

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 24, 2022

An exact solution framework for a broad class of vehicle routing problems

Baldacci, Roberto; Bartolini, Enrico; Mingozzi, Aristide; Roberti, Roberto

Published in:
Computational Management Science

Link to article, DOI:
10.1007/s10287-009-0118-3

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Baldacci, R., Bartolini, E., Mingozzi, A., & Roberti, R. (2010). An exact solution framework for a broad class of
vehicle routing problems. Computational Management Science, 7(3), 229-268. https://doi.org/10.1007/s10287-
009-0118-3

https://doi.org/10.1007/s10287-009-0118-3
https://orbit.dtu.dk/en/publications/7e775eed-899d-46da-8f87-2858e5689f8d
https://doi.org/10.1007/s10287-009-0118-3
https://doi.org/10.1007/s10287-009-0118-3

Comput Manag Sci (2010) 7:229–268
DOI 10.1007/s10287-009-0118-3

ORIGINAL PAPER

An exact solution framework for a broad class of vehicle
routing problems

Roberto Baldacci · Enrico Bartolini ·
Aristide Mingozzi · Roberto Roberti

Received: 8 May 2009 / Accepted: 4 December 2009 / Published online: 1 January 2010
© Springer-Verlag 2009

Abstract This paper presents an exact solution framework for solving some vari-
ants of the vehicle routing problem (VRP) that can be modeled as set partitioning
(SP) problems with additional constraints. The method consists in combining dif-
ferent dual ascent procedures to find a near optimal dual solution of the SP model.
Then, a column-and-cut generation algorithm attempts to close the integrality gap
left by the dual ascent procedures by adding valid inequalities to the SP formulation.
The final dual solution is used to generate a reduced problem containing all optimal
integer solutions that is solved by an integer programming solver. In this paper, we
describe how this solution framework can be extended to solve different variants of
the VRP by tailoring the different bounding procedures to deal with the constraints of
the specific variant. We describe how this solution framework has been recently used
to derive exact algorithms for a broad class of VRPs such as the capacitated VRP,
the VRP with time windows, the pickup and delivery problem with time windows,

R. Baldacci (B)
Department of Electronics, Computer Science and Systems (DEIS),
University of Bologna, Via Venezia 52, 47521 Cesena, Italy
e-mail: r.baldacci@unibo.it

E. Bartolini
Department of Computer Science, University of Bologna,
Mura Anteo Zamboni 7, 40127 Bologna, Italy
e-mail: enrico.bartolini2@unibo.it

A. Mingozzi
Department of Mathematics, University of Bologna, Via Sacchi 3, 47521 Cesena, Italy
e-mail: mingozzi@csr.unibo.it

R. Roberti
Department of Electronics, Computer Science and Systems (DEIS),
University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
e-mail: roberto.roberti6@unibo.it

123

230 R. Baldacci et al.

all types of heterogeneous VRP including the multi depot VRP, and the period VRP.
The computational results show that the exact algorithm derived for each of these VRP
variants outperforms all other exact methods published so far and can solve several
test instances that were previously unsolved.

Keywords Vehicle routing · Set partitioning · Dual ascent · Valid inequalities

Mathematics Subject Classification (2000) 90-02 · 90C27 · 49M29 · 90C39

1 Introduction

The problems of supplying customers from a central depot (or depots) using vehicles
and drivers based at the depot(s) are generally known as vehicle routing problems
(VRPs). The solution of a VRP calls for the design of a set of routes, each performed
by a single vehicle starting and ending at its own depot, such that all customers are
serviced, a set of operational constraints are satisfied, and the total distribution cost
is minimized.

Real-world VRPs often include complications that depend on the nature of the
transported goods, the quality of service required, and the characteristics of customers
and vehicles. Some typical complications are: heterogeneous vehicles located at dif-
ferent depots, customers incompatible with certain vehicle types, customers accepting
delivery within specified time windows, multi-commodity demands that have to be
loaded into separate vehicle compartments, a multiple-day planning horizon, vehicles
performing multiple routes.

In all cases, the objective is to supply the customers at minimum cost. This cost
includes the costs of vehicles used, the cost of the routes performed, and a “penalty”
for each customer left unserviced within its due date.

The two simplest and most studied members of the VRP family are the capacitated
VRP (CVRP) and the VRP with time windows (VRPTW). In the CVRP, a fleet of
identical vehicles located at a central depot has to be optimally routed to supply a
set of customers with known demands. Each vehicle can perform at most one route,
and the total demand of the customers visited by a route cannot exceed the vehicle
capacity. The VRPTW generalizes the CVRP imposing that each customer is to be
visited within a specified time interval, called time window.

Several heuristics but few exact methods have been proposed in the literature for
the VRP. Surveys of both exact and heuristic methods can be found in Toth and Vigo
(2002), Cordeau et al. (2007) and Baldacci et al. (2007).

Concerning exact methods, most of the research effort has been devoted to the
CVRP and the VRTPW. Two main approaches have been used: branch-and-cut (BC)
methods based on a two-index flow model, and branch-and-cut-and-price (BCP)
methods based on a set partitioning (SP) model where SP columns correspond to
feasible routes. In both cases, valid inequalities are used to strengthen the LP-relaxation
of the corresponding model. Computational results indicate that BCP methods usually
dominate BC methods. Indeed, these latter methods perform well only on instances
involving low vehicle utilization and a large number of customers per route.

123

An exact solution framework for a broad class VRPs 231

Almost all BCP algorithms use the simplex algorithm to compute lower bounds.
The main drawback of this approach is that the LP-relaxation of the master problem
is usually highly degenerate, yet degeneracy implies alternative optimal dual solu-
tions. As a result, the generation of new columns may not change the value of the
objective function of the master, making the master large and the overall method time-
consuming.

Mingozzi et al. (1994) proposed a method for avoiding the drawbacks of column
generation based on the simplex algorithm that combines in an additive way dif-
ferent dual heuristics to find a near optimal dual solution of the LP-relaxation of
the SP model. These dual heuristics are based on a bounding method proposed by
Christofides et al. (1981c) and Christofides and Mingozzi (1989). The method was
successfully extended by Mingozzi et al. (1999) for the VRP with backhauls, Baldacci
et al. (2004b) for the car pooling problem, Baldacci et al. (2006) for the multiple facili-
ties rollon-rolloff VRP, and Boschetti et al. (2004) for the multi depot crew scheduling
problem.

Recently, Baldacci et al. (2008b) proposed a new exact method for the CVRP based
on the SP model that provides a general solution framework for designing exact algo-
rithms for a broad class of VRPs.

In Sect. 2, we describe the main characteristics of this method. In Sects. 3 and 4,
we present the extensions of the method for solving the VRPTW and the pickup and
delivery problem with time window (PDPTW), respectively. In Sect. 5, we describe a
generalization of the method for solving the Heterogeneous VRP (HVRP). It is worth
mentioning that the HVRP model considered contains as special cases all variants
of the HVRP presented in the literature, the site-dependent vehicle routing problem
(SDVRP), and the multi-depot vehicle routing problem (MDVRP). In Sect. 6, we
describe an exact method for the Period VRP (PVRP). In each section, we report
computational results showing the effectiveness of the proposed exact algorithms for
each VRP variant considered.

2 The capacitated vehicle routing problem

The CVRP can be described as follows. It is given an undirected graph G = (V ′, E)

where V ′ = {0, 1, . . . , n} is the set of n + 1 vertices and E is the set of edges. Vertex
0 represents the depot, and the vertex set V = V ′ \ {0} corresponds to n customers.
A nonnegative cost di j is associated with each edge {i, j} ∈ E . Each customer i ∈ V
requires a supply of qi units from depot 0 (we assume q0 = 0), and a set of m identical
vehicles of capacity Q stationed at depot 0 must be used to supply the customers. A
route is defined as a least cost simple cycle in G passing through the depot 0 and such
that the total demand of the customers visited does not exceed the vehicle capacity Q.

