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[1] The shallow-water equations are used to model the flow resulting from the sudden
release of a finite volume of frictionless, incompressible fluid down a uniform slope of
arbitrary inclination. The hodograph transformation and Riemann’s method make it
possible to transform the governing equations into a linear system and then deduce an
exact analytical solution expressed in terms of readily evaluated integrals. Although the
solution treats an idealized case never strictly realized in nature, it is uniquely well-suited
for testing the robustness and accuracy of numerical models used to model shallow-water
flows on steep slopes.
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1. Introduction

[2] Dam-break floods on steep slopes occur in diverse
settings. They may result from failure of either natural or
man-made dams, and they have been responsible for the
loss of thousands of lives [Costa, 1988]. Recent disasters
resulting from dam-break floods on steep slopes include
those at Fonte Santa mines, Portugal, in November 2006
and Taum Sauk, Missouri, USA, in December 2005.
[3] Numerical solutions of the shallow-water equations

are generally used to predict the behavior of dam-break
floods, but exact analytical solutions suitable for testing
these numerical solutions have been available only for
floods with infinite volumes, horizontal beds, or both
[e.g., Zoppou and Roberts, 2003]. Computational models
used to simulate dam-break floods commonly produce
numerical instabilities and/or significant errors close to the
moving front when steep slopes and/or irregular terrain are
present in the flood path. In part these problems reflect the
complex interaction of phenomena not included in model
formulation (e.g., intense sediment transport under time-
dependent flow conditions), but in part they also reflect
shortcomings in the numerical solution algorithms them-
selves. Therefore it is important to obtain exact analytical
solutions of the shallow-water equations that can be used to
test the robustness of numerical models when they are
applied to floods of finite volume on steep slopes. This
paper presents a new solution for this purpose.
[4] For the dam-break problem on a horizontal bed, many

exact and approximate analytical solutions already exist.
For example, Ritter [1892] addressed the case of an infinite
volume of fluid suddenly released on a frictionless plane.
An exact solution for a dam-break flood of finite volume on
a frictionless bed was not presented until Hogg [2006]
analyzed the finite-volume lock-exchange problem. The

more realistic case involving a rough bed (represented by
a Chézy-like friction force) has been addressed by a number
of authors, including Whitham [1954], Dressler [1952], and
Hogg and Pritchard [2004], but only asymptotic solutions
have been developed to date. Taking into account a non-
uniform velocity distribution in the vertical direction leads
to mathematical difficulties, but exact self-similar solutions
can still be obtained for floods with variable inflow (i.e., the
released volume is a function of time) [Ancey et al., 2006,
2007].
[5] For sloping beds, most dam-break solutions devel-

oped to date employ approximations of the shallow-water
equations, in which inertia or pressure-gradient terms have
been neglected. Such assumptions typically lead to a kine-
matic wave approximation, which enables substantial sim-
plification because the mass and momentum balances
making up the shallow-water equations are transformed into
a single nonlinear diffusion equation [Hunt, 1983; Daly and
Porporato, 2004a, 2004b; Chanson, 2006]. Exact solutions
of the shallow-water equations for steep slopes have been
obtained for infinite-volume dam-break floods [Shen and
Meyer, 1963; Mangeney et al., 2000; Karelsky et al., 2000;
Peregrine and Williams, 2001], and the case of a finite-
volume flood has been investigated by Dressler [1958] and
later by Fernandez-Feria [2006], who provided a partial
solution by computing the position and velocity of the surge
front and rear. Savage and Hutter [1989] constructed two
similarity solutions known as the parabolic cap and M-wave,
but these differ from the long-time asymptotic solution of the
problem investigated here.
[6] In this paper we present a new analytical solution of

the shallow-water equations for a situation in which a finite
volume of an ideal (frictionless) fluid is instantaneously
released from behind a dam on a steep slope. Although
frictionless flows never occur in real fluids, the frictionless
case constitutes an unambiguous end-member as well as a
clear target case for testing numerical models [Zoppou and
Roberts, 2003]. Our solution strategy is mostly identical to
that used by Hogg [2006] for the lock-exchange problem,
with some additional complications that we shall detail later.
We begin our analysis by using the characteristics of the
shallow-water equations to infer the positions of the flow
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front and tail at all times. We then employ the hodograph
transformation, which converts the nonlinear shallow-water
equations into a linear system by exchanging the roles of the
dependent and independent variables. An integral form of
the exact solution of the linear equations is then obtained
using Riemann’s method. This method, seldom used in
open-channel hydraulics, is well established in some other
fields where hyperbolic equations similar to the shallow-
water equations arise. Typical examples include gasdynam-
ics [Courant and Friedrich, 1948], collapse of a granular
column [Kerswell, 2005], and tsunami or swash runup on a
shore [Carrier and Greenspan, 1958].

