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Abstract. Recently an exact solution of Einstein's empty-space equations
referring to four uniformly accelerated particles was given. The relation of this to
static axially symmetric metrics of the Weyl and Einstein-Rosen classes is investigat-
ed in the present paper. A physical interpretation of the singularity along half of the
axis of symmetry of the uniformly accelerated metric in WeyΓs form is given.

An exact solution corresponding to an expanding (contracting) singular null
surface is obtained by a limiting process from that for uniformly accelerated
particles.

§ 1. Introduction

In a recent paper prepared with Professor W. B. BONNOK [1, 2],
I gave an exact solution of Einstein's field equations

i ^ = 0, (1.1)

referring to a number of uniformly accelerated particles. In this paper I
investigate the relation of this metric to the metrics of Weyl and Ein-
stein-Rosen.

An exact solution of (1.1) corresponding to a singular null surface
moving with speed of light is obtained by a limiting process from a solu-
tion for two uniformly accelerated particles. The singularities of (1.1)
are expected to represent mass or stresses. Hence the physical inter-
pretation becomes difficult in the case of a singular null surface.

The plan of the paper is as follows. In § 2 I consider some transforma-
tions of flat space-time, and give a physical interpretation of the sin-
gularity along half the axis of symmetry of a uniformly accelerated
metric in the Weyl form. In § 3 the derivations of the metric from Weyl
and Einstein-Rosen metrics are given. The solution corresponding to a
singular null surface is obtained in § 4 and the paper ends with a sum-
mary of the results.
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§ 2. Some transformations of flat space-time

Let us start with flat space-time in cylindrical co-ordinates

ds2 = -dr2 - r2 dθ2 - dz2 + dt2, (2.1)

and transform by

r^r, 0 = 0, z = ζ Coshr, ί = if I Sinhτ , (A)

to the uniformly accelerated metric [3, 4, 5]

ds2 = - d r 2 - r2 dθ2 - d£2 + £2 d τ 2 . (2.2)

From (A) it is clear that (2.2) covers only that part of the space-
time for which

z2 > t2. (2.3)

The part of the space-time covered by (2.2) is seperated from the
rest of (2.1) by the null surface

£2 = Z2 __ t2 = 0 ^ (2.4)£
The metric (2.2) has the following property: a test particle whose

world-line in (2.1) is

r = 0, s = (2J3r)1/a Cosh (2H)-V2s, t = (2£Γ)1/2 Sinh(2iϊ)-1/25 ? ( 2.5)

where ZΓ is a constant, has in (2.2) the world-line

r = 0, C = (2flr)1/a, T - (2H)-V2s . (2.6)

Now the world-line (2.5), which satisfies

z2-t2 = 2H (2.7)

is that of a particle moving with uniform proper acceleration (i.e. one
measured in the rest frame of the particle) of magnitude (2H)~χl2 in
Minkowski space-time (2.1). I t is evident from (2.6) that all the uniformly
accelerated particles have constant ζ. For this reason (2.2) may be called
the uniformly accelerated metric. In the limit of H tending to zero i.e.
the magnitude of the uniform acceleration becoming infinite (2.7)
reduces to (2.4).

We next recall the Weyl metric:

ds2 = —e*{dr* + dz2) — r2 er* dθ2 + e? dt2, (2.8)

where ρ and λ are functions of r and z only. This is sufficiently general
for the description of all axially symmetric static fields in vacuo. ρ sat-
isfies
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and once ρ is known λ is determined, apart from an additive constant,
by the remaining field equations ([6], Chap. VIII).

The transformation

(B)

τ = ί ,

where the -f or — signs are to be chosen according as ζ is positive or
negative, takes (2.2) into WeyPs form, namely

ds* = — ex<0> (dr2 + dz2) — f2 e-^0) dθ2 + e*<°> dt2, (2.10)
where

z), (2.11)

S = +(f 2 + 22)1/2. (2.13)

The world-line (2.6) now becomes

r = 0, S = H, ί = (2H)-vaθ . (2.14)

As H tends to zero the proper length s along the trajectory of the
test particle vanishes. RΠSΓDLER (1960) has given a covariant definition
of uniformly accelerated motion for test particles and shown that the
trajectory of the test particle becomes a null geodesic, when the magnitude
of its acceleration becomes infinite (i.e. when H tends zero). Thus a
test particle (photon!) at rest in (2.10) at r = 0, z = 0 will have the speed
of light relative to (2.1). We may regard this point r = 0, z = 0, as a
point dividing the iz-axis into two parts. A test particle at rest on the
part with z > 0, will have speed less than that of light with respect to
(2.1), while if there be a test particle at rest at any point of the part with
z < 0, it would be expected to acquire speed greater than that of light
relative to (2.1). Thus the entire negative F-axis is a forbidden line from
a physical point of view, and indeed it is singular. However this singu-
larity is only due to the peculiar choice of the co-ordinate system, and
can ultimately be traced back to the null surface (2.4), which forms the
boundary of the region of validity of (2.2). We ought to remember that
(2.10) represents flat space-time, since it was obtained from (2.1) by
transformations. In fact (2.10) can be transformed back into (2.1) by
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means of

r = + (z2 -

= tanh" 1 γj

(C)