The objective of the CVRP is to design at most m routes so that all customers are
visited exactly once and the sum of the route costs is minimized.

The CVRP is NP-hard as it is a natural generalization of the traveling salesman
problem (TSP).

Different heuristics have been proposed in the literature for the CVRP and its vari-
ants. Among the various surveys on heuristic algorithms for the CVRP, we mention

123

232 R. Baldacci et al.

Laporte and Semet (2002) and Gendreau et al (2002) in the book edited by Toth and
Vigo (2002), and the more recent update by Cordeau et al. (2007).

The most effective exact algorithms for the CVRP are due to Baldacci et al. (2004a,
2008b), Lysgaard et al. (2004) and Fukasawa et al. (2006). Baldacci et al. (2004a)
described a BC algorithm based on a Two-Commodity network flow formulation of
the CVRP. Lysgaard et al. (2004) proposed a BC algorithm improving the method
proposed by Augerat et al. (1995); they used a variety of valid inequalities including
capacity, framed capacity, comb, partial multistar, hypotour and Gomory cuts.

Fukasawa et al. (2006) described a BCP for solving the SP model of the CVRP
strengthened by the valid inequalities introduced by Lysgaard et al. (2004). The lower
bound is computed by a column-and-cut generation method that uses q-routes (see
Christofides et al. 1981a) instead of feasible CVRP routes. Because this method may
not be competitive with the BC of Lysgaard et al. (2004), they combined these two
methods. Thus, the resulting algorithm of Fukasawa et al. (2006) decides at the root
node to use either the BC of Lysgaard et al. (2004) or the new BCP. The computational
results show that 26 out of 74 CVRP instances are solved using the BC algorithm, and
the remaining 48 instances are solved by the new BCP algorithm.

Baldacci et al. (2008b) improved the method of Mingozzi et al. (1994) and derived
a new exact method for the CVRP based on the SP model that on average outper-
forms all other exact methods on the main CVRP instances from the literature. They
proposed an additive bounding procedure that combines two dual ascent heuristics,
called H1 and H2, to derive a near optimal dual solution that is used by a column-and-
cut generation algorithm, called H3, to initialize the master problem. H3 attempts to
close the integrality gap by adding in a cutting plane fashion both generalized capac-
ity and clique constraints. The final dual solution achieved is then used to generate
a reduced SP problem containing only the routes whose reduced cost is smaller than
the gap between an upper bound and the lower bound obtained. The resulting reduced
problem is then solved by an integer programming (IP) solver.

The key components of this method are: (i) the dual ascent scheme used by the
bounding procedures H1 and H2, (ii) the use of a state-space relaxation (see
Christofides et al. 1981b) to extend the route set with a relaxation of feasible routes
that is easier to compute, and (iii) the use of bounding functions to reduce the state
space graph computed by dynamic programming when solving the pricing problem
and generating the final SP model.

Recently, Baldacci et al. (2009d) further improved the method of Baldacci et al.
(2008b) using new ideas introduced by Baldacci et al. (2009c) for solving the VRPTW
(see Sect. 3 for further details). In particular, they used a new route relaxation, called
ng-route, that strongly improves other relaxations of feasible routes proposed in the
literature for the CVRP and increases the efficiency of the pricing algorithms. They
improved procedure H3 using Subset-Row inequalities (see Jepsen et al. 2008) and a
novel strategy for solving the pricing subproblem. Finally, a new fathoming criterion
based on the dual solution achieved by H2 is used to speed up the solution of the
pricing subproblems and reduce the size of the final SP model.

The method described above provides a general solution framework that can be
specialized to solve a number of VRP variants. In this section, we review this method
focusing on its key components.

123

An exact solution framework for a broad class VRPs 233

2.1 SP model of the CVRP with additional cuts

Let R be the index set of all feasible routes, and let ai� be a binary coefficient that is
equal to 1 if vertex i ∈ V ′ belongs to route � ∈ R and takes value 0 otherwise (note
that a0� = 1,∀� ∈ R). In the following, R� = {i ∈ V ′ : ai� = 1} indicates the subset
of vertices visited by route � ∈ R. Each route � ∈ R has an associated cost c�.

Let x� be a (0–1) binary variable equal to 1 if and only if route � ∈ R belongs to
the optimal solution. The SP formulation of the CVRP is as follows:

(F) z(F) = min
∑

�∈R

c�x� (1)

s.t.
∑

�∈R

ai�x� = 1, ∀i ∈ V, (2)

∑

�∈R

x� ≤ m, (3)

x� ∈ {0, 1}, ∀� ∈ R. (4)

Constraints (2) specify that each customer i ∈ V must be covered by one route, and
constraint (3) requires that at most m routes are selected.

The optimal solution cost z(F) of the LP-relaxation of F (called L F) provides a
tight lower bound on the CVRP. Moreover, the lower bound can be strengthened by
adding to L F valid inequalities in a cutting plane fashion.

For a subset S ⊆ V , let q(S) be the total demand of the customers in S, and let
S = {S : S ⊆ V, |S| ≥ 2}. The following inequalities, called strengthened capacity
constraints, are added to L F :

∑

�∈R(S)

x� ≥ �q(S)/Q	, ∀S ∈ S , (5)

where R(S) represents the index subset of routes visiting at least one customer of set
S ∈ S . Relaxation L F can be further improved by adding any valid inequality for the
SP problem. Let H = (R,E) be the conflict graph where each vertex corresponds to
a route and the edge set E contains every pair {�, �′}, ∀�, �′ ∈ R, � < �′, such that
R� ∩ R�′ �= {0}. Let C be the set of all cliques of H . The following clique inequalities
are added to L F :

∑

�∈C

x� ≤ 1, ∀C ∈ C . (6)

Let L F be the problem obtained by adding to L F inequalities (5) and (6).
Let u = (u0, u1, . . . , un) be a vector of dual variables, where ui , i ∈ V and u0

are associated with constraints (2) and (3), respectively. Moreover, let vS, S ∈ S and
gC , C ∈ C , be the dual variables of constraints (5) and (6), respectively. The dual DF
of L F is as follows:

123

234 R. Baldacci et al.

(DF) z(DF) = max
∑

i∈V

ui + mu0 +
∑

S∈S

�q(S)/Q	vS +
∑

C∈C

gC (7)

s.t.
∑

i∈V ′
ai�ui +

∑

S∈S

bS�vS +
∑

C∈C�

gC ≤ c�, ∀� ∈ R, (8)

ui ∈ R, ∀i ∈ V, (9)

u0 ≤ 0, (10)

vS ≥ 0, ∀S ∈ S , (11)

gC ≤ 0, ∀C ∈ C , (12)

where C� = {C ∈ C : � ∈ C}, and bS� ∈ {0, 1} equal to 1, ∀� ∈ R, if R� ∩ S �= ∅.

2.2 An exact method for the CVRP

The core of the exact method is a bounding procedure that uses in sequence three dual
heuristics, H1, H2 and H3, to obtain a near optimal DF solution (u′, v′, g′) of cost
z′ without generating all routes and constraints (5) and (6).

The exact method performs the following two steps.

1. Define the reduced problem F̂ resulting from F as follows:
(a) replace the route set R with the largest subset R̂ ⊆ R such that c′

� <

z(UB) − z′,∀� ∈ R̂, where c′
� is the reduced cost of route � with respect to

(u′, v′, g′) and z(UB) is a valid upper bound to z(F);
(b) add all constraints (5) and (6) saturated by the final L F solution (i.e., all

constraints whose associated slacks are not in the basis).
2. Solve problem F̂ using a general purpose IP solver.

The effectiveness of the method relies on the quality of the dual solution (u′, v′, g′)
achieved as the size of subset R̂ depends on the gap z(UB) − z′.