2. Governing Equations

2.1. Flow-Depth Averaged Equations

[7] The nonlinear, one-dimensional shallow-water (Saint-
Venant) equations provide a suitable approximation for
modeling water surges over a wide, uniformly sloping bed
inclined at an angle qwith respect to the horizontal (Figure 1).
If the effects of friction are neglected (see Appendix A), these
equations may be written as

@

@ t̂
ĥþ @

@x̂
ĥû
� �

¼ 0; ð1Þ

@

@ t̂
ûþ û

@

@x̂
ûþ g cos q

@

@x̂
ĥ ¼ g sin q; ð2Þ

where x̂ is the downstream coordinate, t̂ is time, g is the
magnitude of gravitational acceleration, û(x̂, t̂) is the
depth-averaged flow velocity, and ĥ(x̂, t̂) is the flow depth
measured perpendicular to the bed. Note that we use the
shallow-water equations in a non-conservative form, which
is permitted since the solution to the initial-boundary-value
problem investigated here is smooth. Originally, the Saint-
Venant equations were derived to model flood propagation
on shallow slopes and smooth topography [Saint Venant,
1871], but modern formulations have demonstrated that
the equations can be recast to apply rigorously to steep
slopes and irregular topography [Dressler, 1978; Bouchut
et al., 2003; Keller, 2003].
[8] Equations (1)–(2) can be normalized using the fol-

lowing scaled variables

x ¼ x̂

H0

; t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g cos q
H0

s
t̂; h ¼ ĥ

H0

; and u ¼ ûffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p ;

where H0 is the initial fluid depth at the dam wall.
Substitution of the scaled variables into (1) and (2) yields
the following dimensionless equations

@h

@t
þ u

@h

@x
þ h

@u

@x
¼ 0; ð3Þ

@u

@t
þ u

@u

@x
þ @h

@x
¼ tan q; ð4Þ

which can be recast in the matrix form

@

@t
Uþ A � @

@x
U ¼ B;

with

U ¼ h

u

� �
; A ¼ u h

1 u

� �
; and B ¼ 0

tan q

� �
:

[9] The matrix A has two real eigenvalues given by l± =
u ±

ffiffiffi
h

p
, indicating that the shallow-water equations are fully

hyperbolic and that
ffiffiffi
h

p
can be identified as the dimension-

less wave celerity, c =
ffiffiffi
h

p
. The hyperbolic system of

equations can be expressed in terms of their characteristics
as [Stoker, 1957; Whitham, 1974; Chanson, 2004]

da
dt

¼ tan q along the a� characteristic curve :
dx

dt
¼ uþ c; ð5Þ

where a = u + 2c is the associated Riemann variable; and

db
dt

¼ tan q along the b � characteristic curve :
dx

dt
¼ u� c; ð6Þ

where b = u � 2c the other Riemann variable.

2.2. Initial and Boundary Conditions for the
Dam-Break Problem

[10] We consider a situation in which a dam perpendic-
ular to the slope initially retains a reservoir behind it, as
shown in Figure 1. The reservoir geometry is defined in
cross section by the triangle OAB, where OA denotes the
dam wall. The initial water depth is h = h0(x) = 1 � x/xb,
where xb = �1/tanq represents the abscissa of point B in
Figure 1. At time t = 0, the dam collapses instantaneously
and unleashes a flood of finite volume down the slope. An
important difference between our formulation and that of
Fernandez-Feria [2006] lies in the initial configuration of
the flow, because Fernandez-Feria [2006] investigated the
case of a vertical dam. Although a vertical dam is more
similar to some real-world scenarios, it leads to significant
mathematical difficulties when the method of characteristics
is employed owing to singular behavior of the front and rear
(both u and h being zero there).
[11] Following the dam break, part of the water immedi-

ately moves downstream in the form of a forward wave,
while a wave propagating upstream separates moving fluid
from static fluid upslope. The downstream and upstream
waves constitute moving boundaries issuing from the origin
point in the x�t plane (Figure 2). One boundary corre-
sponds to the flow front, where h = 0 and u = uf (uf being the

