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Abstract

In this paper, we study extensions of the classical Markowitz’ mean-variance portfolio opti-
mization model. First, we consider that the expected asset returns are stochastic by introducing a
probabilistic constraint imposing that the expected return of the constructed portfolio must exceed
a prescribed return level with a high confidence level. We study the deterministic equivalents of
these models. In particular, we define under which types of probability distributions the determin-
istic equivalents are second-order cone programs, and give exact or approximate closed-form for-
mulations. Second, we account for real-world trading constraints, such as the need to diversify the
investments in a number of industrial sectors, the non-profitability of holding small positions and the
constraint of buying stocks by lots, modeled with integer variables. To solve the resulting problems,
we propose aexactsolution approach in which the uncertainty in the estimate of the expected re-
turns and the integer trading restrictions am@ultaneouslyonsidered. The proposed algorithmic
approach rests on a non-linear branch-and-bound algorithm which features two new branching rules.
The first one is a static rule, callétiosyncratic riskbranching, while the second one is dynamic and
calledportfolio risk branching. The proposed branching rules are implemented and tested using the
open-source framework of the solver Bonmin. The comparison of the computational results obtained
with standard MINLP solvers and with the proposed approach shows the effectiveness of this latter
which permits to solve to optimality problems with up to 200 assets in a reasonable amount of time.
Keywords Programming: stochastic, integer: nonlinear, branch-and-bound, Finance: portfolio;
Probability: distributions

1 Introduction

Since Markowitz’ groundbreaking work in portfolio selection [22], portfolio optimization has been re-
ceiving sustained attention from both asset liability professionals and academics. All such studies define
a portfolio optimization criterion such as mean-variance, mean absolute deviation, value-at-risk, con-
ditional value-at-risk, stochastic dominance of first and second order, etc. In this paper, we use the
mean-variance approach that studies how risk-averse investors can construct optimal portfolios taking
into consideration the trade-off between market volatility and expected returns. Out of a universe of
risky assets and one non-risky asset characterized by a known gtthat usually reflects the interest

rate on the money market, an efficient frontier of optimal portfolios can be constructed. Portfolios on the
efficient frontier offers the maximum possible expected return for a given level of risk.
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The original Markowitz’ model assumes that the expected returasR" of the risky assets and
the variance-covariance matrkxx € R"*" of the returns are known. One of the several formulations
of the mean-variance portfolio selection problems involves the construction of a portfolio with minimal
risk provided that a prescribed return levelis attained. This model is formulated by the following
mathematical program:
min w! Sw

subject tougwo + plw > R

St . ®
=0

w e RTJrl
In the problem above, the decision variablgs j = 1, ..., r represent the proportion of capital invested
in the risky assej while wq is the fraction of capital invested in the money market. The objective
function aims at minimizing the variance of the portfolid Yw, and the constraint

s
wo + Z wj = 1 (2)
j=1

enforces that the sum of the investments is equdl. tcClearly, the investor can allocate part of the
available capitaK to the money markaty.

In the last decade, there has been much effort devoted to extending Markowitz’ work and making his
modern portfolio theory more practical. In this study, we propose models that account for two limitations
associated with the mean-variance approach, naidlye randomness in the parameters describing the
model andii) some of the trading restrictions of stock markets.

The classical mean-variance framework relies on the perfect knowledge of the expected returns of
the assets and their variance-covariance matrix. However, these returns are unobservable and unknown.
Even obtaining accurate estimates of them is very complicated. Indeed, many possible sources of errors
(e.g., impossibility to obtain a sufficient number of data samples, instability of data, differing personal
views of decision makers on the future returns [24], etc.) affect their estimation, and lead to what Bawa
et al. [3] call estimation riskin portfolio selection. This estimation risk has been shown to be the
source of very erroneous decisions, for, as pointed in [7, 10], the composition of the optimal portfolio
is very sensitive to the mean and the covariance matrix of the asset returns, and minor perturbations in
the moments of the random returns can result in the construction of very different portfolios. Decision-
makers would often rather trade-off some return for a more secure portfolio that performs well under a
wide set of realizations of the random variables. The need for constructing portfolios that are much less
impacted by inaccuracies in the estimation of the mean and the variance of the return is therefore clear.

The focus here is on the uncertainty associated with the estimation of the expected returns. 1t is
indeed a widespread belief among portfolio managers, and its was shown in [9], that the the portfolio
estimation risk is mainly due to errors in the estimation of the expected return and not so much to errors
in the estimation of the variance-covariance matrix [7]. In this paper, we assume that the expected return

2



is stochastic and characterized by a probability distribution, and we require that the expected return of the
portfolio is larger than a given level with a high confidence level. We show that the associated problem
takes the form of grobabilistically constrained problem with random technology méft&, 25] that

can be reformulated as a nonlinear optimization problem (not necessarily convex). We define under
which conditions and for which classes of probability distributions the deterministic equivalent problem
is convex and takes the form of a second-order cone problem. We examine in which cases an exact
closed-formulation can be derived. If a closed-form formulation cannot be obtained, we provide convex
approximations that are obtained by using Chebychev's inequality [23] and whose tightness depends on
the properties of the probability distribution. This convexity analysis of the model gives insights about
the applicability and the computational tractability of the proposed model. In related studies, Costa and
Paiva [11], Tutindl and Koenig [31] and Goldfarb and lyengar [15] have also studied the mean-variance
framework in arobustcontext, assuming that the expected return is stochastic. They characterize the
parameters involved in the mean and the variance-covariance matrix with specific types (polytopic, box,
ellipsoidal) of uncertainty, and build semi-definite or second-order cone programs. In [12], a risk-averse
approach is used for the value-at-risk formulation of the optimization problem, in which only partial
information about the probability distribution is known.

The need to account for stock market specifics exacerbates the complexity of the portfolio selection
problem. Real-life trading restrictions, such as the minimum amount to invest in an asset, the require-
ments to buy assets in large lots, or the purchase of assets in a minimal number of industrial sectors, are
not considered in the classical mean-variance models. In the present study, we consider those require-
ments that are respectively calledy-in thresholdround lot anddiversificationtrading constraints. The
modeling of such constraints involves the introduction of integer variables and further challenges the
computational tractability of the associated problems [10, 29]. In the next paragraph, we proceed to a
review of the literature in which the construction of optimal portfolios satisfying such integer constraints
is addressed.