2.3 Bounding procedures H1, H2 and H3

The procedure used to compute a near-optimal solution of problem DF is an additive
bounding method that computes a lower bound on the CV R P by combining three
bounding methods, called H1, H2 and H3. The three methods are used in sequence
and do not require the a priori generation of the entire route set R.

The first two procedures H1 and H2 ignore clique inequalities (6) and compute
lower bounds L B1 and L B2 as the cost of two near-optimal dual solutions (u1, v1, g1)

and (u2, v2, g2), where g1 = g2 = 0, respectively. Both H1 and H2 are based on the
following theorem.

Theorem 1 Associate penalties λi ∈ R, i ∈ V , with constraints (2), λ0 ≤ 0 with
constraint (3), and σS ≥ 0, S ∈ S , with constraints (5). Define

bi = qi min
�∈Ri

{
c� − λ(R�) − σ(R�)∑

i∈V ai�qi

}
, ∀i ∈ V, (13)

123

An exact solution framework for a broad class VRPs 235

where Ri ⊆ R is the index subset of the routes visiting customer i ∈ V, λ(R�) =∑
i∈V ai�λi and σ(R�) = ∑

S∈S bS�σS.
A feasible solution (u, v, g) of problem DF of cost z(DF(λ, σ)) is given by setting

g = 0 and computing u and v according to the following expressions:

ui = bi + λi , ∀i ∈ V, u0 = λ0 and vS = σS, S ∈ S . (14)

A lower bound on the CVRP is then given by maxλ,σ {z(DF(λ, σ))} and can be
computed using subgradient optimization. Let �(i) ∈ R be the index of the route
producing bi in expression (13, and let ρ j i be the number of times that customer
j ∈ V is visited by route �(i). It can be shown that a valid subgradient of the func-
tion z(DF (λ, σ)), at point (λ, σ), is given by the vectors θ = (θ0, θ1, . . . , θn) and δ

computed as follows:

θ j = 1 −
∑

i∈V

ρ j i qi/q(R�(i)), ∀ j ∈ V, θ0 = m −
∑

i∈V

qi/q(R�(i)), (15)

and

δS = �q(S)/Q	 −
∑

j∈V : �(j)∈R(S)

∑

i∈V

ρi j qi/q(R�(j)), ∀S ∈ S . (16)

Even for moderate size CVRPs, expression (13) cannot be solved directly because the
size of the set R is exponential. H1 and H2 use the same column generation algo-
rithm, called CG, to solve equations (13). CG differs from standard column generation
methods as it uses subgradient optimization to compute maxλ,σ {z(DF (λ, σ))}.

2.3.1 Algorithm CG

The initial master problem of CG is initialized by generating a subset of routes R ⊆ R
containing the �min-routes of minimum reduced cost with respect to an initial DF
solution, where �min is a parameter defined a priori. The set S is initialized by set-
ting S = S , where S is a set of capacity constraints generated a priori. As clique
inequalities (6) are ignored, CG sets C = ∅.

CG initializes LCG = 0 and executes an a priori defined number of macro itera-
tions. At each macro iteration, the following two steps are performed:

1. Solve the master problem. The master is obtained from L F by replacing R with
R and S with S . A near-optimal solution (u, v) of cost z of the master prob-
lem is obtained by an iterative method that performs Maxt2 iterations. At each
iteration the dual solution (u, v) is computed with respect to the current λ and μ

using expressions (13) and (14), where R and S are replaced with R and S ,
respectively.
The initial values of λ and μ are set equal to the best values achieved at the previous
macro iteration. Penalties λ and μ are then modified using the subgradient method
after computing a subgradient (θ , δ) according to expressions (15) and (16).

123

236 R. Baldacci et al.

2. Check if (ū, v̄) is a feasible DF solution. Generate the largest subset N of routes
having minimum reduced cost with respect to the dual master solution (u, v) and
such that |N | ≤ �a (�a is a parameter defined a priori). If N = ∅ and z is
greater than LCG, then update LCG = z, u∗ = u, v∗ = v,λ∗ = λ and σ ∗ = σ ;
otherwise, update R = R ∪ N .

At termination, (u∗, v∗) is a DF solution of cost LCG = z(DF(λ∗, σ ∗)).
Algorithm CG is faster than standard simplex-based methods as it avoids their

typical degeneracy.
The exact method uses an additive bounding procedure that combines different

versions of procedure CG, called H1 and H2.

2.3.2 Procedure H1

H1 corresponds to CG where the route set R is replaced with the set R ⊇ R of
q-routes (see Christofides et al. 1981a). A q-route is a not-necessarily elementary cir-
cuit of G passing through the depot and such that the total demand of the customers
visited is equal to q. Let 	(q, i) be the cost of the least cost q-route passing through
customer i . H1 is initialized by setting λ = 0, σ = 0, and by generating for each
customer i the q-route of cost 	(q̂, i) such that 	(q̂, i)/q̂ = minqi ≤q≤Q[(q, i)/q].
These q-routes form the initial route set R.

At each iteration, H1 generates for each i ∈ V the q-route passing through i
having the most negative reduced cost. Note that Theorem 1 remains valid if we set
bi = 	(q̂, i)/q̂ in expression (13). Let (u1, v1) be the final DF solution of cost L B1
obtained by H1 using penalties (λ1, σ 1).

2.3.3 Procedure H2

H2 is executed after H1 and is based on elementary routes. H2 starts by setting λ = λ1

and σ = σ 1, and by using the dual solution (u1, v1) obtained by H1 to initialize the
master route subset R. Both sets R and N are generated by procedure genroute
described in Sect. 2.4.

H2 computes a near optimal DF solution (u2, v2) of cost L B2.

2.3.4 Procedure H3

H3 is a column-and-cut generation procedure based on the simplex method that solves
L F . The initial master route set R of H3 is generated using genroute with respect
to the DF solution (u2, v2, g2), where g2 = 0.

In procedure H3, capacity constraints (5) are heuristically separated using the pack-
age CVRPSEP of Lysgaard (2003), and clique inequalities are separated using the
CLIQUER 1.1 package of Niskanen and Östergård (2003). At each iteration, the pric-
ing problem is solved using procedure genroute.

We denote by (u3, v3, g3) the DF solution of cost L B3 obtained by H3.

123

An exact solution framework for a broad class VRPs 237

2.4 Route generation algorithm genroute

Genroute is used by H2, H3 and the exact algorithm to generate feasible CVRP
routes. Given a DF solution (û, v̂, ĝ) of cost ẑ(DF) and two user defined parameters
� and γ , it provides the largest subset B ⊆ R such that:

max�∈B{ĉ�} ≤ min�∈R\B{ĉ�},
|B| ≤ �,

max�∈B{ĉ�} < γ,

⎫
⎬

⎭ (17)

where ĉ� is the reduced cost of route � with respect to (û, v̂, ĝ) and � and γ are defined
according to the type of subset B that must be generated. By setting � = �a and
γ = 0, genroute produces the set N required at each iteration by CG and H3.
Setting � = ∞ and γ = z(UB) − L B3 genroute produces the set R̂ required by
the exact method.

Genroute is a two-phase procedure based on the following observation.
Let Pi be the set of all simple paths of minimum cost from the depot to vertex i ∈ V

and such that q(P) ≤ Q/2+qi ,∀P ∈ Pi , where q(P) = ∑
i∈V (P) qi and V (P) ⊆ V

is the set of vertices visited by path P . Every route visiting customer i can be obtained
combining a pair P, P ∈ Pi that are internally disjoint (i.e., V (P) ∩ V (P) = {0, i})
and such that q(P) + q(P) ≤ Q/2 + qi .

