposed a heuristic to
deal with task failures caused by defective parts of the EOL product. The objective was to minimise the cost of defec-
tive parts.

In assembly line balancing problems, to take into account the variability of task processing times, several models
were proposed. Usually, task times were assumed to be independent normally distributed random variables with known
parameters. Binary linear programmes with disjoint probabilistic constraints for both straight and U-line balancing prob-
lems were proposed in Agpak and Gokcen (2007). A goal programming approach for minimising the mean station time
and variance differences between stations was presented. Various methods were developed to solve stochastic U-type
assembly line balancing problem: genetic algorithm (Baykasoğlu and Özbakır 2007), a two-phase hybrid heuristic
(Chiang and Urban 2006), a beam search-based method (Erel, Sabuncuoglu, and Sekerci 2005), and an exact solution
approach based on a piecewise linear integer programme with disjoint probabilistic constraints (Urban and Chiang
2006).

From the review above, it can be concluded that the study of processing time variability in both assembly and disas-
sembly line balancing is limited to heuristic or metaheuristic approaches or to exact solution methods based on integer
linear programmes with disjoint probabilistic constraints. In the case of disjoint probabilistic constraints, the decision-
maker seeks an assignment of tasks to workstations where, for each station taken separately, the probability that the
station time be smaller than cycle time should remain greater than a predetermined value. An important and more chal-
lenging issue is to study the case where the cycle time constraints are satisfied jointly; i.e. the probability that all station
times be smaller than cycle time should remain greater than a fixed value. This case is considered in this paper which is
organised as follows: a description and formulation of the studied stochastic DLBP are given in Section 2. The proposed
solution method using convex piecewise linear approximation is presented in Section 3. The numerical experiments are
given in Section 4 and Section 5 concludes the paper with future research directions.

2. Problem description and formulation

A single type of an EOL product is to be completely disassembled on a straight paced line. All received EOL products
contain all their parts with no addition or removing of components. The optimisation problem deals with the assignment
of the disassembly tasks I to an ordered sequence of workstations J satisfying the precedence relations among tasks and
cycle time constraints under uncertainty of the task times. A disassembly task can be performed by any but only one
workstation. Disassembly task processing times ~ti; i 2 I ; are assumed to be independent random variables with known
normal probability distributions, i.e. ~ti �N ðli; riÞ, ti[ 0; 8i 2 I ; means li; 8i 2 I and standard deviations
ri; 8i 2 I , are known values. Let ~ti ¼ ti ~n

� �

; i 2 I , where ~n ¼ ~t1; . . .;~t Ij j
� �

2 N � R
Ij j
þ , is a random vector of the task

times and N is a set of a given probability space N;F;Pð Þ introduced by ~n.
Only a subset I* of the set I is selected which constitutes tasks of the best disassembly alternative. The subset I* and

a number of workstations J �j j � Jj j forming the line to be designed are known after optimisation; Jj j represents an
upper bound on the number of stations of the line. The objective is the minimisation of the line cost including the
opened workstation operation costs and additional costs of workstations handling hazardous parts of the EOL product.
A task i 2 H � I is called hazardous if it generates a hazardous part; H represents the set of all hazardous tasks.



An AND/OR graph is used to model the precedence relationships among tasks. Such a graph represents explicitly
all the possible disassembly alternatives (Wang and Johnson 2000) of an EOL product and the precedence relationships
among tasks and subassemblies. An example of such a graph is given in Figure 1. The corresponding EOL product (a
hand light as an industrial product (Paksoy et al. 2013)) is illustrated in Figure 2.

The AND/OR graph of Figure 1 is constructed from the EOL product in Figure 2 as follows: each subassembly is
modelled by a node labelled Ak ; k 2 K, and each node labelled Bi; i 2 I , represents a disassembly task. For simplicity,
subassemblies with one component are not represented. Two types of arcs define the precedence relations among
subassemblies and disassembly tasks: AND and OR. If a disassembly task generates two subassemblies, or more, then,
it is related to these subassemblies by AND-type arcs. If several concurrent tasks may be performed on a subassembly,
this latter is related to these tasks by OR-type arcs. Table 1 below gives for each disassembly task the generated

Figure 1. AND/OR graph of a hand light adapted from Özceylan, Paksoy, and Bektaş (2014).