The transformation (C) maps the whole Weyl space-time onto that
half of the space-time (2.1) for which z2 ^ t2. In the mapping the point
(rv θl9 Zι,\) passes into the points (rl9 θv zv ίx) and (rv θl9 —z v ί2). The
region R > 0 formally corresponds to the region r2 + ζ2 > 0 of (2.2),
which is the same as the region r2 + z2 > t2 of (2.1).

Next transform (2.1) by

r = r, θ = θ, z= |τ*|SinhC*, t = τ* Cosh£* (A*)

to the metric

ds2 - —cZr2 — r2 dθ2 — τ* 2 <̂ C*2 + dτ* 2 . (2.15)

It is obvious that (2.15) covers only that part of space-time for which

t2 > z2 . (2.16)

The part of space-time covered by (2.15) is separated from the rest
by the null surface

T*2 = ί 2 _ 2 2 : = 0 9 (2.17)

which is the same as (2.4).
A test particle whose world-line in (2.1) is given by

r = 0, z = |<s| Sinh;^ t = s Cosh^ (2.18)

where χ is a constant, has in (2.15) the world-line

r=0, ζ* = χ, τ* = s. (2.19)

Now (2.18) represents a test-particle moving with uniform velocity
dz

of magnitude
dt

= |tanhχ| relative to (2.1). It follows from (2.19)

that all particles at rest in (2.15) are in uniform rectilinear motion with
respect to (2.1), and that the magnitude of the velocity of each particle is
determined by its ζ* co-ordinate in (2.15). MARDER, [7] described this
property by stating that (2.15) corresponds to a uniform one-dimensional
expansion of the co-ordinate system in positive and negative ^-directions.

It is interesting to note that all particles at rest in (2.1) are not in
uniform rectilinear motion relative to (2.15). To verify this statement let
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us consider a test particle at rest in (2.1). Its world-line is given by

r = 0, z = p, t = s, (2.20)
where p is a constant.

Only that part of (2.20) for which s2 > p2 will be mapped onto (2.15)
by means of the transformation (A*). As a particular case let p > 0,
and consider only that part of the world-line for which s > p > 0.
The equation of the world-line in (2.15) is

r = 0, C* = tanh- 1 ί y ) , τ* = (s2 — pψ2. (2.21)

Clearly (2.21) does not represent a world-line of a test particle moving
with uniform velocity dζ*/dτ*, relative to (2.15).

We next recall Einstein-Rosen metric

ds2 = eA*(dί* 2 — dr*2) — r * 2 e~e* dθ*2 — eQ* dz*2 , (2.22)

where ρ* and λ* are functions of r* and ί* only. One of the field equations
for (2.22) is

Once ρ* is known A* is determined, apart from a constant, by the
remaining field equations. There is a close formal connection between
(2.22) and WeyΓs metric (2.8). We obtain (2.22) from (2.8) by the sub-
stitution ([6], Chap. IX)

(r, 0) -> (r*, 0*) and (ρ, I) -> (ρ , λ ) .

The transformation

r =

(B )

i _ r*2)l/2Jl/2 9

where we choose the + or — sign according as τ* is positive or negative,
takes (2.15) into Einstein-Rosen form, namely

ds2 = βA*»(dt*2 - dr*2) - r* 2 e-̂ *o> cZΘ*2 - e^> ^^*2 , (2.24)

Where
ρf0) = l o g ( ί * + T ) , (2.25)

λf0) = log (jγ) , (2.26)

y = + (ί*2 _ f *2)l/2 _ (2.27)
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The world-line (2.19) is now given by

r* = 0, z* = χ, t*=γs2. (2.28)

The region of validity of (2.24) is

ί* > r* > 0 , (2.29)

and is seperated from the rest of the space-time by the null surface

2 (ί*2 _ r * 2)1/2 = τ *2 _ γ2 = 0 # (2.30)

The metric (2.24) with (2.25) and (2.26) represents flat space-time,
and in fact can be transformed into (2.1) by means of

z* — tanh" 1 z (C*)

Each event (rf, θ*, z*, tf) of (2.24) is mapped into two events
(rl9 θl9 zl9 tj) and (rl9 θl9 zv — tj of (2.1). The region £*2 > r*2 of validity of
(2.25) corresponds to the region

ί2 > (r2 + z2) (2.31)
of (2.1).