Bienstock [5] considers variants of the Markowitz model which features a cardinality constraint and
buy-in threshold constraints. He shows that the problem is NP-complete when a cardinality constraint
on the number of asset in the portfolio is present. An exact solution framework by branch-and-cut is
developed for which computational results on the exact solution of problems with up to 3300 assets are
reported. In [17], an exact branch-and-bound solution approach is proposed for problems subject to
buy-in threshold, cardinality and round lot constraints. Frangioni and Gentile [14] also consider buy-in
threshold constraints, and develop a new family of cutting planes to handle them. Computational results
for problems with up to 300 assets are reported. Using mean absolute deviation as optimization criterion,
Konno and Yamamoto [19] consider cardinality and fixed transaction cost constraints and solve problems
in which up to 54 assets can be included in the portfolio. It is important to remark that all the studies
above do not account for the uncertainty in the problem parameters.

To the best of our knowledge, this study is the first one to proposxacisolution approach for
portfolio optimization problems in which uncertainty in the estimate of the expected return and real-life
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market restriction modeled with integer constraintssineultaneouslyonsidered. The combination of
integrality and of a probabilistic constraints makes such problems very difficult to solve. Such problems
belong to the family of Mixed Integer Non-Linear Programs (MINLP) for which only very few solvers are
available. In this paper, we use the computational framework offered by the open-source mixed-integer
non-linear solver Bonmin [6]. We propose a non-linear branch-and-bound algorithmic approach, and we
develop two new branching rules, calligiosyncratic riskandportfolio risk branching rules. Extended
computational experiments on problems containing up to 200 assets clearly show the effectiveness and
utility of the two new branching rules. The reader will note that, although the results reported in the paper
are obtained for one of the variants of the probabilistic Markowitz’ model (i.e., risk minimization subject
to the attainment of a predefined return levell), the proposed solution approach can be easily extended
to the other variants.

The paper is organized as follows. In the first part of Section 2, we describe the characteristics of the
constraint enforcing that the portfolio return exceeds with a probabilitgiven prescribed return level.
We present the problem formulation and its deterministic equivalent, we study under which condition it
is convex, and we propose exact or approximate closed-form formulations of the deterministic equivalent
problem. The second part of Section 2 is devoted to the formulation of the integer constraints and models
associated with three types of trading restrictions. Section 3 describes the proposed solution approach.
Section 4 reports and comments the computational results. Section 5 provides concluding remarks and
suggests extensions to the proposed study.

2 Problem formulation and properties
2.1 Probabilistic portfolio optimization model

The proposed portfolio optimization model takes the form of a probabilistically constrained optimization
model with random technology matrix. We refer the reader to the seminal papers of Kataoka [18] and
van de Panne and Poppe [25] for a first study of such stochastic programming models in applications
pertaining to the transportation and diet problems, and to [8, 16, 26, 33] for more recent studies.

We denote by the random vector of return of therisky assets¢ has an--variate distribution with
mean

M:(/’leu%"'vu'r)T? M]:E(‘Sj)vjzlaarv

and variance-covariance matrix
S=E(E-mE-m'T.

The probabilistic constraint
P(NOWO + Y Gw; > R) >p (3)
j=1

in which the coefficientg multiplying the decision variables are stochastic and not (necessarily)

independent, guarantees that the expected return of the poytfelip+ > | &;w; is above the prescribed
j=1



minimal level of returnR with a high probabilityp, typically defined orj0.7,1).
The stochastic version of Markowitz’ mean-variance portfolio optimization problem [22] reads:

min w! Yw

subject toP (uowo + Zr: §jwj > R) >p
j=1

.
wo—i—ij =1
j=1

r+1
w € RY

(4)

The decision variables are given by the- 1-dimensional vectow of portfolio positions. We recall that

wy is the proportion of the available capital invested in the money market with fixed retyep, w;,

j =1,...,risthe proportion of the capitdl invested in the risky assgt ¢; is the stochastic return of
assetj, ¥ is the variance-covariance matrix of the returns, and the objective funetidiw represents

the variance of the portfolio. In our model, we assume that the variables are positive, not allowing
short-selling positions. This constraint can be removed without affecting the nature of the problem.

2.2 Deterministic equivalent

We shall first show that the deterministic equivalent of the probabilistic portfolio optimization model is
a nonlinear programming optimization problem.
Defining byy = % the normalized (i.e., mean 0 and variance 1) random variable representing
w! Yw
the expected portfolio return, it follows that

R—pTw R—plw
Ptz R =P (v2 o) <1 (TRt ©

where F is the cumulative probability distribution of the (normalized) portfolio return &hd is its
inverse. Therefore, the probabilistic constraint (3) becomes

R—uTw)
1-F|———— | 2p
(\/wTEw

R— uTw> (6)
SF|l—— | <1-p ’
< VT Sw
s pfw+ F11 - p)VuwlSw >R
whereF~1(1 — p) is the(1 — p)-quantile ofF".
The deterministic equivalent of (4) is the following nonlinear optimization problem:

min w! Yw
subject top” w + F~1(1 — p)VwTSw > R
T
: (7)
wo + Z w; = 1
j=1
w E Rfl



In the next-subsections, we shall study under which conditions, i.e. for which classes of probability
distributions the above problem is a second-order cone optimization problem (and is therefore convex,
and solvable in polynomial time). We shall see that it is not possible to derive an exact closed-form
formulation of the second-order cone problem for each probability distribution. We shall, therefore,
using Chebychev’s inequality, derive closed-form approximations of the second-order cone problem that
are valid for some families of probability distributions.

2.2.1 Convexity results

a) Symmetric probability distributions

The probability distributionF' of a random variablg is symmetric around its meagn if P(¢§ >
p+b) =P < p—b),be R,andis centrally symmetric iP(¢ > b) = P(¢£ < —b). We provide a
more formal definition below.

Definition 2.1 A probability distribution of an--variate random vector is centrally symmetric if its
density functiory is such thatf(A) = f(—A) for all Borel setsA C R".