Define the modified edge costs d ′
i j with respect to the dual vector (û, v̂) as d ′

i j =
di j − 1

2 ûi − 1
2 û j − 1

2

∑
S∈S (i, j) v̂S,∀{i, j} ∈ E , where S (i, j) = {S ∈ S : {i, j} ∈

δ(S)} and δ(S) is the cutset defined by S.
Let c′

� be the reduced cost of route � with respect to (û, v̂) (i.e., ignoring ĝ). We
have c′

� = ∑
{i, j}∈E(R�)

d ′
i j , where E(R�) is the set of edges traversed by route �. As

ĝ ≤ 0, it is easy to observe that c′
� ≤ ĉ�,∀� ∈ R.

The two phases of genroute are described below.

Phase 1 Using the modified edge costs d ′
i j , let c′(P) be the reduced cost of path P ,

and let L B(P) be a lower bound on the cost c′
� of any route � ∈ R that contains path

P . Lower bound L B(P) can be computed using the q-path relaxation described by
Christofides et al. (1981a) as follows.

Let F(q, i) be the cost of the least cost q-path ending at vertex i of load less than
or equal to q. Thus, we have L B(P) = c′(P)+ F(Q −q(P)+qi , e(P)), where e(P)

is the ending vertex of path P .
Phase 1 is a Dijkstra-like algorithm that generates the set P of paths, where each

P ∈ P satisfies the following conditions: L B(P) ≤ γ, q(P) ≤ Q/2 + qe(P), and P
is not dominated, i.e., c′(P) ≤ c′(P ′), for each path P ′ such that V (P) = V (P ′) and
e(P ′) = e(P).

Phase 2 This phase starts by setting B = ∅ and iteratively adds to B the route � of
minimum reduced cost c′

� with respect to (û, v̂) and such that its reduced cost with
respect to (û, v̂, ĝ) is less than γ . Phase 2 dynamically generates a set T containing
a subset of all possible pairs (P, P) ∈ P such that e(P) = e(P). At each iteration, it

123

238 R. Baldacci et al.

Table 1 Summary results for the CVRP

np Fukasawa et al. (2006) Baldacci et al. (2008b) Baldacci et al. (2009d)

nopt nopt1 nopt2 %LB tL B tT OT nopt %LB tL B tT OT nopt %LB tL B tT OT

A 22 22 20 2 99.2 183 1,961 22 99.8 41 118 22 99.7 16 22

B 20 20 6 14 99.5 84 4,763 20 99.8 119 417 20 99.9 49 66

E-M 11 9 7 2 98.8 957 126,987 8 99.4 185 1,025 9 99.5 220 249

P 24 24 16 8 99.1 136 2,892 22 99.7 34 186 24 99.8 53 54

All 77 75 49 26 72 75

Avg. 99.2 234 18,009 99.7 77 322 99.7 61 71

nopt1 number of instances solved using the BC algorithm; nopt2 number of instances solved using the BCP
algorithm

selects from T the path pair (P, P) of minimum cost c′(P) + c′(P) and, if these two
paths correspond to a feasible route R� not dominated by any other route in B, then
it adds R� to B. The selected pair (P, P) is then used to expand T .

Genroute terminates if either c′(P) + c′(P) ≥ max�∈B{ĉ�} and |B| = � or
c′(P) + c′(P) ≥ γ . Notice that if |B| = �, then a route � of cost ĉ� enters B only if
ĉ� < maxr∈B{ĉr }.

2.5 Computational results for the CVRP

In this section, we report a computational comparison of the results obtained by
Lysgaard et al. (2004), Fukasawa et al. (2006) and Baldacci et al. (2008b, 2009d)
on six classes of CVRP instances from the literature, called A, B, E, M and P. These
instances are available at http://branchandcut.org/VRP/data. Classes A, B and P were
proposed by Augerat (1995). Instance class M was proposed by Christofides et al.
(1979), and class E was produced by Christofides and Eilon (1969).

The algorithm of Lysgaard et al. (2004) was run on an Intel Celeron at 700 MHz
whereas the algorithms of Baldacci et al. (2008b) and Fukasawa et al. (2006) used Pen-
tium 4 processors running at 2.6 and 2.4 Ghz, respectively. The algorithm of Baldacci
et al. (2009d) was run on an Intel Core 2 Duo P8400 at 2.26 GHz. According to the
SPEC benchmarks, the machine used by Baldacci et al. (2008b) is about 10% faster
and at least five times faster than those used by Fukasawa et al. (2006) and by Lysgaard
et al. (2004), respectively, while the machine used by Baldacci et al. (2009d) is about
twice as fast as the machine used by Baldacci et al. (2008b).

Table 1 reports a summary of the computational results obtained by the exact meth-
ods of Baldacci et al. (2008b, 2009d) and Fukasawa et al. (2006). Column np of this
table reports the total number of instances in the corresponding class.

For each method and for each class, the table reports the following data: number
of instances solved to optimality (nopt), average percentage ratio of the lower bound
with respect to the optimal solution value (%L B), average time in seconds for com-
puting the lower bound (tL B) and average total time in seconds (tT OT) both computed
over all the instances solved to optimality.

123

http://branchandcut.org/VRP/data

An exact solution framework for a broad class VRPs 239

Table 2 Results on difficult CVRP instances

Name z∗ Lysgaard et al. (2004) Fukasawa et al. (2006) Baldacci et al. (2008b) Baldacci et al. (2009d)

%LB tL B tT OT %LB tL B tT OT %LB tL B tT OT %LB tL B tT OT

A-n54-k7 1,167 97.3 30 7,246 98.9 125 1,409 99.5 43 86 99.8 10 10

A-n64-k9 1,401 96.5 132 tl 98.9 265 11,254 99.5 32 120 99.6 18 22

A-n80-k10 1,763 97.0 201 tl 99.5 1,120 6,464 99.6 117 194 99.7 96 105

B-n50-k8 1,312 97.6 26 tl 98.7 97 2,845 99.7 640 662 99.8 169 204

B-n66-k9 1,316 98.7 80 tl 99.4 145 1,778 99.5 216 227 99.9 66 72

B-n68-k9 1,272 98.9 65 tl 99.3 260 87,436 99.5 254 6,168 99.7 465 702

E-n51-k5 521 99.6 24 59 99.5 51 65 100.0 13 13 100.0 3 3

E-n76-k7 682 97.7 72 118,683 98.2 264 46,520 99.0 146 3,371 99.8 123 125

E-n76-k8 735 97.7 136 tl 98.8 277 22,891 99.3 104 873 99.9 60 61

E-n76-k10 830 96.4 158 tl 98.5 354 80,722 99.5 60 174 99.5 18 27

E-n76-k14 1,021 95.0 181 tl 98.6 224 48,637 99.6 17 45 99.4 8 12

E-n101-k8 815 98.5 222 tl 98.8 1,068 801,963 99.0 250 – 100.0 395 395

E-n101-k14 1,067 96.2 555 tl 98.8 658 116,284 99.7 154 1,230 99.6 110 352

M-n101-k10 820 100.0 33 33 100.0 119 119 100.0 47 47 100.0 24 24

M-n121-k7 1,034 98.4 979 tl 99.7 5,594 25,678 99.8 944 2,448 99.9 1,238 1,240

P-n50-k8 631 95.4 28 tl 97.7 102 9,272 99.0 12 596 99.1 5 7

P-n55-k10 694 95.4 53 tl 98.2 107 9,076 99.3 16 66 99.3 5 6

P-n70-k10 827 96.2 90 tl 98.5 292 24,039 99.4 35 774 99.5 11 17

P-n76-k5 627 98.5 92 10,970 98.4 273 14,546 98.8 122 – 100.0 224 224

P-n101-k4 681 99.6 127 281 99.6 1,055 1,253 99.4 371 – 100.0 884 884

For the exact method of Fukasawa et al. (2006), column nopt1 reports the number
of instances solved to optimality using the BC of Lysgaard et al. (2004), and column
nopt2 reports the number of instances solved by the BCP of Fukasawa et al. (2006).

The last two lines of Table 1 report the total number of instances solved by each
method and the averages of lower bounds and computing times over all classes. The
method of Baldacci et al. (2008b) was not able to solve to optimality three instances
solved by Fukasawa et al. (2006) and by Baldacci et al. (2009d).