Figure 2. A hand light and its corresponding subassemblies (Tang et al. 2002).

Table 1. The hand light associated disassembly tasks and the corresponding generated subassemblies and/or components.

Task Subassemblies Components

1 3425/671 –

2 25,671/34 –

3 34/25 –

4 671/25 –

5 5671 2
6 – 2, 5
7 – 3, 4
8 671 5
9 67 1
10 – 6, 7



subassemblies and/or components. For instance, if task B1 is performed, then two subassemblies are generated:
subassembly ‘3425’ represented by node A1 in the AND/OR graph of Figure 1 and subassembly ‘671’ represented by
node A6.

A sink node ‘s’ is introduced and linked with dashed (dummy) arcs to all disassembly tasks with no successor. The
dummy task s is used in the optimisation model to define the number of opened workstations J �j j of the disassembly
line to be designed.

The developed mathematical model for this optimisation problem is given below.

Parameters

Fc fixed cost per operating a time unit of a workstation;
Ch additional fixed cost per a time unit of stations handling hazardous tasks;
C cycle time;
Pk set of indices for predecessors of Ak ; k 2 K;
Sk set of indices for successors of Ak ; k 2 K;
Is index set of tasks preceding the dummy task s, i.e. Is ¼ fijBi precedes sg
Decision variables

xij ¼
1 if task Bi is assigned to station j;
0 otherwise:

�

xsj ¼
1 if the dummy task s is assigned to station j;
0 otherwise.

�

hj ¼
1 if a hazardous task is assigned to station j;
0 otherwise.

�

Chance constrained binary programme

min C � Fc

X

j2J

j xsj þ C � Ch

X

j2J

hj

( )

ðCCBPÞ

s:t:

X

i2S0

X

j2J

xij ¼ 1 (1)

X

j2J

xij � 1; 8i 2 I (2)

X

i2Sk

X

j2J

xij ¼
X

i2Pk

X

j2J

xij; 8 k 2 Knf0g (3)

X

i2Sk

xiv �
X

i2Pk

X

v

j¼1

xij; 8k 2 Knf0g; 8v 2 J (4)

X

j2J

xsj ¼ 1 (5)

X

j2J

j xij �
X

j2J

j xsj; 8i 2 Is (6)



(7)

P
X

i2I

ti ~n
� �

xij �C; 8j 2 J

!

	 1� a (8)

xsj; xij; hj 2 0; 1f g; 8 i 2 I ; 8 j 2 J (9)

The terms of the objective function represent the cost of operating opened workstations and the additional cost of
handling hazardous parts. If the dummy task s is assigned to a workstation j, then j defines the number of opened
workstations; i.e. j ¼ J �j j.

Constraint 1ð Þ imposes the selection of only one disassembly task to begin the disassembly process. Constraint set
2ð Þ indicates that a task is to be assigned to at most one workstation. Constraints 3ð Þ ensure that only one OR-successor
is selected for each subassembly Ak ; k 2 K. Constraint set 4ð Þ defines the precedence relations among tasks: the selected
successor is assigned to upper-indexed station (or the same) than the one to which the selected predecessor is assigned.
Constraint 5ð Þ imposes the assignment of the dummy task s to one workstation. Constraints 6ð Þ ensure that all the disas-
sembly tasks preceding s are assigned to lower or equal-indexed workstations than the one to which s is assigned. The
constraints 7ð Þ ensure the value of hj to be 1 if at least one hazardous task is assigned to a workstation j;

P

j2J hj
defines the number of hazardous stations. The constraint 8ð Þ enforces the station operating time to remain within the
cycle time, for all opened workstations, with a probability at least 1� að Þ determined by the decision-maker. Finally, set
9ð Þ represents constraints on all possible values of the decision variables.