Figure 1. The initial configuration of the reservoir before
the dam collapse.
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front velocity, unknown for the present). The other bound-
ary constitutes the locus of the upstream propagating wave,
which travels to point B in Figure 1. Along this wave, we
have h = h(t) (which is also unknown at present) and u = 0.
[12] Mathematically, the two moving boundaries are

described by characteristic curves in the x�t plane, which
can be computed using (5) or (6), with h = 0 (forward
front) and u = 0 (backward wave). For the forward wave,
equation (5) reduces to du/dt = tanq. The initial condition
applicable with this equation is u = 2 at t = 0 because the
dam collapse theoretically causes instantaneous acceleration
at t = 0 such that the front velocity immediately becomes u
= 2, independently of slope. Although this instantaneous
acceleration appears unrealistic physically, it is a logical
consequence of the shallow-water approximation, and it can
be demonstrated mathematically by noting that the initial
value of the Riemann variable a is 2; at early times after the
dam collapse, since the flow-front depth drops to zero, this
value implies that u = 2 at the flow front. Use of this value
as the initial condition in du/dt = tanq yields the front
velocity solution u = t tanq + 2. Moreover, because u = dx/dt,
we deduce that x = 1

2
t2 tanq + 2t is the locus of the front

position in the x�t plane.
[13] To obtain the speed of the wave that propagates

upstream from the dam into still water, we infer from (6)
that d (�2c)/dt = tanq along the characteristic curve.
Integration of this equation gives c = �tan q

2
t + 1 since

at t = 0, we have c = 1. Substitution of this result into
the equation defining the characteristic, dx/dt = c yields
x = tan q

4
t2 � t as the equation governing propagation of

the backward wave in the x�t plane. According to this
equation, point B in Figures 1 and 2 is reached by the
backward wave at time tb = 2cotanq.
[14] Once point B is reached, a new wave issues from

point B and defines the speed of the moving tail of the
volume of fluid as it descends the slope. Propagation of this
wave follows the trajectory BC in Figure 2. At the tail
margin, the condition h = 0 (c = 0) applies, just as at the
front of the forward wave. At point B, the initial conditions

for the characteristic equation are x = xb = �cotanq, t = tb =
2 cotanq, h = 0 and u = 0. Substituting c = 0 in (5) and
integrating the resulting equation du/dt = tanq yields the
wave velocity u = tanq(t � tb) = t tanq � 2. Integrating this
equation once again yields the equation describing the
position of the moving tail in the x�t plane:

x ¼ tan q
1

2
t2 � ttb þ

t2b
2

� �
þ xb ¼

t2

2
tan q� 2t þ cotanq:

Tables 1 and 2 summarize all the equations defining the
boundaries of the moving fluid, and Figure 2 illustrates the
position of the boundaries in the x�t plane.
[15] Some key physical implications of the boundary

equations listed in Tables 1 and 2 deserve special mention.
First, once motion of the head and tail begins from their
respective initial conditions, each boundary propagates
downslope with an acceleration identical to that of a
frictionless point mass moving along the slope. This finding
implies that the boundary speeds are uninfluenced by the
presence of adjacent fluid after motion commences. Second,
the speed of the advancing flow front always exceeds that of
the advancing tail by 4 for t > tb. The difference in speeds is
inherited from the difference in initial conditions affecting
the head and tail, and it implies that the traveling wave of
fluid continuously elongates at a constant rate. This constant
elongation would not occur, of course, in a flow with
frictional dissipation.

3. Homogenization and Hodograph
Transformation

[16] In order to make the governing equations homoge-
neous and simplify calculations, we use a change in
variables so that the effects of gravitational acceleration
do not appear explicitly:

~x ¼ x� tan q
2

t2;~t ¼ t;~v ¼ u� t tan q; and ~h ¼ h; ð7Þ

Use of these substitutions in (3) and (4) yields

@h

@t
þ v

@h

@x
þ h

@v

@x
¼ 0; ð8Þ

@v

@t
þ v

@v

@x
þ @h

@x
¼ 0; ð9Þ

Figure 2. Characteristics corresponding to the boundaries
of the moving fluid volume. Computation is for slope angle
q = p/4.

Table 1. Features of the Boundaries Delimiting the Fluid Domain

c u v x r s

OF 0 t tanq + 2 2 2t 2 2
OB 1 � t tanq/2 0 �t tanq �t2 tanq/4 � t 2(1 � t tanq) �2
BC 0 t tanq � 2 �2 �2t + cotanq �2 �2