Theorem 2.2 If p € [0.5,1) and if the probability distribution of”w is symmetric, the deterministic
equivalenty”w + F~1(1 — p)vwTSw > R of the probabilistic constrainP(¢7w > R) > pis a
second-order cone constraint.

Proof. The matrix of variance-covarianégis positive semidefinite, and thus the functigw Xw
is convex. To show that”w + F~'(1 — p)vwTSw > R is a second-order cone constraint whose
feasible set is convex, it is enough to prove that the fungtibmw + F~1(1 — p)vw? Xw is concave,
which is the case if"~!(1 — p) is smaller than or equal to 0.

Since the probability distribution @fis symmetric, the probability distributioR” of the normalized
random variable) is centrally symmetric. It follows thaf'(0) = 0.5 (or, equivalently, thaf"~1(0.5) =
0). This, combined with the fact that any cumulative distribution function is increasing, implies that
F~1(1-p),p € [0.5,1) is at most equal to 0, which was set out to prove. O

Clearly, problem (7) minimizes a convex quadratic function over a second-order cone and some linear
constraints, and is therefore a convex, second-order cone problem.

b) Positively skewed probability distributions
The skewness is a measure of the asymmetry of a probability distribution of a real-valued random
variable [1], and is computed as ,
skew(§) = EKUBM ,
whereyu ando are respectively the mean and standard deviatign of
The probability distribution” of a random variable is said to be right-skewed or to have positive

skewness (left-skewed or negative skewness, respectively) if the right, upper value (left, lower value,
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resp.) tail is longer or fatter than the left, lower value (right, upper value, resp.), or, stated differently, if
its medianm is strictly smaller (larger, resp.) than its mean

Figure 1: Skewed probability distributions

The two graphs above illustrate the notion of skewness. Both probability distribution functions have
the same expectation and variance. The one on the left is positively skewed, while this on the right is
negatively skewed.

Definition 2.3 The probability distribution of am-variate random vecto¢ has positive skewness if
P(0>v¢)>Pm>v)e F1a)<0,a<05
whereE[y)] = E[¢ — u] = 0and F(m) = P(m > ) = 0.5.

Theorem 2.4 If p € [0.5,1) and if the probability distribution of 7w has positive skewness, the
deterministic equivalent” w + F~1(1 — p)vw?Sw > R of the probabilistic constrainP(¢7w >
R) > pis a second-order cone constraint.

Proof. As mentioned above,”w + F~1(1 — p)vVw!Yw > R is a second-order cone constraint if
F~Y(1 —p)(p > 0.5) is smaller than or equal to 0.
This follows immediately from Definition 2.3:

0>F'1-p),1-p<05

for the probability distributiorF' of the normalized random variabliehas positive skewness. O

The exact value of the quantilé~!(1 — p) can be derived for some probability distributions. If we
assume the returns of the risky assets to be normally distributed, then the normalized portfoligy return
has a standard normal cumulative distribution function

_ 1 v —t2/2
¢(¢)—m/_we dt,

and the numerical value of its quantite ! (p) is known. The same applies if the normalized portfolio
return is uniformly distributed in an ellipsoid = {w = Qz : ||z|| < 1} with ||z|| denoting the Euclidian
norm of z.



2.2.2 Quantile approximation

The exact value of thél — p)-quantileF’~1(1 — p) cannot be derived for each probability distributibn

which therefore impedes the derivation of the exact deterministic equivalent of the probabilistic constraint
(3) in (4). In this section, using variants of Chebychev’s inequality, we derive convex approximations
of (3) for different classes of probability distributions. Such approximations are popular in the robust
optimization literature [4], and differ in terms of their conservativeness.

Theorem 2.5 The second-order cone constraint
pfw — \/E\/m >R
is a valid approximation of the probabilistic constraint
P("w>R)>p 8

when the portfolio return follows any probability distribution characterized by its first two moments
ando?.

Proof. Let us consider the random varialfesuch thaty 7w = (2 u? — ¢7)w: YT w has the same mean
and variance thag” w.
Applying Chebychev’s inequality, we obtain

1 wl'Sw P T
= if w#w>R
P (YTU) —uTw > pTw — R) < 1+<“Z?;5)2 wiBwH(plw—R)? . 9)
1 otherwise

Clearly,
P(YTw—uTw >,uTw—R) :P(uTw—YTw <R—uTw) :P(fTw—,uTw < R—uTw) .
This, combined with (9), successively implies that

wl'Yw

T T T
P — R - <
(5 w—pw< u w) TS ( T R)2

Tyw
1P (Tw— pyTw>R— uTw) < v
P(&w—pw= 'uw)_wTZw—i-(,uTw—R)2

Tyw
Tw—uTw>R—-uTw)>1— v
PEw-pwzR-pw) > wTSw + (p"w — R)?

(10)

Therefore,
1 wtXw
wtSw + (pTw — R)

5 >p



is sufficient for constraint (8) to hold. The expression above can be successively rewritten as:
(1 - ) (wTEw + (uTw — R)Q) > w! Yw
(pTw — R)? > pw! Zw

uw—ﬂ \/wTEw>R

which was set out to prove. O
A tighter approximation can be obtained if the probability distribution is symmetric.

Theorem 2.6 The second-order cone constraint

1
—1/2(1_p)VwTZwZR

is a valid approximation of the probabilistic constraint

P("w=R)>p
when the portfolio return has a symmetric probability distribution.

Proof. Chebychev’s inequality for symmetric probability distributions is formulated as follows:

i wl>w if T >
P (fTw —pFw > pTw— R) < 0-5-min [1’ (/tTw—R)Q] it w = R , (11)
1 otherwise
where the expressionin|a, b] returns the minimum value af andb
Consequently, we have that
1 wl'Xw
- = <P — 0w < pfw—
Q(HTw R < (f w—pw < pw R),
and, using the same variable substitution approach as above, we obtain
1 wl'Zw
P"w—p"w>R-—pw)>1->—1 = 12
(w—p'w>R—p'w) > 2 (Tw — R)? (12)
Therefore,
1 1 wl'Sw S
2 (WTw—R? ="
is a sufficient condition foP (¢7w > R) > pto hold true. Consequently,
wT
b))
(pTw — R)? v
— / v wI'Yw > R
which was set out to prove. d



2.3 Integrality constraints for stock market restrictions

We now propose extensions of problem (7) in order to take into account real-life stock market restrictions.
These are modeled through the introduction of integer decision variables in (7), and pertain to prevention
from holding small positions (Section 2.3.1), to the requirement of purchasing shares by batch of a certain
size (Section 2.3.2), and to the investment in a predefined minimal number of industrial sectors (Section
2.3.3).