3. Solution method

In this section, lower and upper-bounding schemes for CCBPð Þ are proposed. The purpose of these bounds (one lower
bound and two upper bounds) is to approximately solve the studied problem CCBPð Þ. In such a case, for a given
instance, if the lower bound value is equal to the upper one, then, an exact solution of CCBPð Þ is found; otherwise, the
quality of a solution generated by the lower bound or the upper bound can be computed. Therefore, this developed deci-
sion tool is of a critical importance for a decision-maker since it permits him to, either compute an exact solution, or
evaluate the quality of an approximate feasible solution. The development of these schemes is based on convex piece-
wise linear approximation and second-order cone programming. The convex piecewise linear approximation is used in
order to approximate, linearly, non-linear functions and integrate them in a linear programme. Second-order program-
ming is used to efficiently model and then solve the studied problem.
Approximation of ðCCBPÞ
Sine disassembly task times ~ti; i 2 I are assumed to be independent random variables with known normal probability
distribution, then using the results of Cheng and Lisser (2012), we have:

P
X

i2I

ti ~n
� �

xij �C; 8j 2 J

!

	 1� að Þ ,
P
P

i2I
ti ~n
� �

xij �C

� �

	 1� að Þqj ; 8j 2 J
P

j2J qj ¼ 1
qj 	 0; 8j 2 J

8

>

>

<

>

>

:

and

P
X

i2I

ti ~n
� �

xij �C

!

	 1� að Þqj ; 8j 2 J ,
X

i2I

lixij þ U
�1 bj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i2I

r2i xij
r

�C; 8j 2 J (10)

where U
�1 
ð Þ is the inverse of the standard normal cumulative distribution function U 
ð Þ and bj ¼ 1� að Þqj ; 8 j 2 J .

Let x be a vector of the decision variables xsj, xij, hj and X ¼ xjconstraints 1ð Þ � 7ð Þ and 9ð Þ are satisfiedf g. From
10ð Þ, the programme CCBP0ð Þ given below represents an equivalent version of problem ðCCBPÞ:

hj 	 xij; 8 j 2 J ; 8 i 2 H



min C � Fc

X

j2J

j xsj þ C � Ch

X

j2J

hj

( )

CCBP0ð Þ

s:t: x 2 X

X

i2I

li xij þ U
�1 1� að Þqjð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i2I

r2i xij
r

�C; 8 j 2 J (11)

X

j2J

qj ¼ 1

qj 	 0; 8 j 2 J

Let s; rð Þ 2 R� R‘�1. The unit second-order convex cone of dimension ‘ is defined as

Q‘ ¼
r

s

� �

js	 jjrjj

� �

where ||⋅|| refers to the standard Euclidean norm. Constraint 11ð Þ is equivalently written as a second-order cone
constraint of dimension ‘ ¼ Ij j þ 1 as follows:

X

i2I

li xij þ U
�1 1� að Þqjð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i2I

r2i xij
r

�C; 8 j 2 J

, lT xj þ U
�1 1� að Þqjð Þ kR1=2 xjk�C; 8 j 2 J

Since U
�1 1� að Þqjð Þ[ 0 and xij 2 0; 1f g , x2ij 2 0; 1f g (xij is a binary variable and α < 50%; α represents a risk and

in general α ≤ 10%), then:
lT xj þ U

�1 1� að Þqjð Þ kR1=2 xjk�C; 8 j 2 J

, kR1=2 xjk�
1

U
�1 1� að Þqjð Þ

C � lT xj
� �

; 8 j 2 J

,

R
1=2

�lT

U
�1ðð1� aÞqjÞ

0

B

B

@

1

C

C

A

xj þ

0

C

U
�1ðð1� aÞqjÞ

0

B

B

@

1

C

C

A

2Q Ij jþ1

where l ¼ l1; . . .; l Ij j

	 


, R1=2 ¼

r1 0

. .
.