Table 2. Equations of the Boundaries Delimiting the Fluid

Domain

x t Range

OF t2

2
tanq + 2t t � 0

OB t2

2
tanq � t 0 	 t 	 2cotanq

BC t2

2
tanq � 2t + cotanq t � 2cotanq
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where the tilde has been removed to simplify notation. The
characteristic form of these equations is now

dr

dt
¼ 0 along the r � characteristic curve :

dx
dt

¼ vþ c; ð10Þ

where r = v + 2c is a Riemann invariant, and

ds

dt
¼ 0 along the s� characteristic curve :

dx
dt

¼ v� c; ð11Þ

where s = u � 2c is the other Riemann invariant.
[17] The next step is linearization in order to use analyt-

ical methods available for linear partial differential equa-
tions [Garabedian, 1964]. Transformation of the governing
equations into quasi-linear equations is made possible by
using hodograph variables. That is, instead of seeking
solutions in the form h(x, t) and v(x, t), we switch the
dependent and independent variables and seek solutions in
the form x(v, h) and t(v, h) or, more precisely, x(r, s) and
t(r, s) since we have

v ¼ 1

2
r þ sð Þ and

ffiffiffi
h

p
¼ 1

4
r � sð Þ: ð12Þ

Denoting the Jacobian of the transformation by J = xhtv �
xvth, we obtain

hx ¼
tv

J
; vx ¼ � th

J
ht ¼ � xv

J
; and vt ¼

xh
J
:

The transformation is reversible provided J 6¼ 0 and 1/J 6¼ 0.
This condition is satisfied here except at the flow
boundaries, but since the solution is known there (as
summarized in Table 2), this restriction presents no
difficulty. With the new variables, the homogeneous
governing equations (8) and (9) reduce to

� @x
@v

þ v
@t

@v
� h

@t

@h
¼ 0; ð13Þ

@x
@h

þ @t

@v
� v

@t

@h
¼ 0: ð14Þ

[18] Equations (13) and (14) can be solved using the
method of characteristics. The equation of an r-characteris-
tic in the r�s plane is given by

@x
@s

¼ 3r þ s

4

@t

@s
; ð15Þ

which was deduced from equation (10) using dx = xsds and
dt = tsds since r is constant. Similarly, we obtain for the s-
characteristic equation

@x
@r

¼ 3sþ r

4

@t

@r
: ð16Þ

[19] We next derive a single equation governing t. Differ-
entiating equation (15) with respect to r and equation (16)

with respect to s, then finding the difference of the two
resulting equations, we obtain the equation for t:

L t½ � ¼ 0 where L t½ � ¼ @2t

@r@s
� 3

2 r � sð Þ
@t

@r
� @t

@s

� �
: ð17Þ

A similar equation can be obtained for x, but its form is
more complicated and it is more fruitful to compute t by
solving equation (17) and then using one of the character-
istic equations (15) or (16) to find x. Equation (17) is a
linear hyperbolic partial differential equation of second
order, which arises in a number of contexts in gasdynamics
and hydrodynamics and for which solutions are known in
terms of Riemann functions [Courant and Friedrich, 1948;
Garabedian, 1964; Kevorkian, 2000]. The boundary
conditions for equation (17) are specified along curves
OA, OB, and BC (see Table 1).

4. Riemann Formulation

[20] Next we exploit the linearity of equation (17) and use
an integral representation to relate t to its auxiliary con-
ditions. If we integrate equation (17) over a finite domain D
whose oriented contour is denoted by G, we obtain area
integrals that by themselves yield little insight. However, if
we transform these area integrals into boundary integrals
using Green’s theorem, then part of the problem is solved.
In this context, Riemann’s formulation involves introducing
an adjoint differential operator N(t), which enables us to
write [Garabedian, 1964; Zauderer, 1983]

tL t½ � � tN t½ � ¼ r � U ¼ @U

@r
þ @V

@s
;

where U = (U, V) is a vector field. In this way, we obtain

Z
D

tL t½ � � tN t½ �ð Þdrds ¼
Z
G
U � ndh; ð18Þ

where n is an outward normal vector along G and dh is a
curvilinear abscissa such that ndh = (ds, �dr). For this
decomposition to hold, we must define N, U, and V as
follows

N t½ � ¼ @2t
@r@s

þ 3

2 r � sð Þ
@t
@r

� @t
@s

� �
� 3t

r � sð Þ2
: ð19Þ

U ¼ � 3

2

1

r � s
tt þ t

2

@t

@s
� t

2

@t
@s

; ð20Þ

V ¼ 3

2

1

r � s
tt þ t

2

@t

@r
� t

2

@t
@r

: ð21Þ

[21] We now consider a geometric domain D in the form
of a quadrilateral MPOQ, as depicted in Figure 3. The value
of t is known along PO (point O corresponds to point O in
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the x�t plane) and OQ (see Table 1). Since we are free to
choose the function t, we pose