This leads to the formulation of integer convex probabilistic problems whose deterministic equiva-
lents are second-order cone mixed-integer problems whose general formulation is given below:

min w’! Yw
subject top”w + F~1(1 — p)VuwTSw > R,
gj(w,y) <0, j=1,...,m (13)
w e Rfl,
yE Zy.
Problem (13) minimizes the volatility of the portfolio over a convex feasible set determined by the

second-order cone constraint on the expected returmaddterministic constraintg; (w,y) < 0. The
decision variableg are integer-valued.

2.3.1 Buy-in threshold constraints

In this section, we introduce constraints that prevent investors from holding very small active positions.
The rationale for this hinges on the fact that such small positions have very limited impact on the total per-
formance of the portfolio [29], but trigger some tracking and monitoring costs. Certain portfolio selection
models, such as the Markowitz model, are known for occasionally returning an optimal portfolio contain-
ing very small investments in a (large) number of securities. Such a portfolio is in practice very difficult
to justify due to the costs of establishing and maintaining it (brokerage fees, bid-ask spreads, etc.), and
the usually poor liquidity of small positions. In order to avoid this, constraints preventing from holding
an active position representing strictly less than a prescribed proparignof the available capital are
useful. To model such constraints, we introdu@xtra binary variable§; € {0,1},5 =1,...,r taking

value 1 if the investor detains shares of agsgte., w; > 0):

wjgéj,j:L...,T. (14)
Small investments are avoided by introducing the following constraints:

wmméjgwj,jzl,...r. (15)
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With these additional variables and constraints, problem (13) becomes

min w’! Yw

subject top”w + F~'(1 — p)VwTSw > R

r
w0+2wj =1
j=1

. (16)
wjg(sj',j:L...,’l“
wmm(Sijj,j:L...T‘
5 e{0,1}"

r—+1
we Ry

2.3.2 Round lot purchasing constraints

Large institutional investors usually purchase large (i.e., even lot) blocks of individual financial assets.
This is primarily because such blocks are more easily traded than smaller (i.e., odd lot) holdings, but
also for liquidity reasons, i.e., to avoid the risk of getting stuck with a small, poorly liquid holding of
a financial asset. Another reason to buy stocks by lots of large quantity is that, often, brokers require
a premium for odd lot trades because they may have to split an even lot which would leave them with
the remaining odd lot part. This is what motivates the construction of portfolio optimization models
includinground lotconstraints that require the purchase of shardsatghesor lots of M stocks.

To each risky assgt, we associate a general integer variapleand a round lot constraint

xj=yM,j=1,...,r a7

imposing that the number; of shares of assetin the portfolio is a multiple ofA/. Denoting byp;

the face value of stock and by K the available capital, it follows that; = “’;f . We can therefore

reformulate (17) as

piviM
w; =
/ K
Problem (13) becomes a second-order cone problem with general integer decision variables

j=1...,r.

min w? Yw

subject top”w + F~'(1 — p)VwTSw > R

i=1 . (18)
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2.3.3 Diversification constraints

Many institutional investors have limitations on the allowable exposure to risky investments. Very often,
such limits are defined by an upper bound on the maximum percentage of the portfolio value that may
be invested in certain categories of financial assets, and/or by the requirement to invest in a predefined
minimum number of asset categories or industrial sectors. In this section, we consider constraints that
force the investor to diversify its portfolio by purchasing assets in at 1ast different economic
sectors. Every assetis linked with an economy sectdr, so that the sets, k = 1,..., L of assets
affiliated with a sectok form an exact partition of1, ..., r}. We associate a binary varialgle € {0,1}

with each economic sectaér (;, is equal tol if and only if the investment in sectér( > w,) is above

JESk
a minimum pre-defined level,;,:

Smin Ck < Z Wi < Smin + (1 — Smin) Ck -
JESK

In addition to the constraint above we must adzhadinality constraint

L
k=1

to satisfy the diversification requirement.

The diversification condition requires to detain "representative” positions in atlggstsectors. Note
that the constraints above do not consider a very small position in a ggt@r, < s,,;,) as contributing

to the diversification of the portfolio. The probabilistic Markowitz model with diversification constraint

reads:
min w! Yw

subject tou”w + F~1(1 — p)VwTSw > R
wo + Z w; = 1
j=1

SmianS Zwkgsmin+(1_5min) Ck,kzl,...,L (19)
1€Sk

L
k=1
¢ e{0,1}*

r+1
w e ZY

3 Solution Method

In this paper, we develop axactMixed-Integer Non-Linear Programming (MINLP) solution method
for portfolio optimization problems subject to the joint enforcement of probabilistic constraint on the
expected portfolio return and integer constraints representative of trading mechanisms. More precisely,
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we rely on a non-linear branch-and-bound algorithm that we complement with new branching rules,
namely thediosyncratic riskandportfolio risk branching rules.

The proposed solution approach is implemented within the open-source solver Bonmin [6, 2] (avail-
able under the Common Public License) designed to solve to optimality general MINLP of form

min f(x)
subjecttog;(z) <0, Vi=1,...,m
v, € Z,Viel
xr eR",

wheref : R® — R andg; : R® — R™ are at least once continuously differentiable convex functions.
Several algorithm can be chosen in Bonmin for solving MINLP and the reader is referred to [6] for a
detailed description of the algorithms and their implementation. In our case, preliminary tests indicated
that the branch-and-bound was the best method available in Bonmin for solving portfolio optimization
problems. In the following, we give a brief reminder of the classical branch-and-bound algorithm used
in Bonmin and then describe two new branching rules which are suitable for the considered portfolio
optimization problems.