Table 1 indicates that the lower bounds of Baldacci et al. (2008b, 2009d) are on aver-
age superior to the lower bounds of Fukasawa et al. (2006) in all classes of instances
considered. Notice that the method of Fukasawa et al. (2006) solved to optimality 75
instances, but 26 of them were solved using the BC of Lysgaard et al. (2004). Tak-
ing the different computers used into account, Table 1 indicates that the method of
Baldacci et al. (2009d) is on average faster than the method of Fukasawa et al. (2006).

Table 2 reports a detailed comparison of the methods of Lysgaard et al. (2004),
Fukasawa et al. (2006) and Baldacci et al. (2008b, 2009d) on difficult CVRP instances.
Columns %L B, tL B and tT OT of this table have the same meaning as in Table 1. Col-
umn z∗ reports the cost of the optimal solution of each instance. For the exact method
of Lysgaard et al. (2004), “tl” indicates that the time limit has been reached, and for
the exact method of Baldacci et al. (2008b), “–” denotes that the memory limit has
been reached.

123

240 R. Baldacci et al.

3 The vehicle routing problem with time windows

The vehicle routing problem with time windows (VRPTW) is a CVRP variant where
each customer i ∈ V has to be visited within a given time window [ei , li]. If a vehicle
arrives at i before ei , the service starts exactly at ei . The VRPTW is defined on a
complete digraph G = (V ′, A) where the vertex set V ′ is defined as in Sect. 2 for
the CVRP and A is the arc set. With each arc (i, j) ∈ A are associated a travel cost
di j and a travel time ti j , the latter including the time for servicing customer i . In the
following, we denote with �i and �−1

i the sets of successor and predecessor vertices
of i ∈ V ′, respectively.

It is assumed that all vehicles leave the depot at time e0 and return to it before l0.
Each vehicle can perform at most one route that visits a set of customers within their
time windows and has cost equal to the sum of the travel costs of the arcs traversed. The
objective is to design at most m routes of minimum total cost visiting each customer
exactly once.

A number of heuristic algorithms can be found in the literature, but few exact meth-
ods have been proposed. Reviews of heuristic and exact algorithms can be found in
Toth and Vigo (2002) and Braysy and Gendreau (2005a,b).

Desrochers et al. (1992) were the first to propose an exact branch-and-price algo-
rithm. They succeeded in solving instances involving up to 100 customers. Jepsen
et al. (2008) described a BCP method where the pricing problem is solved by dynamic
programming. For tightening the LP-relaxation of the SP formulation of the VRPTW,
they introduced the Subset-Row (SR) inequalities that significantly improved the lower
bounds. Desaulniers et al. (2008) proposed a BCP method that solves the pricing prob-
lem by either tabu search heuristics or dynamic programming. The computational
results show that their method is faster than the BCP of Jepsen et al. (2008). More-
over, they solved 51 out of 56 100-customer Solomon instances (5 of which were
previously unsolved).

Recently, Baldacci et al. (2009c) proposed a new algorithm for the VRPTW that
uses the same SP like formulation of the CVRP. However, the VRPTW cannot be
solved directly using the general method described in Sect. 2 as it needs an ad-hoc
algorithm for generating VRPTW routes. Moreover, the method described for the
CVRP can be ineffective in solving instances with loose time window and capacity
constraints.

To overcome these drawbacks, they introduced several new ideas. They proposed
a novel state-space relaxation that improves the lower bounds computed by proce-
dure H1 and increases the efficiency of the pricing algorithm in procedure H2. Both
procedures H1 and H2 are based on relaxation L F . In procedure H3, they used
Subset-Row inequalities (introduced by Jepsen et al. 2008) instead of clique inequal-
ities and introduced a new method for fathoming states within the pricing algorithm
using the near-optimal dual solution achieved by H2. Finally, they introduced a bet-
ter performing pricing scheme for procedure H3. The algorithm of Baldacci et al.
(2009c) was able to solve to optimality all but one Solomon benchmark instances
outperforming all other exact algorithms published so far.

In this section, we briefly describe the new features of this algorithm.

123

An exact solution framework for a broad class VRPs 241

3.1 Procedure H1 based on ng-route relaxation

The procedure H1, which was introduced for the CVRP and is based on q-route
relaxation, produces weak lower bounds if applied to the VRPTW - particularly, for
instances with loose time window and vehicle capacity constraints.

To obtain stronger lower bounds, Baldacci et al. (2009c) introduced a new relaxa-
tion of feasible routes called ng-routes. Procedure H1 is similar to that described in
Sect. 2.3.2 for the CVRP but uses ng-routes instead of q-routes.

Let us define an ng-path (N G, t, i) as a not-necessarily simple path starting from i
at time t , ending at the depot at time l0, and such that: (i) it visits customers within their
time window, and (ii) it visits at least once each customer j ∈ N G ⊆ V . An ng-route
(N G, t, i) starting from i is obtained by adding arc (0, i) to an ng-path (N G, t, i).

Let u be the vector of dual variables associated with constraints (2) and (3) of
problem L F . We denote by f (N G, t, i) the cost of the least cost ng-path (N G, t, i)
with respect to modified arc costs d ′

i j = di j − 1
2 ui − 1

2 u j .

Define for each customer i the neighbor set Ni ⊆ V as follows. Ni = N−
i ∪ {i},

where N−
i ⊆ �i satisfies: |N−

i | ≤ �ng (�ng defined a priori) and max j∈N−
i
{d ′

i j } ≤
min j∈�i \N−

i
{d ′

i j }. Functions f (N G, t, i),∀N G ⊆ Ni ,∀ei ≤ t ≤ li ,∀i ∈ V , and the

corresponding ng-paths used to compute the subsets R̂ and N of H1 are computed
through the following dynamic programming recursion:

f (N G, t, i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
j∈�i

t+ti j ≤t ′≤l j

N G ′∩Ni =N G\{i}

{
f (N G ′, t ′, j) + d ′

i j

}
if t = li

min
j∈�i

N G ′∩Ni =N G\{i}

{
f (N G ′, t + ti j , j) + d ′

i j

}
if ei ≤ t < li

3.2 Procedure H2

Procedure H2 uses feasible VRPTW routes. It uses a forward dynamic programming
algorithm for generating both route sets R and N . At each iteration, H2 computes
functions f (N G, t, i),∀N G ⊆ Ni , e0 ≤ t ≤ l0,∀i ∈ V , with respect to the current
dual master solution ū and uses them to reduce the state-space graph when generating
VRPTW routes.

Each state corresponds to a forward path P starting at 0, ending in i ∈ V at time
ei ≤ t ≤ li and visiting a set of vertices V (P) ⊆ V . Thus, a lower bound on the
reduced cost of the least cost route containing P can be computed as:

L B(P) = c′(P) + min
N G∩V (P)={i}

t ′≥t

{ f (N G, t ′, i)}, (18)

where c′(P) is the cost of path P with respect to costs d ′
i j = di j − 1

2 ui − 1
2 u j . If

L B(P) > 0, then path P can be fathomed as it cannot produce any route of N .
H2 computes a DF solution u2 of cost L B2.

123

242 R. Baldacci et al.

3.3 Procedure H3

Procedure H3 solves formulation L F tightened by additional cuts. Unlike procedure
H3 described in Sect. 2.3, this procedure does not use capacity constraints (5) and
replaces clique inequalities (6) with the Subset-Row (SR) inequalities introduced by
Jepsen et al. (2008).

Only a subset of SR inequalities are used. Let C = {C ⊆ V : |C | = 3} be the set
of all customer triplets, and let R(C) ⊆ R be the subset of routes servicing at least
two customers in C , i.e., R(C) = {� ∈ R : |R� ∩C | ≥ 2}. The following inequalities
are valid for L F :

∑

�∈R(C)

x� ≤ 1, ∀C ∈ C . (19)

In this section, we denote by L F the problem obtained by adding to L F SR inequal-
ities (19), and by DF its dual.