N t½ � ¼ 0; ð22Þ

with the boundary conditions

t a; bð Þ ¼ 1;
@t
@s

¼ � 3t
2 r � sð Þ on r ¼ a;

and
@t
@r

¼ 3t
2 r � sð Þ on s ¼ b; ð23Þ

These equations remove the dependency on v in the
boundary integrals along PM and QM. The solution of
(22) satisfying these boundary conditions may be written as
the Riemann function R(r, s; a, b):

t r; sð Þ ¼ R r; s; a; bð Þ ¼ r � sð Þ3

r � bð Þ3=2 s� að Þ3=2

� F 3

2
;
3

2
; 1;

r � að Þ s� bð Þ
r � bð Þ s� bð Þ

� �
: ð24Þ

where F is the hypergeometric function [Abramowitz and
Stegun, 1964, p. 556]. A derivation of (24) is provided in
Appendix B.
[22] Identifying the function t as in (24) and making use

of (22), (18) becomes
R
G U � ndh = 0. The oriented contour

line G can be broken down into segments QM and MP,
where the boundary conditions (23) hold, and the segments
PO and OQ (Figure 3), leading to

Z
G
U � ndh ¼ �

Z M

Q

Vdr þ
Z P

M

Uds�
Z O

P

Vdr þ
Z Q

O

Uds ¼ 0:

ð25Þ

[23] After integrating the boundary integrals in (25) by
parts and making use of (23), we rearrange the contribution
along each segment of G as follows

Z M

Q

Vdr ¼ 1

2
tt½ �MQ þ

Z M

Q

t
3

2

t
r � b

� @t
@r

� �
dr

¼ � 1

2
t Qð Þt Qð Þ þ 1

2
t a; bð Þ; ð26Þ

Z P

M

Uds ¼ 1

2
tt½ �PM þ

Z P

M

t � 3

2

t
a� s

� @t
@s

� �
ds

¼ 1

2
t Pð Þt Pð Þ � 1

2
t a; bð Þ; ð27Þ

Z O

P

Vdr ¼ � 1

2
tR½ �OP þ

Z O

P

R r; s; a; bð Þ 3

2

t

r þ 2
þ @t

@r

� �
dr; ð28Þ

Z Q

O

Uds ¼ � 1

2
tR½ �QO þ

Z Q

O

R r; s; a; bð Þ � 3

2

t

2� s
þ @t

@s

� �
ds:

ð29Þ

[24] In so doing, we obtain from the right-hand sides of
(26)–(29) an integral representation of t that holds for
any point M (a, b) inside the triangle OFB in the r–s
plane

t a; bð Þ ¼ 1

2
t Pð ÞR P;Mð Þ þ 1

2
t Qð ÞR Q;Mð Þ þ

Z Q

P

Uds� Vdrð Þ:

[25] Since on the boundaries PO and OQ we have tr =
�cotanq/2 and ts = 0, respectively, we can reduce the
equation for t to

t a; bð Þ ¼ cotanq
Z a

2

R r; 2; a; bð Þ 2� 5r

4 r þ 2ð Þ dr: ð30Þ

[26] The variable x is then computed by integrating an
s-characteristic, i.e., equation (16)

x rjs ¼ cstð Þ ¼ 1

4
3sþ rð Þt r; sð Þ þ 1

4

Z 2

r

t r0; sð Þdr0; ð31Þ

where we have taken into account the boundary condition
x = 0 at t = 0.
[27] Although equations (30) and (31) are not fully

explicit expressions, these exact integral solutions can be
evaluated numerically without any difficulty by using
computing software such as Mathematica. The Mathematica
notebook used to plot the figures in this paper is available
online from our website (http://lhe.epfl.ch). The solutions
can also be expressed in terms of Legendre functions and
computed using tabulated values. Note that when q ! 0,
time t tends toward infinity, which means that with this
solution, we cannot recover the solution calculated by Hogg
[2006] for a horizontal plane. This restriction results from
the differing upstream boundary condition in the two prob-
lems. For a horizontal bottom, part of the fluid remains in
the reservoir and the velocity at point B is zero, whereas for
a sloping bed, once the backward wave has reached the

Figure 3. Computation domain in the r–s plane.
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upstream end of the reservoir, the tail of the flood wave
starts moving and its velocity is nonzero (see Table 1).
[28] Equations (30) and (31) form an implicit solution to

equations (8)–(9) that can be quite easily inverted to
provide h(x, t) and v(x, t). Figure 4 shows the s- and r-
characteristics obtained when the bed slopes at the angle q =
p/4. Figure 5 shows the flow-depth and velocity profiles at
different times after the dam collapse for q = p/4. The
graphs of Figure 5 depict the flow depth and velocity
profiles in a frame moving at velocity t tanq. Note that
the velocity variations are nearly linear and the flow depth
profile is increasingly symmetric as elapsed time increases.
These features are reminiscent of the parabolic-cap similar-

ity solution of Savage and Hutter [1989]. A shown in
Appendix C, however, the parabolic cap solution differs
from the long-time asymptotic solution of the shallow-water
equations we present here.
[29] Expressing our solution in terms of the original

dimensionless variables x and t is straightforward. The
value of x is given by x = x + 1