3.1 Non-linear branch-and-bound algorithm

The non-linear branch-and-bound algorithm solves problems of the form (20) by performing an implicit
enumeration through a tree search. The algorithm starts by solving the continuous relaxation of (20),
where all integrality requirements have been removed, using the interior point solver Ipopt [32]. We de-
note by(w*, y*) the optimal solution of this continuous relaxationyfifis integer valued, thew*, y*)

is the optimal solution and the problem is solved. Otherwise, at least one of the integer vagighias (

a non integer value. Such a variable is choserbfanching two sub-problems (or nodes) are created
where the upper and lower boundsgrare set tqyg and {yﬂ, respectively, and the two sub-problems

are put in a list of open nodes.

Then, at each subsequent iteration of the algorithm, a sub-problem is chosen from the list of open
nodes, and the continuous relaxation of the current node node is solved providing a lower bound. The
enumeration at the current node can be stopped, or stated differently, the node is said to be fathomed or
pruned, if any of the three following conditions happen:

e the continuous relaxation is infeasible (pruning by infeasibility);

e the optimal solution of the continuous relaxation is not better than the value of the best integer
feasible solution found so far (pruning by bounds);

¢ the optimal solution of the continuous relaxation is integer feasible (pruning by optimality).

If the optimal solution of the continuous relaxation solut{ast, y*) cannot be pruned, then at least
one of the integer variableg; has a non integer valug;{ ¢ Z) in the optimal solution. One of the
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integer infeasible variableg cis then chosen fasranching and two new sub-problems are thus added
to the list of open nodes. By iterating the process a search tree is created and the algorithm continues
until the list of open sub-problems is empty.

One of the key ingredients of the branch-and-bound procedure is the choice of the variable to branch-
on. The most classical rule is to choose the variable which has the largest fractional part, but this rule
is often not very efficient. In this paper, we present two new rules specifically adapted to the portfolio
optimization problems presented in Section 2. These two rules are respectivelyidiakyacratic risk
andportfolio risk branching and are described in the next sections.

3.2 Static branching rule: Idiosyncratic Risk Branching

The idiosyncratic risk branching rule is a static branching rule in which branching priorities are deter-
mineda priori (i.e., before the optimization is started).

For each integer decision variable, the branching priority is given by an integat each node, the
variable chosen for branching is the one, among the integer constrained variables with fractional value
in the optimal solution of the current continuous relaxation, which has the highest priority. In case of
a tie (i.e., when several candidate variables for branching have the same priority), the variable selected
for branching is the one among those with highest priority which is the most fractional in the continuous
relaxation.

It is important to recall that, in the optimization problems with buy-in threshold constraints (16) and
with round lot constraints (18), there is a mapping between assets and integer decision variables: to each
assetj corresponds a unique integer decision variabla (18) andy; in (16). In the context of mean-
variance portfolio optimization problems, we propose to give the highest priority to the integer decision
variable associated with the asset whose return has the greatest variance. We refer thereafter to this
branching procedure as tidtosyncratic risk branchingrocedure. The intuition behind these priorities
is that the asset with the largest variance is the one which has the most significant impact on the overall
risk of the portfolio. Therefore, if the variance is the largest, the two sub-problems resulting from the
branching are more likely to have an optimal value differing substantially from that of the parent node.

For the problems with diversification constraints, each integer decision variable is associated with a
specific industrial sector. To each binary variable, and therefore to each sector, we assign a branching
priority which is an increasing function of the sum of the variances of each asset stock related to the
considered sector.

3.3 Dynamic branching rule: Portfolio Risk Branching

The portfolio risk branching rule is a dynamic branching rule, in which the branching priorities change at
each node and tributary of the structure of the portfolio at the current node. Clearly, the branching vari-
able is determined by relying upordgnamic integratedrisk approach. The dynamics of the branching

rule stems from the revision of the branching priorities at each node in the search tree, while its integrated
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risk approach derives from the fact that the branching priorities are a function of the specific contribution
of each variable (asset) to the overall risk of the portfolio.

The dynamic feature is relevant since, in the course of the optimization process, a new optimal
portfolio can potentially be constructed at each node in the branch-and-bound tree. Therefore, an iterative
(at each node) evaluation of the contribution of each variable to the variance of the portfolio is desirable.
As it will be detailed in the next subsections, it is possible to establish a direct correspondence between
an integer decision variable and an asset. At each node in the branch-and-bound tree, we consider each
integer variable whose optimal value in the current continuous relaxation is not integer feasible. For
each such variable, we evaluate how the restoration of the integrality condition impacts (increases) the
variance of the current portfolio. The variable whose integer feasibility restoration has the largest impact
on the variance receives the highest priority, and is the one with respect to which we branch.

To carry out this evaluation, we approximate the problem at hand by a more simple disjunctive
program with quadratic objective function and linear equality constraints which takes into account the
integrality of only one variable:

min f(w) = w! Sw
subject toAw = b,
(20)
(wi <w;)V(w; >w;),i€1,...,7
weR"

Clearly, the problem above, and therefore the evaluation of the impact of the integer feasibility restora-
tion, are obtained by omitting the non-linear term in the portfolio return constraint and relaxing the
bounds on the variables.

In the next subsections, we give a precise description of how this approximation is obtained for each
variant of the probabilistic Markowitz problem. Prior to this, we explain how the branching rule is ap-
plied in the general setting of (20).

Letw* be the (continuous) optimal solution of (20), and4gt w) be the Lagrangian function:

Ly(w) = fw) + AT (Aw —b) . (21)

We estimate the change in the objective value of (20) through the Lagrangian function. A movement
of § € R" from w* induces the following change in (21):

Lx(w* +8) — Ly(w*) = (w* +6)TS(w* + 6) — w* T Lw* + AT(A9)
=786 + 2w TS + AT A)s .
Sincew™ is optimal, it satisfies the KKT conditions:
2w TY +ATA=0

A(Aw* —b) =0
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which implies thatly (w* + §) — L (w*) = 67 %4.