Inequalities (19) can be separated in polynomial time by complete enumeration,
and their duals can be easily taken into account in the pricing problem.

3.3.1 Pricing scheme of H3

H3 solves DF by column-and-cut generation and uses an adaptation of procedure
genroute (see Sect. 2.4) for generating feasible VRPTW routes that is briefly
described in Sect. 3.3.2. With respect to procedure H3 of Sect. 2.3, the pricing scheme
of Baldacci et al. (2009c) is somewhat more involved.

To speed up the solution process, before starting procedure H3 an attempt is made
to generate the set R̂ containing all routes having reduced cost smaller than the gap
z(UB) − L B2, where z(UB) is an upper bound on the VRPTW. If this attempt suc-
ceeds, H3 turns into a cutting plane method as it is guaranteed that R̂ contains an
optimal integer solution, and genroute is not called again within H3. Nevertheless,
if |R̂| is large it may be computationally convenient to initialize the master of H3 with
a limited subset R ⊆ R̂ and simply price out columns in R̂ \ R at each iteration by
inspection.

On the contrary, if the method is unable to generate all routes, two cases are con-
sidered. (a) Genroute could generate all simple paths but was unable to generate the
whole set R̂ by combining them: in this case, it suffices to combine these paths to
generate new routes at each iteration of H3. (b) Genroute could not compute all the
simple paths required to generate |R̂|: in this case, genroute must be called at each
iteration of H3. However, it is possible to avoid using genroute at each iteration by
combining previously generated paths for a certain number of iterations, until no more
routes can be generated.

As a matter of fact, even for solving the most difficult VRPTW instances, the
method of Baldacci et al. (2009c) never required to call genroute more than 3 times
after starting H3.

123

An exact solution framework for a broad class VRPs 243

3.3.2 Genroute and pricing by different dual solutions

The algorithm genroute described for the CVRP was modified to take into account
the time window constraints and to improve the pricing scheme. The first modification
concerns the fact that any VRPTW route R can be decomposed, for each i ∈ V (R),
into a forward path P starting from depot 0 and ending at vertex e(P) = i at time
t (P), and a backward path P starting at e(P) = i at time t (P) and ending at depot
0 before time l0. Thus, in the first phase genroute generates the two sets P and
P−1 of forward and backward paths, and in the second phase it combines every pair
(P, P), P ∈ P, P ∈ P−1, to derive the route set B.

Genroute fathoms paths and routes according to the following observations. Let ū
be the current dual master solution at a given iteration of H3, and let � ∈ R be a route
having reduced cost c̄� < 0 with respect to ū. If u2 is a feasible dual solution of cost
L B2, route � can still be fathomed if it has reduced cost greater than z(UB) − L B2
with respect to u2.

Similarly, the size of path sets P and P−1 can be reduced using both u and u2 as
follows. Let L B ′(P) and L B2(P) be the lower bounds associated with path P ∈ P
using expression (18) with respect to the two bounding functions given by ū and u2,
respectively. Path P cannot be contained in any route of set B if either L B ′(P) > 0 or
L B2(P) ≥ z(UB) − L B2. Similar observations are used to reduce the size of P−1.

3.4 Computational results for the VRPTW

This section reports a summary of the computational results of the method proposed
by Baldacci et al. (2009c). The algorithm was tested on the VRPTW benchmark
instances created by Solomon (see Solomon 1987) and available at http://web.cba.neu.
edu/~msolomon/problems.htm. The whole benchmark set is made up of 168 instances
divided into three groups having 25, 50 and 100 customers. Each group is divided into
six classes (C1, RC1, R1, C2, RC2 and R2) differing by the geographical distribution
of the customers and/or the width of the time windows.

The algorithm of Baldacci et al. (2009c) (BMR in the following) was coded in
Fortran 77, compiled with the Intel Fortran 2008, and run on an Intel Xeon E5310
Workstation (1.6 GHz with 8 Gb of RAM). CPLEX 11.0 was the LP and IP solver used
in H3. The method is compared with Jepsen et al. (2008) (JPPS in the following) and
Desaulniers et al. (2008) (DHL in the following). According to SPEC tables (http://
www.spec.org), the machine used by BMR is 5–10% faster than that used by DHL
and 35–40% faster than that of JPPS.

Table 3 reports the computational time for a selected set of instances. The columns
report the name of the instance (Name), the number of customers (|V |), and the com-
putational time in seconds for the methods compared (tT OT of BMR, JPPS, DHL).
In this table, an entry “n.a.” means data not available, and a dash “–” means that the
problem was not solved to optimality.

Tables 4 and 5 report a summary of the computational results obtained on all
instances with 50 and 100 customers. The columns of this table report the class of
instances considered (Class), the number of instances of the class (np), and for each

123

http://web.cba.neu.edu/~msolomon/problems.htm
http://web.cba.neu.edu/~msolomon/problems.htm
http://www.spec.org
http://www.spec.org

244 R. Baldacci et al.

Table 3 Computational results for the most difficult VRPTW Solomon instances

Name |V | tT OT Name |V | tT OT

BMR JPPS DHL BMR JPPS DHL

C204 50 48 – n.a. RC204 100 1,657 – –

RC204 50 61 – n.a. RC207 100 5,439 – 91,405

R204 50 72 – n.a. RC208 100 877 – –

R207 50 248 34,406 n.a. R202 100 828 8,282 1,663

R208 50 550 – n.a. R203 100 1,060 54,187 641

R210 50 53 18,545 n.a. R204 100 362,661 – –

R211 50 32 10,543 n.a. R205 100 2,035 – 6,904

RC104 100 979 65,806 11,773 R206 100 7,996 – 60,608

RC106 100 173 15,891 3,916 R207 100 2,690 – 11,228

R104 100 400 32,343 3,103 R209 100 13,921 78,560 22,514

R111 100 213 83,931 5,738 R210 100 32,528 – 400,904

R112 100 645 202,803 16,073 R211 100 18,162 – –

C204 100 319 – 16,416

Table 4 Summary for
50-customer VRPTW instances

Class np nopt tT OT

BMR JPPS BMR JPPS

C1 9 9 9 5 175

RC1 8 8 8 14 41

R1 12 12 12 33 139

All 29 29 29 19 123

C2 8 8 7 17 79

RC2 8 8 7 24 268

R2 11 11 9 95 7,086

All 27 27 23 51 2,879

Solved by JPPS 23 23 28 2,879

method: the number of problems solved to optimality (nopt), and the average com-
puting time (tT OT) over all instances solved to optimality. Lines labeled “All” report
for each method the total number of problems solved and the average computing time
over the instances solved. Lines “Solved by JPPS” and “Solved by DHL” report for
each method the number of instances solved among those solved by JPPS and DHL,
respectively, and the corresponding average computational time.

The tables show that BMR solved all the 56 50-customer instances. JPPS could
not solve 4 of them. On average, for instances with wide time windows (classes C2,
RC2 and R2) BMR is 60–65 times faster than JPPS. All compared methods solved
100-customer instances with tight time windows (classes C1, RC1 and R1), but BMR
is significantly faster than the others. Instances with 100 customers and wide time
windows are clearly the most difficult ones. BMR succeeded in solving all but one

123

An exact solution framework for a broad class VRPs 245

Table 5 Summary for 100-customer VRPTW instances

Class np nopt tT OT

BMR JPPS DHL BMR JPPS DHL

C1 9 9 9 9 15 468 18

RC1 8 8 8 8 230 11,004 2,150

R1 12 12 12 12 162 27,412 2,327

All 29 29 29 29 135 14,524 1,562

C2 8 8 7 8 71 2,795 2,093

RC2 8 8 5 6 1,035 3,204 15,394

R2 11 10 4 8 44,191 35,292 63,068

All 27 26 16 22 17,337 11,047 27,893

Solved by JPPS 16 16 16 1,025 11,047 1,637

Solved by DHL 21 21 3,064 27,893

of them. It solved for the first time ever instances RC204, RC208, R204 and R211.
The only instance that remains open is R208. BMR outperformed JPPS and DHL:
on instances solved by JPPS it is 5–6 times faster than JPPS itself, and on instances
solved by DHL it is 7–8 times faster than DHL.