2
tanqt2, while t remains

unchanged. Figure 6 uses these variables to depict the flow-
depth and velocity profiles at different times after the dam
collapse, and Figure 7 shows details of the evolution of flow

Figure 4. Characteristics in the x– t plane for slope angle
q = p/4. The r-characteristics are shown as solid lines for
r values ranging from 2 to �2, with an increment of 0.5.
The s-characteristics are shown as dashed lines for s values
ranging from 2 to �2, with an increment of 0.5.

Figure 5. Flow depth and velocity profiles in the x– t plane
for slope angle q = p/4. Profiles are shown for times t = 1, 2, 4,
8. The dashed line represents the initial flow depth (still water).

Figure 6. Flow depth and velocity profiles in the x– t
plane for slope angle q = p/4. Profiles are shown for times
t = 1, 2, 4, 8. The dashed line represents the initial flow depth.

Figure 7. Flow depth profiles in the x-t plane for slope
angle q = p/4. Profiles are shown for times t = 0.25, 0.5,
0.75, 1. The dashed line represents the initial flow depth.
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depth at early times. Combining the velocity and flow depth
profiles at early times makes it possible to evaluate the
discharge at the dam site and thereby to obtain a hydrograph
that can be used to provide initial conditions in numerical
models that route floods using the shallow-water equations.
Finally, note that the shape of the characteristic curves in the
x– t plane is significantly altered due to fluid acceleration.
Figure 8 shows the b- and a-characteristics in the x– t plane
for q = p/4.
[30] The physical variables x̂, t̂, û, and ĥ can be repre-

sented parametrically by using the dimensionless auxiliary
variables r = v + 2

ffiffiffi
h

p
and s = v - 2

ffiffiffi
h

p
(i.e., the Riemann

invariants)

t̂ r; sð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H0

g cos q

s
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H0

g cos q

s
cotanq

Z r

2

R x;�2; r; sð Þ

� 2� 5x
4 x þ 2ð Þ dx; ð32Þ

x̂ r; sð Þ ¼ H0x ¼
1

4
3sþ rð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p
t̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p�
�
Z 2

r

t̂ x; sð Þdx þ 2 sin qgt̂2
�
; ð33Þ

û r; sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p
u ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p
þ gt̂ sin q; ð34Þ

ĥ r; sð Þ ¼ H0h; ð35Þ

for r > s > �2 and �2 < r < 2 and where R is the Riemann
function given by equation (24). For s = �2 and �2 < r < 2,
which apply to the backward wave for 0 < t < tb, we have

t̂ r;�2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H0

g cos q

s
1� r

2

� �
cotanq; ð36Þ

ĥ r;�2ð Þ ¼ H0 1� t̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g cos q
H0

s
tan q

 !
: ð37Þ

[31] The case r = s (with s > �2) corresponds to t ! 1,
while r = 2 (with s > �2) corresponds to the initial condition
before the dam breaks. The particular value r = s = 2 gives
the position and velocity of the flow front, while r = s = �2
gives the position and velocity of the flow tail after the fluid
has detached from point B (i.e., for t > tb):

ĥ 2; 2ð Þ ¼ 0 and û 2; 2ð Þ ¼ gt̂ sin qþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p
; ð38Þ

ĥ �2;�2ð Þ ¼ 0 and û �2;�2ð Þ ¼ gt̂ sin q� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p
:

ð39Þ

5. Conclusion

[32] By employing the one-dimensional shallow-water
equations, an accelerated reference frame, hodograph trans-
formation, and Riemann’s method, we have derived a new
exact solution describing the behavior of a dam-break flood
of finite volume traveling down a steep, planar slope.
Although the solution assumes that the fluid is frictionless,
it nonetheless provides an end-member test case suitable for
assessing the accuracy and robustness of numerical methods
used to simulate real floods. The solution employs an initial
condition in which a triangular prism of static fluid is
impounded by a dam face normal to the slope, and the
flood is triggered when the dam instantaneously vanishes.
[33] Key aspects of the motion of the flood head and tail

are illustrated by some elementary features of our solution
obtained directly from the untransformed shallow-water
equations. For example, the solution shows that the evolving
speed of the flow front is the same as that of a frictionless
point mass with an initial velocity û = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p
, where