Let us consider a variable; with valuew;, such thatw} € [w;,w;]. Branching onw; creates two
nodes: in each of them we add one of the constraint< w, andw; > w;. Using the procedure
described above, we estimate the change in the Lagrangian of (20) by computing the two egfimates
ands;” defined by

6; = (wy — wi)ezrz(w;’k —w;)e; = (w; — @i)zaii

(22)

6 = (w; — w)el S(w; — wi)e; = (W; — w})?oy
wheree; is a vector whose components are all equdl but thei—th one which is equal to.
By analogy to mixed-integer programming [21], we then combine these two estimates to obtain the
scoreof variablew; by taking a linear combination of the minimum and the maximum of the two [21]:
8; = Lmin(8; ,6;") + Umax(5; ,9;") . (23)

107 [ )

We set the values df to 1 andU to 2.
We calculatey; for all integer variables with fractional values in the optimal solution of the continu-
ous relaxation, and we select as branching variable the one which has the highest score:

i =ar max 0; .
8 fiwre(wy w0}

The quality of the branching scheme depends on the quality of the relaxation (20) with respect to the
original problem. For the problems handled in this paper, it is easy to build such relaxations, and the
computational experiments indicate that they are of good quality.

3.3.1 Problem with buy-in threshold constraints

In this section, we discuss the implementation of the dynamic portfolio risk branching rule in problem
(16) in which the constraints (14) and (15) define the minimum proportion of available watttiat
must be invested in any active position.

In this case, we use the following formulation:

min w! Yw

subject tou’w + F~1(1 — p)VwTSw > R

wq + Z w; = 1 . (24)
j=1

(wi < 0) V (wz > wmin)

w € Rfl

Note that this formulation is strictly equivalent to (16): imposing the conditipr 0 is equivalent to
settingy; to 0 in (16) and imposingv; > wpiy IS equivalent to setting; to 1. The continuous relaxation
is obtained by removing the disjunctive constraints.
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The selection of the branching variable is performed by applying the scheme described in Section
3.3 to the following relaxation

min w? Dw

subject tou’w = R

wo + ij =1

j=1
(wi < 0) V (wz > wmin)
= RTJrl

of problem (24). The relaxation is obtained by transforming the portfolio return constraint into an equal-
ity constraint from which the non-linear component is dropped, and by removing the non-negativity
constraints.

3.3.2 Problem with round lot constraints

The constraint; = Mip_wi establishes a direct correspondence between the continuous vatiabled
the integer ones; in portfolio optimization problems with round lot constraints (18). Therefore, for a
particular value ofv*, we use the following relaxation

min w’! Yw

subject top’w = R

wo + > wj =1 , (25)
j=1

(0 < | g0 ) v s < [ g

to select the branching variable in portfolio optimization problems with round lot constraints (18).

4 Computational results

4.1 Test problems

To build the test bed for our approach, we use the daily return data of more than 600 stocks that have
been part of Standard&Poor’s 500 index between 1990 and 2004. The data accounts for the splits that the
considered stocks have undergone in the period indicated above. Based on the time series, we calculate
the estimates of the geometric mean of the returns and their variance-covariance matrix.
Using those data, we builgb portfolio optimization instances of various sizd® (problems with

50 assets]2 with 100 and 12 with 200) by randomly selecting the assets included in those problems.
For each problem instance, we formulate three models corresponding to the trading constraints (buy-in
threshold, round lot purchase, and diversification) considered in this paper. To model the problems with
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diversification constraints, we use the Global Industry Classification Standard (GICS) [30] developed by
S&P and Morgan Stanley Capital International to identify the industrial sector to which each company
belongs. The GICS structure consists of 10 Sectors, 24 Industry Groups, 67 Industries and 147 Sub-
Industries. The present study allocates each company to one of the 67 industries. The data come from
the CRSP database and were obtained using the Wharton Research Database Service.

In each problem instance, the prescribed return I&/éd set equal to 7%, the fixed return of the
money market is equal to 2% and the prescribed reliability I@yvddy which the investor wants the
expected portfolio return to exceed the prescribed return level, is set to 85%. The asset returns are
assumed to follow a normal distribution. The problem instances are modeled by using the Ampl modeling
language.

In our experiments, we compare MINLBB[20] and the default branch-and-bound algorithm of
Bonmin[6] to our specialized branch-and-bound algorithms implemented within the Bonmin framework.
MINLP _BB uses a branch-and-bound method and solves the continuous relaxations with a sequential
quadratic trust region algorithm called filterSQP[13]. Some of main differences between MBEBLP
and Bonmin are:

e MINLP_BB uses an active set method for solving the continuous relaxation while Bonmin uses an
interior point algorithm,

e MINLP_PP uses the depth-first search strategy for choosing the next node to process in the tree
search (i.e., it selects the deepest node for processing next) while Bonmin, by default, uses best-
bound (i.e., the next node to be processed is chosen as the one whose parent provides the smallest
lower bound).

All tests were performed on an IBM IntellistationZ Pro with an Intel Xeon 3.2GHz CPU, 2 gigabytes
of RAM and running Linux Fedora Core 3.

4.2 Evaluation of solution approaches

4.2.1 Model with buy-in threshold constraints

In this section, we analyze the computational results obtained for the problem instances containing buy-in
threshold constraints. The experiments have been conducted by setting the minimum fraction of wealth
(wmin) to be invested in an asset (should the investor decide to include that asset in his portfolio) equal
to 2%, 3% and5% for the instances with0, 100 and200 stocks, respectively.

Table 5 reports the results obtained with the four solution approaches listed below on the 36 problem
instances with buy-in threshold constraints:

e Bonmin’'s branch-and-bound algorithm with branching performed on the most fractional integer
variable (i.e., the default branching rule in Bonmin),

e Bonmin’'s branch-and-bound algorithm with the idiosyncratic risk branching rule (Section 3.2),
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e Bonmin’s branch-and-bound algorithm with the portfolio risk branching rule (Section 3.3.1),
e MINLP_BB's branch-and-bound algorithm.