§ 3. Derivations of the metric

Because equation (2.9) is linear, we can simply add solutions for
ρ. Let ρ^ and λ^) be two functions satisfying the field equations (1.1)
for the metric (2.8). We know that ρ(0) and I(0) as given by (2.11) and
(2.12), also satisfy the same field equations. We can take

Q = (?<o) + Q(x) ί3-1)

as a new solution. The corresponding λ turns out to be

where λ(2) must satisfy

dr ~
and

These relations are compatible because of the field equations and deter-
mine λ(2) except for an additive constant. λ(2) is the interaction term and
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arises on the account of the non-linearity of the field equations other than
(2.9).

As a solution for two particles we take [8, 9]

ds* = — eJω(dr2 + dz2) — r2 e-eω dθ2 + ê > dt2, (3.5)
where

'+ J t (3 7)

B«= + {r2 + (z-K)ψ2 ( « = 1 , 2 ) , (3.9)

where αα, K and hx are constants and h1> h2> 0.
This solution represents two particles of masses ax at rest on the

iz-axis at z = Λα. Stresses are necessary to keep them at rest ([6], Chap.
VIII); these are represented by singularities along various stretches of
Oz depending on the value of K (for details see [9]).

Now we superimpose the two solutions (2.10) and (3.5) to obtain
a new solution

ds

2

 = _ eλ(β> + *ω + hi) (dr2 + dz2) — r2e"(β(β> + βw) dθ2 + e<«<°>+ ^ (1)) c^ί2, (3.10)

where ρ(0), λ(0) and ρ(1), I(X) are the same as in (2.10) and (3.5), and λ(2)
is the interaction term to be calculated from (3.3) and (3.4). We find that

where

and C is a constant of integration.
The solution (3.10) represents two particles at rest in a uniformly

accelerated co-ordinate system. Stresses along various stretches of Oz
are present and are represented by singularities.

It also contains an additional singularity along the entire negative
z-axis. Such a singularity is present even in the flat space-time (2.10).
This singularity disappears on applying the transformation (C) to the
metric (3.10).

The resulting metric is

ds2 = —eλ dr2 — r2 er* dθ2 + (z2 — t2)-1 Uz2 e^ — t2 eλ) dt2 —
(3 13^

— (z2eλ — t2eQ) dz2 + 2zt(eΛ — e6) dzdt} , κ ' }

Commun. math. Phys., Vol. 2 5
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where

( α = l , 2 ) , (3.17)

/ = 4^f 1 i?^ 1{r 2(^-ί 2) + (R — rZ-hJiR-rZ-hJ—B^}, (3.18)

and /? is a new positive constant. The constants in (3.14) to (3.18) have
been chosen as in the previous paper [1]. They are the same as those in
(3.6) to (3.9) and (3.11) except that K and C are suitably chosen in terms
of β and other constants.

This solution represents four uniformly accelerated particles and
stress singularities along various stretches of 2-axis and was discussed
in [1]. We may note that whereas the masses of the static particles in
the metric (3.5) were aa, the masses of the accelerated particles are
[1,3]

αβ(2Aβ)-va.

On account of the linearity of (2.23) we can also add solutions for ρ*.
Two known solutions (ρ^, λf0^) and (ρ*)? λf^) of the field equations for
(2.22) can be superimposed to get a third solution (ρ^ + ρ*)?

λ*o) + A*) + λ*2))' λj|) is the interaction term and arises on account of the
non-linearity of the other field equations. It must satisfy

Ό Λ/n)

dλ*

a**

Γ
1 [

Γ

1 1

3 ρS>
dr*

ar*

a ρfυ

ar*

aί* '

l d Q*o)
1 a ^ *

ar*

*ρ£>
aί*

v ρ(o)

aί*

and

(3.20)

These equations are consistent because of the field equations and
determine λ*2) except for an additive constant.

Consider a non-flat Einstein-Rosen metric:

(3.21)

where

e = ~|p ( 3 2 2 )

R* =

and av lfix are constants.
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This solution represents an expanding singular null surface

r* = t* + \ , (3.25)

which in fact is the boundary of the region ί* -j- ht > r* > 0, of validity

of the metric under consideration.

Now consider the metric

where
ds* = eA*w (dt*2 - dr**) - r*ae-**> ό θ * 2 - e«*> d2* 2 , (3.26)

r
αg \

f = 4^*-ii? |-i{(^ + Ax) (t* + K) - r*2 - B*R*} , (3.29)

i?* = |{(ί* + Kf - r*8}1/2! (α = 1 , 2 ) , (3.30)

where αα, E" and Λα are constants and h1> h2> 0. The constant i ί is
introduced for latter convenience. The solution (3.26) may be obtained
by combining two solutions of the type (3.21). However the surface
r* = t* + hv lies outside the region t* + h2 > r* > 0, of validity of
the metric (3.26). Hence the physical significance of (3.26) is not clear.