4 The pickup and delivery problem with time windows

The PDPTW is a generalization of the VRPTW where the set of vertices V is par-
titioned as V = P ∪ D ∪ {0}. Vertex 0 represents the depot, and the subsets P =
{1, . . . , n} and D = {n + 1, . . . , 2n} represent n pickup and delivery vertices. Each
pickup i ∈ P is associated with a delivery n + i ∈ D, and each pair (i, n + i) defines
a transportation request i, i = 1, . . . , n, requiring that a load qi is delivered from
pickup i to delivery n + i . Hereafter, the set P will also be used to represent the
set of the n transportation requests. With each vertex i ∈ V , there is associated a
time window [ei , li]. A load qi > 0 is associated with each pickup i ∈ P , whereas
qi = −qi−n,∀i ∈ D (we assume q0 = 0).

The problem requires to design the routes of at most m vehicles of capacity Q that
are based at the depot to satisfy the n transportation requests. Let S(R) = V (R) ∩ P
be the subset of requests visited by a route R. Each route R must be simple, must
visit vertices according to their time windows, and must satisfy the following two
constraints: (i) R visits the delivery n + i after having visited the pickup i ∈ S(R),
and (ii) the total load of vertices visited after leaving each vertex i ∈ S(R) must be
smaller than or equal to Q.

In the literature, two different PDPTW objective functions have been considered.
The first objective, hereafter called o1, is to minimize the sum of the route costs. The
second objective, hereafter called o2, involves a fixed cost W that is associated with
each vehicle and is to minimize the sum of fixed costs and route costs. Notice that if
W is very large (i.e., larger than the route cost of any feasible solution), then objective
o2 minimizes first the number of vehicles used and second the sum of the route costs.

123

246 R. Baldacci et al.

In the following, we denote by PDPTW-o1 and PDPTW-o2 the variants of the
PDPTW where the objective is to minimize the objective functions o1 and o2, respec-
tively.

Recent surveys on the PDPTW can be found in Cordeau et al. (2008) and Parragh
et al. (2008). Exact algorithms for the PDPTW have been proposed by Dumas et al.
(1991), Savelsbergh and Sol (1998), Lu and Dessouky (2004), Ropke et al. (2007) and
recently by Ropke and Cordeau (2009) and Baldacci et al. (2009a). The method of
Ropke and Cordeau is a BCP algorithm that uses different classes of valid inequalities
to improve the lower bound and two different methods for solving the pricing problem.
The method of Baldacci et al. (2009a) relies on the general framework described in
Sect. 2.

In this section, we highlight the key differences of the algorithm described in
Baldacci et al. (2009a) for solving the PDPTW with respect to the general solution
method described in Sect. 2.

The PDPTW-o1 can be formulated mathematically using the same SP like formu-
lation F of the CVRP as all the constraints that are specific to the PDPTW can be
implicitly imposed in the definition of the route set R. The same formulation can also
be used to model the PDPTW-o2 as any PDPTW-o2 instance can be transformed into
a PDPTW-o1 instance by adding the fixed cost W to each outgoing arc from the depot.
Notice that, since each pickup must be visited by the same route of the corresponding
delivery, it is sufficient to impose the SP constraints (2) for each pickup vertex only.

The method described in Sect. 2 cannot be used directly to solve the PDPTW as it
needs an ad-hoc algorithm for generating PDPTW routes. Moreover, it can be inef-
fective for those PDPTW-o2 instances where the fixed cost W is large because in this
case relaxation L F provides a weak lower bound.

In the following, we describe the forward dynamic programming algorithm of
Baldacci et al. (2009a) for generating PDPTW routes, called GENR, that uses prob-
lem-specific bounding functions to reduce the size of the state-space. Moreover, we
describe an adaptation of the exact method of Sect. 2 for the PDPTW-o1 and a new
exact algorithm for the PDPTW-o2.

4.1 Solving the PDPTW-o1

Relaxation L F provides a tight lower bound on the PDPTW-o1, so the problem can
be solved using an adaptation of the exact method of Sect. 2 where the bounding
procedures H1, H2 and H3, are tailored to the PDPTW-o1.

H1 uses a relaxation of PDPTW routes called (t, i)-routes. A (t, i)-route is a not
necessarily simple circuit that starts and ends at the depot, satisfies time window con-
straints of the vertices visited, and such that i ∈ D is the last vertex visited before the
depot. (t, i)-routes are computed as described in Sect. 4.3.

H2 uses feasible PDPTW routes that are generated using algorithm GENR
described in Sect. 4.3.

H3 is a column-and-cut generation method that solves a relaxation L F obtained
by adding SR inequalities to L F (see Sect. 3.3). In this section, we denote by DF the
dual of L F .

123

An exact solution framework for a broad class VRPs 247

The exact method for the PDPTW-o1 combines the exact method of Sect. 2.2 with
a BCP algorithm where the lower bound at each node is computed by solving problem
L F . The method is obtained by substituting Step 2 of the exact method of Sect. 2.2
with the following:

2. We have two cases:
(a) if |R̂| < �max: solve problem F̂ using a general purpose IP solver;
(b) if |R̂| = �max: solve problem F using the BCP algorithm described below;

where �max is an a priori defined parameter.

4.1.1 BCP algorithm for PDPTW-o1

The BCP algorithm solves problem L F using procedure H3 at each node of the
enumerative tree. Given an L F solution x̄ involving a set of routes R, let ω̄i j =∑

�∈Ri j
x�,∀(i, j) ∈ A, where Ri j ⊆ R is the subset of routes traversing arc (i, j).

When H3 terminates with a fractional solution x̄, the algorithm selects an arc (i, j)
having the value ω̄i j closest to 0.5 (in case of ties, the arc having the smallest modified
arc cost di j − u3

j is chosen). Then, it creates two branches imposing the disjunction
ωi j = 0 ∨ ωi j = 1. The nodes are processed according to a best bound node selection
rule.

The algorithm uses a pool of routes R0 ⊆ R and a pool of cuts C 0, that are ini-
tialized by setting R0 = R̂ and C 0 = Ĉ . At each node of the enumerative tree, the
pools R0 and C 0 are used to initialize the initial master problem of H3. The route
subset R is obtained by extracting from R0 the largest set of routes satisfying the
branching conditions. The subset of triplets C is initialized by setting C = C 0. The
route pool R0 and the cut pool C 0 are enlarged at each node during the execution of
H3 by setting R0 = R0 ∪ N and C 0 = C 0 ∪ C ′, where N and C ′ are the route
subset and the cut subset generated at each iteration of H3, respectively.

4.2 Solving the PDPTW-o2

The exact method of Sect. 2 can be ineffective for those PDPTW-o2 instances where
the fixed cost W is large. The exact algorithm of Baldacci et al. (2009a) decomposes
a PDPTW-o2 instance into mU B − mL B + 1 PDPTW-o1 instances obtained from the
original PDPTW-o2 by setting W = 0, where mU B and mL B represent an upper bound
and a lower bound on the number of vehicles required, respectively.

With each PDPTW-o1 instance involving κ vehicles, κ = mL B, . . . , mU B , is asso-
ciated a problem F(κ) derived from F by setting m = κ and W = 0. Each problem
F(κ) is solved using the exact method described in Sect. 4.1.

The values of mL B and mU B are computed as follows.