The above solution approaches will thereafter be referred FasR, PR andMBB, respectively.
For each "combination” of problem instance and solution approach, Table 5 reports

¢ the quality of the best obtained solution (columns 2, 5, 8, 11). We use the acroi§no’indicate
that no feasible integer was found. We report the value of the mixed-integer optimality gap when
the best integer solution found is not optimal, and use the symbol "*” when the optimal solution is
found,;

e the computing time (in CPU seconds) needed to find the optimal solution (columns 3, 6, 9, 12).
If this latter cannot be found within the allowed computing time (3 hours), the entry in the table
reads *>10800";

e the number of explored nodes in the branch-and-bound tree (columns 4, 7, 10, 13);

First, we comment on the accuracy of the solutions found. It is well known that the structure of the
variance-covariance matrix of returns often leads to numerical difficulties [5]. While we can not exactly
establishing the optimality of the obtained solutions, outside of the tolerances of the solvers, we can
compare the values of the optimal solutions obtained with Bonmin and with MIRBPwe recall that
bot solvers are based on very different continuous nonlinear programming methods. We observe that the
relative difference between the optimal solutions found by Bonmin and MIBBFRare in the order of
10~* except for problem 050 where it is8.56 « 10~2 (note that the solution found by the three variants
of Bonmin are always identical for these instances as well as for all the other instances in the paper). It
is also worth pointing out that the solution claimed by Bonmin always has a better objective value than
the one claimed by MINLHEBB on these problems.

The instances with 50 and 100 do not really allow us to discriminate the four solution approaches in
terms of the quality of the solution. Indeed, Figure 2 shows that the optimal solution is found by each
solution approach for each 50-stock and 100-stock problem instance.

For the most complex problems containing 200 stocks, the solution apprd&ched PR utilizing
the two new proposed branching rules clearly domindt® and M BB. The former two approaches
solve each instance to optimality, while the latter two solve only 25% of those instances to optimality. It
is also worth noting tha¥P does not find any integer feasible solution when it cannot find the optimal
one, whileMBB always finds an integer feasible solution, and has an average optimality gap of 5.29%.

Figures 3 and 4 display the average computing time for each combination of solution approach and
size of problem instance.

In Figure 4, the left-sided graph shows the average time computed over 200-stock instances, while the
right-sided one shows the average time computed over the only instances that could be solved to optimal-
ity by every solution approach. It is clear that the solution approatResnd PR relying respectively
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Figure 2: Quality of solution for problems with buy-in constraints
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Figure 3: Average computing time for 50-stock and 100-stock instances with buy-in constraints

on the idiosyncratic and portfolio risk branching rules are, regardless of the size of the problem, much
faster tham/ P andM B B. The PR solution approach is slightly faster tha®, and is on average more
than 5 (respectively, 17 and 25) times faster tha® B on 50-stock (respectively, 100- and 200-stock)
instances.

Figure 5 shows the evolution of the average computing time (for all instances on the left-hand side,
for instances solved to optimality on the right-hand side). We can se®@BandIR scale very well:
the rhythm at which their average computing time increases is very reasonable, therefore indicating their
applicability to problems of larger size. This must be contrasted tdviieand MBB approaches for
which the computing time seems to increase exponentially in the number of assets.

4.2.2 Model with round lot constraints

Table 5 reports the computational results for the 36 problem instances with round lot constraints and in
which the investor is constrained to buy shares by multiple®&/afet equal to 100 in our experiments.
Table 5 provides the same outputs (optimality gap, CPU time, number of nodes) and uses the same
notations as those of Table 5. The following four integer solution methods have been tested:
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Figure 5: Buy-in constraints: computing time as a function of dimensionality

Bonmin’s branch-and-bound algorithm with branching on the most fractional integer variable,

Bonmin’s branch-and-bound algorithm with the idiosyncratic risk branching rule (Section 3.2),

Bonmin’s branch-and-bound algorithm with the portfolio risk branching rule (Section 3.3.2),

MINLP _BB’s branch-and-bound algorithm.

Figure 7 shows that th® solution approach using the dynamic portfolio risk branching rule is by far
the most robust method for problems with round lot constraints.|IPhmethod is the only one solving
to optimality all 100-problem instances, and finds the optimal solution for 83% of the 200-problem
instances, whilenoneof the three other methods can solve to optimadity of those twelve problem
instances. A few additional comments are in order. FirstMireapproach does not find any feasible
integer solution for any of the problem instances that it cannot solve to optimality (i.e., 43% and 100% of
the 100-stock and 200-stock instances, respectively).IRltmes not find any integer feasible solution
for any of the 200-problem instances. On the other hMBB always finds a feasible integer solution,
and has an average optimality gap of 0.204% and 1.039% for the 100-stock and 200-stock instances,
respectively.
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Figure??shows thaPRis not only the most robust but also the fastest regardless of the dimensional-
ity of the problem. The average computing times (i.e., irrespective of whether one considers all instances
[left-side in Figure??] , or only those solved to optimality by all approaches [right-side in Figdteof
PR are very significantly lower than those of the other methods. It appears that the difference in speed
betweerPRand any of the other three methods increases with the size of the problem; iRéRded,

e 1.22 (instances solved to optimality) and 1.44 (all instances) times fasteMB&r(the second-
fastest method) for the 50-stock instances;

e 3.65 (instances solved to optimality) and 10.62 (all instances) and times fastevB&for the
100-stock instances.

No speed comparison can be drawn for the 200-stock instance$$Ris¢he only method solving some
(83%) of them to optimality.
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Figure 7: Quality of solution for problems with round-lot constraints
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Finally, we note that the relative difference between the optimal values found by Bonmin and MARILP
are always smaller thard—. In all but 6 cases the value found by Bonmin is better than the one found
by MINLP_BB. In those 6 cases where MINLBB finds a better solution the largest relative difference
iS2 %1072,

4.2.3 Model with diversification constraints

The results displayed in Table 5 are related to the 36 problem instances with cardinality-type diversifica-
tion constraints.

The results have been obtained by setfing,, (the minimum number of sectors in which the investor
must allocate his capital) to 10, 15 and 20 for the problem instances comprising 50, 100 and 200 assets,
respectively, and by setting,,;,, (minimal position in any of thes,,;, sectors) tol% for all problem
instances. The results obtained with the following three integer solution methods

e Bonmin’s branch-and-bound algorithm with branching on the most fractional integer variable,
e Bonmin’s branch-and-bound algorithm with the idiosyncratic risk branching rule (Section 3.2),
e MINLP_BB’s branch-and-bound algorithm

are given in Table 5.