0 r Ij j

0

B

@

1

C

A
is a diagonal matrix and xj ¼ x1j; . . .; x Ij jj

� �

; j 2 J .

The Second-Order Cone mixed Binary Programme SOCBPð Þ given below represents an equivalent version of
problem CCBP0ð Þ.

min C � Fc

X

j2J

j xsj þ C � Ch

X

j2J

hj

( )

SOCBPð Þ

s:t: x 2 X

sj �
1

U
�1 1� að Þqjð Þ

C � lTxj
� �

; 8 j 2 J

rij 	 ri xij; 8 i 2 I ; 8 j 2 J

sj 	krjk; 8 j 2 J



X

j2J

qj ¼ 1

qj 	 0; 8 j 2 J

sj; rij 	 0; 8 i 2 I ; 8 j 2 J

where sj; rij 	 0; 8 i 2 I ; 8 j 2 J are intermediate variables; rj ¼ r1j; . . .; r Ij jj

� �T
; 8 j 2 J .

(a) Lower bounding scheme
A special case of Linear Programmes with joint Probabilistic Constraints (LPPC) has been studied in Cheng and

Lisser (2012). The coefficients of the matrix of the probabilistic constraints were assumed to be normally distributed
and the vector rows to be independent. In our case, coefficients are the task times and each row vector is the task time
of a workstation. It is clear that task times of workstations are independent of each other since task times are mutually
independent. Although decision variables of (LPPC) studied in Cheng and Lisser (2012) are positive continuous, the
main results remain valid for ðCCBPÞ with discrete decision variables.
Convex piecewise tangent approximation of U�1 1� að Þqð Þ

Let 1� a ¼ a. The function U
�1 aqð Þ; q 2 �0; 1� is approximated using the first-order Taylor series and the input data

qj;U
�1 aqjð Þ

� �

; j ¼ 1; . . .;m; qj;U
�1 aqjð Þ

� �

is a tangent point of the curve of the function U
�1 aqð Þ; q 2 �0; 1�. Assume

without loss of generality that q1< q2<… < qm. A piecewise tangent linear approximation of U
�1 aqð Þ; q 2 �0; 1�, is

given as follows:

g qð Þ ¼ max
j¼1;...;m

aj þ bjq
� �

; q 2�0; 1� (12)

bj ¼ U
�1

� �ð1Þ
aqjð Þ 
 aqj ln að Þ; j ¼ 1; . . .;m

aj ¼ U
�1 aqjð Þ � bj 
 qj; j ¼ 1; . . .;m

U
�1

� �ð1Þ
aqjð Þ ¼

1

f U
�1 aqjð Þ

� � ; j ¼ 1; . . .;m

where f represents here the standard normal probability density function. Using approximation (12), programme
SOCLBð Þ below is an approximation of ðCCBPÞ.

min C � Fc

X

j2J

j xsj þ C � Ch

X

j2J

hj

( )

SOCLBð Þ

s:t: x 2 X

sj �C � lT xj; 8 j 2 J

rij 	 ri xij; 8 i 2 I ; 8 j 2 J

sj 	krjk; 8 j 2 J

zij 	 akxij þ bkyij; 8 i 2 I ; 8 j 2 J ; k ¼ 1; . . .;m

X

j2J

yij ¼
X

j2J

oij; 8 i 2 I

oij � xij; 8 i 2 I ; 8 j 2 J

oij � qj; 8 i 2 I ; 8 j 2 J

qj þ xij � 1þ oij; 8 i 2 I ; 8 j 2 J



X

j2J

qj ¼ 1

sj; qj; oij; rij; yij; zij 	 0; 8 i 2 I ; 8 j 2 J

In addition, the optimal value of SOCLBð Þ is a lower bound of ðCCBPÞ; this approximation is based on the lower
bound given in Cheng and Lisser (2012) for continuous decision variables.
(b) Upper bounding schemes