g is the magnitude of gravitational acceleration, H0 is the
initial height of water behind the dam, and q is the slope
angle. Relative to motion of the flow front, motion of the
tail is delayed by a time proportional to cotanq, because
motion of the tail does begin until a wave propagates
upstream from the broken dam. This delay causes the
downslope speed of the tail to persistently lag behind that
of the front, and as a consequence of this delay and the fact
that the tail subsequently accelerates like a frictionless point
mass, the flood wave elongates at a constant rate. Our
solution describes evolution of the elongating flood wave in
terms of definite integrals that are readily evaluated using
software such as Mathematica. This evaluation shows that
the flood wave is initially quite asymmetric but becomes
increasingly symmetric as time proceeds.
[34] Finally, we note that extension of our solution to more

complex dam-break flows involving materials other than
ideal fluids may be possible. Motion of rock avalanches,
snow avalanches, and debris flows, for example, obeys
equations that are mathematically similar to the shallow-
water equations [Savage and Hutter, 1989; Pudasaini and
Hutter, 2006; Iverson and Denlinger, 2001; Mangeney-
Castelnau et al., 2005; Balmforth and Kerswell, 2005],
and these phenomena are good candidates for further

Figure 8. Characteristics in the x– t plane for slope angle
q = p/4. The a-characteristics are shown as solid lines for
a values ranging from 2 to �2, with an increment of 0.5.
The b-characteristics are shown as dashed lines for b values
ranging from 2 to �2, with an increment of 0.5.
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analytical study. In particular, the experimental and numer-
ical results obtained by Greve et al. [1994] and Koch et al.
[1994] for dam-break avalanches of granular materials
down steep chutes appear very similar to results described
in this paper.

Appendix A

[35] In this paper, basal friction has been neglected. This
assumption is likely to be valid in the bulk of the flow since
the bottom friction contribution is usually of low magnitude
compared to the inertia and pressure gradient terms in the
momentum balance equation. Close to the front, this as-
sumption no longer holds because the flow depth drops to
zero. To estimate the typical extent h of the friction-affected
region, the usual approach is to use a balance between
friction and pressure gradient, i.e., if we use a Chézy law for
representing the bottom drag, we have rgĥcosq@ĥ/@x̂ �
Cdrû

2, where Cd denotes a Chézy-like coefficient, in the
drag-affected region [Whitham, 1954; Hogg and Pritchard,
2004]. A difficulty arises here since ĥ and û are not
explicitly known.
[36] To proceed further in this analysis, we first need to

approximate ĥ and û for the head. This can be readily done
by making a first-order approximation of the integral
representations (30) and (31) of t(r, s) and x(r, s) for the
head. Then solving the resulting linear system to find r and
s, we find

s ¼ � 2

3
þ 4

3

x
t
; ðA1Þ

r ¼ 2: ðA2Þ

[37] Making use of equation (12) to find h and �u and
returning to dimensional variables, we finally obtain

ĥ ¼ 1

9g cos q
x̂f � x̂

t̂

� �2

; ðA3Þ

û ¼ 1

3
2
x̂

t̂
þ ûf

� �
; ðA4Þ

where x̂f = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p
t + 1

2
gt2sinq denotes the front

position and ûf = 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p
+ gtsinq its velocity. A

remarkable feature is that the flow-depth and velocity
profiles in the close vicinity of the front have exactly the
same shape as those found for the Ritter [1892] solution.
Denoting h = x̂f - x̂, we find that within the tip region (h !
0), the dominant balance is

g cos q
ĥ2

t̂2
1

h
� Cdû

2
f ; ðA5Þ

which yields

h3g
ĥ2

t̂2
� 81Cdg cos

2 qû2f t
3: ðA6Þ

[38] At short times, ûf � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH0 cos q

p
and therefore the

extent of the drag-affected region scales as t4/3

h � 4C
1=3
d g2=3 cos qH1=3

0 t4=3; ðA7Þ

which is consistent with the scaling found for dam-break
waves on horizontal planes [Whitham, 1954; Hogg and
Pritchard, 2004]. At long times, ûf � gt sinq, which results
in a more pronounced dependence of h on t

h � 4Cdgt
2 cos2=3 2q: ðA8Þ

Appendix B

[39] The Riemann function R can be computed as follows
(Garabedian, 1964, see problem 9, 5.1, p. 150). Let us
consider a partial differential equation of the form

vxy þ
l
2

1

xþ y
vx þ vy
� �

¼ 0; ðB1Þ

whose adjoint operator is

N v½ � ¼ 0; with N v½ � ¼ vxy � avð Þx� bvð Þyþcv;

and a ¼ b ¼ l
2

1

xþ y
;

and where c = 0. Following Garabedian [1964], we pose

v ¼ xþ yð Þl

xþ hð Þl=2 xþ hð Þl=2
W zð Þ; with z ¼ x� xð Þ y� hð Þ

xþ hð Þ yþ xð Þ :