The results in Table 5 indicate that the three methods above solve to optimality all 36 instances in very
limited computing time. The average computing times for the slowest and fastest methods (respectively
MF and MBB) are equal to 126 sec and 69 sec. Clearly, the problems with diversification constraints
appear the easiest to solve.

The relative difference between the optimal values found by Bonmin and MIBRFs again in the
order of10~* and the solution found with Bonmin is always smaller than that obtained with MIRBP

4.3 Impact of integer trading constraints

We discuss below the impact on the various types of integer trading constraints. In particular, we analyze

¢ the difficulty of solving the problem associated with each type of constraints. The difficulty is
evaluated with respect to the average computing time per type of models and for each problem
size (50, 100, 200 stocks). Figure 8 shows that the computational time is an increasing function in
the number of stocks, and highlights the following hierarchy in terms of problem complexity:
1. problem with cardinality constraints,
2. problem with buy-in threshold constraints,

3. problem with round lot constraints.
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The largest problems (i.e., 200-stock instances) with diversification constraints require less com-
puting time on average than the least complex (i.e., 50-stock instances) problems with round lot
constraints. The accrued complexity of those latter is due to the presence of general integer vari-
ables which implicitly require the detention of an integer number of shares of any asset included
in the optimal portfolio.

the impact of the buy-in threshold constraints. Table 1 presents detailed results about the composi-
tion of the optimal portfolio for each combination of model type (without integer constraints, with
diversification, round lot and buy-in threshold constraints) and problem size. The nat&fiand

NSP respectively denote the average number of positions in the optimal portfolio and the average
number of positions which are greater than the threshold imposed by the buy-in constraints. The
thresholdw,,;,, is equal to 2%, 3% and 5% for the 50-, 100- and 200-stock instances, respectively.
Table 1 shows that the buy-in constraints drastically change the structure of the optimal portfolio.
The optimal portfolio with buy-in constraints is less diversified than the optimal portfolio obtained
with any of the other three approaches. The optimal portfolio with buy-in constraints has positions
in 16, 24 and 10 assets for 50-, 100- 100-, and 200-stock instances, respectively. These number
must be contrasted to those of the optimal portfolios without any integer constraints (24, 30, 34),
with diversification constraints (26, 37, 41), and with round lot constraints (24, 28, 30).

the impact of the diversification constraints. In addition to constraining the holding of positions

in a pre-defined number of industrial sectors, the diversification constraints, as shown by Table
1, have also for effect that the investor detains positions in a larger number of assets (at least, on
average, 20.5% of the available assets) and detains a larger number of small positions (at least, on
average, 56.76%).

the impact of the round lot constraints. The requirement to buy shares by large lots has for effect
to limit the number of active positions which is smaller than that for the model without integer
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No integer | Diversification Round lot | Buy-in threshold
constraint (7)| constraint (19) constraint (18), constraint (16)
50-stock NP 24 26 24 16
instances NSP 14 16 13 0
(Wiin = 0.02%) | NP /NP 58.33% 61.54% 54.17% 0%
100-stock NP 30 37 28 24
instances NSP 13 21 11 0
(Wimin = 0.05%) | NP /NP 43.33% 56.76% 39.29% 0%
200-stock NP 34 41 30 10
instances NSP 32 39 28 0
(Wpnin = 0.03%) | NS /NP 94.12% 95.12% 93.33% 0%

Table 1: Concentration effect of buy-in threshold constraint

constraints and with diversification constraints.

5 Conclusion

In this paper, we study the probabilistic Markowitz’ mean-variance portfolio optimization model with
integer-based trading constraints. We consider real-world trading constraints, such as the need to diver-
sify the investments in a number of industrial sectors, the non-profitability of holding small positions, or
the constraint of buying stocks by lots, which are modeled with integer variables. We account for the un-
certainty in the estimation of the expected asset return through the introduction of a stochastic constraint
ensuring that the expected return of the portfolio exceeds the prescribed return with a high confidence
level. We derive stochastic integer formulations for each type of trading constraints, show under which
conditions they are convex, reformulate them as quadratic integer programming problems, and develop
exact solution techniques.

A key additional contribution of this paper is that it developsaactsolution approach for portfolio
optimization problems in which uncertainty in the estimate of the expected return and real-life market
restriction modeled with integer constraints ammultaneouslonsidered. The joint presence of inte-
grality restrictions and of a non-linear, probabilistic constraint explains the complexity of solving such
problems, for which very few solvers can be efficiently used.

The proposed solution approaches consist of non-linear branch-and-bound algorithms. In particular,
we propose two new branching technigues that we implement in a nonlinear branch-and-bound algo-
rithm. The first one is a static branching rule, called idiosyncratic risk branching, while the second one is
an integrated, dynamic branching rule, called portfolio risk branching. The latter updates, at each node
in the branch-and-bound tree, the branching priorities given to the integer variables depending on their
impact on the variance of the portfolio.

We evaluate the efficacy of four exact integer solution approaches on 36 problem instances containing
up to 200 assets and constructed using the stocks included in the S&P 500 Index. We have not found

25



any other computational study considering so many assets for a stochastic portfolio optimization model
subject to integer constraints. Computational results show that the solution approach using the portfolio
risk branching rule is the most performing one, both in terms of speed and robustness (i.e., percentage
of problems solved to optimality), and that it scales well. We also derive a hierarchy of the integer
trading constraints and give insights about the impact (concentration effect) of the buy-in threshold and
diversification constraints.

The algorithmic results presented in this paper pave the way for multiple extensions. Our ongoing
research relates to the algorithmic developments described below. The scalability of the proposed so-
lution approaches could lead to their application to problems of larger dimension. The running time
could be further reduced by relying on a second-order cone programming solver to optimize the contin-
uous relaxations of the second-order cone problems (i.e., polynomial running time) at each node in the
branch-and-bound tree. Other trading constraints (i.e., "transaction cost”, "tax lot”, "maximum number
of transaction” constraints, etc.) leading to the formulation of other types of second-order cone problems
with integer variables deserve attention. Branch-and-cut solution approaches could also be considered.
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