In this subsection, two approximations of ðCCBPÞ will be developed, the value of each approximation represents an
upper bound. These two approximations are based on Bonferroni’s inequality (Galambos 1997) and convex piecewise
linear approximation of U�1 aqð Þ; q 2�0; 1�.
Convex piecewise linear approximation of U�1 aqð Þ

Since U
�1 aqð Þ; q 2�0; 1� is a convex function, then for the input data qj;U

�1 aqjð Þ
� �

; j ¼ 1; . . .;m, where
qj;U

�1 aqjð Þ
� �

is an interpolation point, a convex piecewise linear function g of U�1 aqð Þ is defined by:

g qð Þ ¼ max
j¼1;...;m�1

aj þ bjq
� �

; q 2�0; 1� (13)

aj ¼
qjþ1U

�1 aqjð Þ � qjU
�1 aqjþ1ð Þ

ujþ1 � uj
; j ¼ 1; . . .;m� 1

bj ¼
U

�1 aqjþ1ð Þ � U
�1 aqjð Þ

qjþ1 � qj
; j ¼ 1; . . .;m� 1

q1\q2\. . .\qm; qj 2�0; 1�; j ¼ 1; . . .;m

The first upper bound approximation SOCUB1ð Þ of CCBPð Þ is defined by replacing ak ; bkð Þ values in SOCLBð Þ by
their values defined in (13). This approximation is based on the one given in Cheng and Lisser (2012) for continuous
decision variables. It defines an upper bound value of ðCCBPÞ if

c ¼
Y

j2J

U
C � lTxj

kR1=2 xjk

 !

	 1� a

The second upper bound approximation SOCUB2ð Þ of the addressed problem is known for problems with joint probabi-
listic constraints and is based on Bonferroni’s inequality:

min C � Fc

X

j2J

j xsj þ C � Ch

X

j2J

hj

( )

SOCUB2ð Þ

s:t: x 2 X

sj �
1

U
�1 1� aj
� � C � lT xj

� �

; 8 j 2 J

rij 	 ri xij; 8 i 2 I ; 8 j 2 J

sj 	krjk; 8 j 2 J

sj; rij 	 0; 8 i 2 I ; 8 j 2 J

Note that αj, j ∊ J are not decision variables but parameters verifying
P

j2J aj ¼ a.



4. Numerical experiments

The developed lower and upper bounding schemes were implemented in MS VC++ 2008 and Cplex 12.5 was used to
solve seven instances on a PC with Pentium(R) Dual-Core CPU T4500, 2.30 GHz and 3 GB RAM. These used
instances available in the literature contain process alternatives for disassembly of different EOL products. The names
of these problem instances are respectively composed of the first letters of authors’ names and the year of publication,
i.e. BBD13a represents a compass (Bentaha, Battaïa, and Dolgui 2013a), BBD13b is a piston and connecting rod
(Bentaha, Battaia, and Dolgui 2013b), KSE09 is a sample product created by the authors Koc, Sabuncuoglu, and Erel
(2009), L99a and L99b are, respectively, a radio set and a ball-point pen (Lamberta 1999), MJKL11 from (Ma et al.
2011) is an automatic pencil and TZC02 from (Tang et al. 2002) is a hand light. Instance TZC02 corresponds to the
graph of Figure 1. The input data for each problem instance is given in Table 2.

The columns ‘AND-relations’ report the number of disassembly tasks with no successor in subcolumn ‘0’, with one
AND-type arc in subcolumn ‘1’ and with two AND-type arcs in subcolumn ‘2’. The column ‘arcs’ gives the total num-
ber of AND- and OR-type arcs.