[40] We find that W satisfies the equation

�l2W zð Þ þ 4 1� lþ 1ð Þzð ÞW 0 zð Þ þ z 1� zð ÞW 00 zð Þ ¼ 0;

whose solution is

W zð Þ ¼ F
l
2
;
l
2
; 1; z

� �
;

where F is the hypergeometric function. With l = 3, x = r
and y = �s, we find the solution to the adjoint problem (22)
with N given by equation (19). Alternative representations
(in particular, in terms of Legendre functions) can be
obtained using properties of F [Abramowitz and Stegun,
1964, see pp. 559–562].

Appendix C

[41] In this appendix we relate our results to those of
Savage and Savage and Hutter [1989], who obtained
similarity solutions to the shallow-flow equations for mo-
tion of finite volumes of frictional material down a uniform
slope. Of particular relevance here is their parabolic cap
solution, which can be obtained by seeking symmetric flow-
depth and velocity profiles for the governing equations (8)
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and (9). In Figure 5, we note that at sufficiently late times,
the flow-depth profile is bell-shaped, while the velocity
profile is nearly linear with x. This prompts us to seek a
solution, where the velocity profile is perfectly linear and
takes the value v = _xf at the front (x = xf), i.e.,

v x; tð Þ ¼ x
xf

_xf ; ðC1Þ

where xf denotes the front position and _xf its velocity in the
x-t plane. For the moment, xf(t) is unknown; we expect that
the similarity solution is the long-time asymptotic solution
of the boundary initial value problem solved above and
therefore assume that xf / 2t. Substituting v into the
momentum balance equation (9), we derive an equation
for h

@h

@x
¼ �

�xf
xf

x; ðC2Þ

whose integration provides

h x; tð Þ ¼ 1

2

�xf
xf

x2f � x2
� �

: ðC3Þ

[42] The flow-depth profile is parabolic and symmetric
around x = 0. Substituting the v and h relations into the mass
equation (8), we derive an equation for the front position xf

d

dt
xf �xf
� �

þ _xf �xf ¼ 0: ðC4Þ

[43] Integrating this equation leads to the second-order
differential equation

x2f �xf ¼ c1; ðC5Þ

with c1 a constant of integration, which can be determined
using volume conservation

V ¼
Z xf

�xf

h x; tð Þdx ¼ 2

3
x2f �xf ¼

2

3
c1; ðC6Þ

where V = 1
2
jxbj = 1

2
cotanq is the initial volume of material.

We can now find xf from (C5) using the boundary
conditions

lim
t!1

xf ¼ 2t and xf 0ð Þ ¼ 0: ðC7Þ

[44] The former boundary condition enforces behavior
similarity between this solution and the one found above
using the method of characteristics. The latter condition is
somewhat formal, but is consistent with our objective of
finding the long-time asymptotic solution. Integrating (C5)
twice and using the boundary conditions (C7), we find an
implicit relation relating xf to t

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2f � 3xf V

q
þ 3V ln

8xf � 3V þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2f � 3xf V

q
3V

������
������ ¼ 16t;

ðC8Þ

which is valid for x > 3V/4. Differentiating this equation
with respect to t, we find that the front velocity is given by

_xf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf 4xf � 3V
� �q
xf

: ðC9Þ

[45] We check that _xf ! 2 when xf ! 1. The parabolic
cap solution is given by

v x; tð Þ ¼ x
xf

_xf ; ðC10Þ

h x; tð Þ ¼ 3

4

V
x3f

x2f � x2
� �

; ðC11Þ

with xf given by (C8) and _xf given by (C9).
[46] In Figure C1, we have plotted the parabolic cap

solution for t = 100. We also have also shown the exact
solution to the shallow-water equations. A key point is that
although both velocity profiles superimpose remarkably,

Figure C1. Comparison between the exact solution to the
shallow-water equations (solid line) given implicitly by
equations (30) and (31) and the parabolic cap solution
(dashed curve) given by equations (C10) and (C11) at t =
100. Above: flow-depth profile; below: flow-depth aver-
aged velocity.
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there is a substantial difference in the shape of the surge. For
the exact solution, the flow-depth profile is always acute
close to the fronts since the flow-depth gradient drops to
zero (see Appendix A), whereas for the similarity solution,
the height gradient at the front is nonzero (@h/@x = 3V/
(2xf)), which results in a finite front angle that the remaining
flow must accommodate.
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