Next we obtain a new solution by superimposing the solutions (2.24)
and (3.26). The result is

ds2 = eΛ«> + Λ*> + Λ«> (dί*2 — i f* 2 ) —
* * * * (3-31)

γ*2 β— (ρ(0) + 5(1)) ^ $ * 2 g(£?(0) + (?(1)) (£#* 2

where ρf0), λf0) and ρ(% λfυ are given by (2.25), (2.26) and (3.27), (3.28);
and λf2) is the interaction term to be calculated from (3.19) and (3.20).
I t is found that

2α3 (T + hj 2a2(T + h2)
<2> = ΪΓBf ΊϊζRξ + (ό.όΔ)

where
T = (£* 2 _ f * 2)1/2 ? (3.33)

and (7 is a constant of integration.

The region of validity of (3.31) is

t* > r* > 0 , (3.34)

and no singularity is present in this region. If we now transform (3.31)
by means of (C*) we rediscover the metric (3.13) by suitable choice of

5*
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the constants K and C. The region (3.34) of the metric (3.31) corresponds
to the region

t2 > (r2 _f_ Z2) (3.35)

of the space-time represented by (3.13).
The transformations of the last two sections can be represented

schematically by the following diagram:

(2.2)

(-B)I

(2.10)

,1

U)
•(2-15)(2.1)

r

(0) (C*)

(3.10) ( C ) > (3.13) < ( g φ ) (3.31)

Here $ denotes superimposition of the two solutions.

(2.24)

\s

§ 4. Solution

Consider the metric

e =

λ-

B =

Bλ =

(3.13)

_L (r2

|{(Λ-

for a

with

22 — ί 2

-f z2-

-h)2-

singular null

)α 2 2a R

hB1

f 2r2ψ2 ,

surface

2α

(4.1)

(4.2)

(4.3)

(4.4)

where α, h are constants and h > 0.
This is a particular case of the metric for uniformly accelerated

particles. I t represents two uniformly accelerated particles with the
acceleration of magnitude (2h)~1^. Mass of each particle is a{2h)~V2.
These particles are located at

(4.5)

(4.6)

r = 0, z = ± (ί2

Stress singularities are present along

r = 0 , z*<(t2 + 2h).

In the limit of h tending to zero we obtain a new metric

ds* - -eλ dr* - r* e~* dθ2 + (z2 - ί 2 ) " 1 {{z2 e* -12 eλ) dt2 -
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where

(48)

i ^ γ ( r a + 2 2 - * 2 ) , (4.10)

where a is the same constant as before.
We can verify that this metric satisfies the field equations (1.1)

everywhere, the only singularity being the null surface

r2 + z2 — ί2 = 0 5 (4.11)

provided that a is non-zero. This null surface is at infinity when t — —oo,
starts contracting and converges to the point r == 0, z = 0, at t = 0.
It, then, expands and ultimately goes to infinity at ί = oo.

Essential singularities in the solutions for (1.1) are expected to re-
present mass or stress. The only singularity of this solution is a surface
moving with the speed of light, so the physical interpretation becomes
difficult. The singularity is of an exceptional nature as not only the gi k but
also their determinant becomes infinite on the surface (4.11). The null
surface divides the space-time into two exclusive parts in the following
sense: no test-particle (photon) can cross it and go from one part of the
space-time to another.

To examine the field in regions remote from the null surface, we con-
sider two particular cases for which (i) (r2 + z2) > t2 and (ii) ί2 ;> (f2-f-£2).
We find that the leading terms in the gik are exactly similar to the
corresponding terms in the far-field of uniformly accelerated particles [1].
At large distances from the null surface (4.7) tends to the Minkowski
metric with t as time-like co-ordinate.

The Petrov type of the metric (4.7) is Type I everywhere.

§ 5. Conclusion

1. The solution (3.13) for uniformly accelerated particles can be
obtained by transformation of the Weyl metric (3.10) or the Einstein-
Rosen metric (3.31). Neither of these metrics cover the whole of space-
time. The Weyl metric contains a co-ordinate singularity corresponding
to the fact that the region covered by it is bounded by a null surface.
From a physical point of view this singularity represents that part of
the axis of symmetry which could be occupied only by test-particles
having speed greater than that of light. The Einstein-Rosen metric
contains no singularity within its region of validity, which is bounded
by a null surface. Physical significance of the metric (3.31) is not clear.
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2. The limiting process h -> 0, used to obtain (4.7) seems to be
equivalent to letting the uniform acceleration of the particles tend to
infinity. The resulting metric (4.7) represents a singular null surface.
This is relevant to RINDLER'S result that a test-particle (photon) with
infinite uniform acceleration will follow a null geodesic. In the case of
the solution (4.7) we cannot say anything regarding the energy (mass)
carried by the singular null surface.
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