Table 3 reports the optimisation results of the studied instances using the proposed lower and upper bounds. The
number of points for convex piecewise linear approximation was fixed at 15, α = 5, 25% of the disassembly tasks were
assumed to be hazardous and the first point of input data for piecewise approximation was 0.0001; all sampled points
were equidistant. The remaining parameters were randomly generated. Columns ‘LB’, ‘UB1’ and ‘UB2’ report, respec-
tively, the lower SOCLBð Þ and upper SOCUB1ð Þ, SOCUB2ð Þ bound values. Column ‘Gap’ reports the optimality gap
value UB�LB

LB , columns ‘ I�j j‘, ‘h-stat.’ and ‘CPU time’ report, respectively, the number of selected tasks of the selected
alternative, the number of hazardous workstations with the corresponding rank, in the line, for each hazardous station
and the resolution time in seconds. The second upper bound UB2 was computed for aj ¼ a

Jj j ; 8j 2 J.
The results of Table 3 show that, for each solved instance, the upper and lower bound values are equal. As men-

tioned earlier, this means that all instances are solved to optimality. In Table 3(a), the values of parameter γ are greater
than 95%. Since α = 5%, then each value of UB1 gives an upper bound for ðCCBPÞ. The CPU time of UB2 for each
processed instance in Table 3(b) is better than the CPU time of UB1 of the same instance in Table 3(a). The conclusion
is that, in our case, UB2 is preferred to UB1. Note that the returned best solution of instance L99b with UB1 is different
from the returned optimal solution of this same instance with UB2.

Table 4 below aims to analyse the impact on the objective function value of the number of points ‘Ptsnbr’ or seg-
ments of the piecewise linear functions used to approximate the non-linear ones of the two problems SOCLBð Þ and
SOCUB1ð Þ. The number of segments corresponds to the number of points minus one in the case of piecewise linear
approximation and to the number of points in the case of tangent piecewise linear approximation.

As shown in Table 4 for the processed instances with the defined parameters, there is no impact of the number of
segments of the approximate piecewise linear functions on the optimal values of the objective functions. The optimal
values of the objective functions of all instances were reached with approximate piecewise linear functions composed of
four segments.

Figure 3 bellow details and illustrates the returned optimal solution of the hand light product, instance TZC02, with
SOCLBð Þ. The selected disassembly alternative highlighted with bold arcs is composed of six tasks. These tasks define
the optimal disassembly process for the considered EOL hand light. The selected tasks are assigned to three worksta-
tions which constitute the stations of the disassembly line, see Figure 3.

Table 2. Problem instances.

|I| |K| arcs

AND relations

|J| C0 1 2

BBD13a 10 5 18 3 6 1 3 0.61
BBD13b 25 11 49 4 18 3 4 120
KSE09 23 13 47 4 14 5 6 20
L99a 30 18 60 2 26 2 9 50
L99b 20 13 41 5 9 6 9 10
MJKL11 37 22 76 4 27 6 10 40
TZC02 10 7 21 3 3 4 6 90



The disassembly task B7 is hazardous, i.e. task B7 generates hazardous parts of the EOL product after its execution.
Task B7 is assigned to the second workstation (a hazardous station with rank 2) of the designed line. Note that the
objective function of the studied problem enforces the assignment of the hazardous tasks (under constraints) to the first
workstation or, if not possible, to the closest following workstation. Thus, the negative impact of hazardous components
or material on operators, disassembly tools or machines and handling systems would be reduced and additional costs
would be avoided.

Although the modelling process was defined using a simple hand light as EOL product, the developed methodology
can be easily adapted for real life cases like End of Life Vehicles (ELV) or Waste Electrical and Electronic Equipment
(WEEE). In addition, the proposed solution method can be applied efficiently.

LB I�j j J �j j h-stat. CPU time UB1 I�j j J �j j h-stat. CPU time γ% Gap%

(a)
BBD13a 8.54 3 2 – 0.14 8.54 3 2 – 0.23 99.63 0
BBD13b 1680 4 2 – 26.38 1680 4 2 – 29.73 99.08 0
KSE09 1160 6 3 (1, 3) 2.70 1160 6 3 (1, 2) 2.48 99.23 0
L99a 850 9 3 (1, 3) 3.56 850 9 3 (1, 1) 38.52 99.96 0
L99b 150 9 3 – 2.26 150 9 3 – 1.51 99.50 0
MJKL11 720 7 3 (1, 2) 6.97 720 7 3 (1, 2) 7.18 99.98 0
TZC02 990 6 3 (1, 2) 0.70 990 6 3 (1, 1) 0.78 99.13 0
(b)

LB I�j j J �j j h-stat. CPU time UB2 I�j j J �j j h-stat. CPU time Gap%
BBD13a 8.54 3 2 – 0.14 8.54 3 2 – 0.05 0
BBD13b 1680 4 2 – 26.38 1680 4 2 – 0.09 0
KSE09 1160 6 3 (1, 3) 2.70 1160 6 3 (1, 3) 0.17 0
L99a 850 9 3 (1, 3) 3.56 850 9 3 (1, 2) 0.66 0
L99b 150 9 3 – 2.26 150 7 3 – 0.67 0
MJKL11 720 7 3 (1, 2) 6.97 720 7 3 (1, 2) 2.54 0
TZC02 990 6 3 (1, 2) 0.70 990 6 3 (1, 1) 0.09 0

Table 4. Obtained results for main upper and lower bounds: changing the accuracy of the convex piecewise linear approximation.

Ptsnbr LB CPU time UB1 CPU time γ% Gap%

BBD13a 5 8.54 0.08 8.54 0.14 99.63 0
10 8.54 0.11 8.54 0.09 99.63 0
20 8.54 0.11 8.54 0.17 99.63 0

BBD13b 5 1680 1.62 1680 11.95 99.08 0
10 1680 27.69 1680 18.67 99.08 0
20 1680 42.56 1680 42.28 99.08 0

KSE09 5 1160 1.31 1160 1.87 99.23 0
10 1160 1.78 1160 1.59 97.25 0
20 1160 4.13 1160 3.62 97.25 0

L99a 5 850 1.84 850 2.39 96.92 0
10 850 2.56 850 3.82 99.96 0
20 850 4.19 850 54.23 99.66 0

L99b 5 150 0.48 150 0.55 98.87 0
10 150 0.89 150 0.73 97.59 0
20 150 0.89 150 0.94 98.39 0

MJKL11 5 720 6.46 720 6.89 99.98 0
10 720 8.88 720 4.23 99.98 0
20 720 16.65 720 169.85 99.78 0

TZC02 5 990 0.39 990 0.36 99.13 0
10 990 0.37 990 0.55 98.81 0
20 990 0.67 990 0.76 98.81 0

Table 3. Obtained results: (a) the lower bound and the first upper bound; (b) the lower bound and the second upper bound.



5. Conclusion

In this paper, a cost-oriented disassembly line design problem was studied under uncertainty. Task processing times were
assumed to be random variables with known normal probability distributions. The case of presence of hazardous parts
was integrated. Cycle time constraints were to be jointly respected with at least a certain probability level fixed by the
decision-maker. To solve the addressed problem with an assessment of the solution quality, a mixed binary mathematical
programme with joint probabilistic constraints along with one lower bound and two upper bounds were proposed. The
developed lower and upper bounding schemes were based on second-order cone programming and convex piecewise
linear approximation. These schemes define a basis for a decision aiding tool of critical importance for decision-makers.
In fact, with these schemes, a decision-maker can compute a lower bound value of the line operation cost to be
designed and an upper one, which allows him to choose a best disassembly process for an EOL product. Moreover,
through its ability to assess the disassembly cost for a product at the end of life, such a tool may help to take the deci-
sions not only for EOL options (landfill, combustion, recycle, refurbish, reuse, etc.) but even at the product design
stage.

The developed models were evaluated using a set of instances (EOL products) from the literature. All instances were
solved to optimality. The numerical results have shown that the upper bound based on Bonferroni’s inequality solves
the problem instances faster than the upper bound based on approximation using convex piecewise linear functions.

The presented modelling process can be easily adapted for real industrial cases like ELV or WEEE. In order to con-
sider such cases in the developed solution method, a cutting-plane approach will be investigated and compared to the
default solution method of the Cplex solver.
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