• Let z(U B) be an upper bound on the original PDPTW-o2 instance. The value mU B

can be computed as mU B = �z(U B)/W�. However, a better estimate of mU B is
obtained by computing a valid lower bound rL B on problem F(�z(U B)/W�) and
setting mU B = � z(U B)−rL B

W �.

123

248 R. Baldacci et al.

• Lower bound mL B can be set equal to the smallest integer κ such that problem
F(κ) has a feasible solution and can be computed as follows. Let L B(κ) be a
lower bound on F(κ) (we assume L B(κ) = ∞ in case L F(κ) has no feasible
solution). Lower bound L B(κ) can be computed by solving the dual of L F(κ)

using procedure H3. Then mL B can be set equal to the smallest integer κ such
that L B(κ) < ∞.

After computing mU B and mL B , the root node lower bound z(L B) on the PDPTW-o2
is computed as z(L B) = min

mL B≤κ≤mU B
{W × κ + L B(κ)}. The exact method iteratively

solves problems F(κ), κ = mL B, . . . , mU B , but terminates prematurely at iteration
κ ≤ mU B if W × κ + z∗(F(κ)) ≤ W × κ̄ + L B(κ̄), κ̄ = κ + 1, . . . , mU B , where
z∗F(κ) is the optimal solution cost of F(κ).

4.3 Procedure GENR

GENR is a dynamic programming algorithm for generating PDPTW routes as required
by H1, H2 and the exact algorithms. Given a DF solution (û, ĝ) and two user defined
parameters � and γ , GENR computes the largest subset B ⊆ R satisfying conditions
(17). GENR dynamically generates a state-space graph where each vertex corresponds
to a PDPTW forward path L .

A PDPTW forward path L = (0, i1, . . . , ih) is a simple path in G starting from
the depot, visiting a subset of vertices V (L), and ending at a vertex e(L) ∈ V at
time τ(L). Let P(L) and D(L) be the subsets of pickups and deliveries visited by
L , that is D(L) = V (L) ∩ D and P(L) = V (L) ∩ P . L must satisfy the following
conditions: (i) each vertex i ∈ V (L) is visited according to its time window; (i i)
i − n ∈ P(L),∀i ∈ D(L), and each delivery i ∈ D(L) is visited after the corre-
sponding pickup i − n; (i i i) the total load of the vehicle

∑
j=1,...,k qik after having

visited customer ik is smaller than or equal to the vehicle capacity Q. We denote by
P̃(L) ⊆ P(L) the set of requests whose deliveries are not visited by L .

GENR uses different bounding functions called f (t, i), g(t, i) and f (D̃, t, i) to
compute a lower bound L B(L) on the reduced cost of any feasible route that contains
a forward path L . The state-space graph is reduced by removing all paths L such that
L B(L) > γ .

4.4 Bounding functions f (t, i) and g(t, i)

Let a backward (t, i)-path be a not-necessarily simple path in G that starts from vertex
i ∈ V at time ei ≤ t ≤ li , ends at the depot 0, and arrives at each vertex visited at a
time within its time window.

Function f (t, i) is defined as the cost of the least cost backward (t, i)-path starting
from vertex i at time t , with respect to the modified arc costs d ′

i j = di j − û j given a

DF solution (û, ĝ). Let π(t, i) be the vertex just after i in the (t, i)-path of cost f (t, i).
Define g(t, i) as the cost of the least cost backward (t, i)-path starting from vertex i
at time t and such that the vertex after i is different from π(t, i). Functions f (t, i)
and g(t, i) can be computed in pseudo-polynomial time (i.e., in time O(T n2) where

123

An exact solution framework for a broad class VRPs 249

T = l0 − e0) using the dynamic programming procedure described in Christofides
et al. (1981c,b). This procedure imposes the restriction that a backward (t, i)-path
does not contain loops of two consecutive vertices.

Let L be a forward path, and let c′(L) be its cost with respect to costs d ′
i j . As the

duals ĝ of inequalities (19) are non-positive, a valid lower bound L B1(L) on the cost
of any route containing L is computed as follows:

L B1(L) = c′(L) + min
τ(L)≤t≤le(L)

{
f (t, e(L)), if π(t, i) �∈ V (L),

g(t, e(L)), otherwise.
(20)

4.5 Bounding functions f (D̃, t, i)

Let D̃ ⊆ P be a subset of requests. A backward (D̃, t, i)-path is a not necessarily
simple path that starts from vertex i ∈ V at time ei ≤ t ≤ li , visits the deliveries of
the requests in D̃, but does not visit the corresponding pickups. Moreover, a backward
(D̃, t, i)-path must satisfy the following conditions: (a) it must visit vertices according
to their time window; (b) if it visits a pickup i , then it must also visit the corresponding
delivery n + i after i ; (c) the total load of vertices visited after leaving each vertex
must be greater than or equal to −Q and less than or equal to Q.

Let f (D̃, t, i) be the cost of the least cost (D̃, t, i)-path, with respect to the mod-
ified arc costs d ′

i j . Functions f (D̃, t, i) can be computed using a backward dynamic
programming procedure where each vertex of the state-space graph corresponds to a
backward (D̃, t, i)-path. Even if (D̃, t, i)-paths can be non-simple, it is easy to impose
that after visiting a delivery vertex the same delivery is not visited again before the cor-
responding pickup. In fact, it suffices to forbid that a (D̃, t, i)-path visits any delivery
whose corresponding request is in D̃. This condition is trivially satisfied by any simple
path and forbids loops of two consecutive vertices in non-simple (D̃, t, i)-paths.

Consider a forward path L of cost c′(L) with respect to costs d ′
i j , and let L− be

the sub-path that is obtained from L by removing the last vertex e(L). A lower bound
L B2(L) on the reduced cost of any route containing a forward path L is given by:

L B2(L) = c′(L) + min
τ(L)≤t≤le(L)

D̃=P̃(L−)

{
f
(
D̃, t, e(L)

)}
. (21)

In computing functions f (D̃, t, i), H3 ignores the duals ĝ of inequalities (19). As
ĝ ≤ 0, then L B2(L) is a valid lower bound with respect to any feasible DF solution
(û, ĝ).

4.6 Computational results for the PDPTW

In this section, we report a summary of the computational results obtained by the exact
algorithm of Baldacci et al. (2009a).

The exact algorithm of Baldacci et al. (2009a) is compared with the BCP of Ropke
and Cordeau (2009) on two sets of PDPTW instances from the literature called Class

123

250 R. Baldacci et al.

Table 6 Summary results for the PDPTW

np Ropke and Cordeau (2009) Baldacci et al. (2009a)

%L B nopt tT OT %LB nopt tT OT

Class 1

AA 10 – 9 361.3 99.975 10 85.8

BB 10 – 9 291.2 99.989 9 57.4

CC 10 – 6 865.4 99.981 10 46.2

DD 10 – 6 771.9 99.970 10 37.1

40 – 30 572.5 99.979 39 56.6

Class 2

LC1 10 99.961 8 870.0 100.000 9 28.8

LR1 10 99.964 5 312.2 100.000 7 44.2

LRC1 10 99.925 4 402.9 100.000 7 93.6

LL500 6 99.998 3 1,049.9 100.000 3 143.8

36 99.962 20 658.7 100.000 26 77.6

1 and Class 2 instances, respectively. Class 1 contains PDPTW-o2 instances that were
introduced by Ropke and Cordeau (2009) and are available at http://www.diku.dk/
~sropke/. Class 2 contains PDPTW-o1 instances proposed by Li and Lim (2001) that
are publicly available at http://www.top.sintef.no/. Both classes are divided into 4
subclasses.

Baldacci et al. (2009a) used an Intel Xeon E5310 Workstation clocked at 1.6 GHz
with 8 Gb RAM running Windows Server 2003 × 64 Edition. The BCP of Ropke and
Cordeau used an AMD Opteron 250 (2.4 GHz) running Linux (∼5–10% slower than
the Xeon according to SPEC2000 benchmarks). A time limit of 10 h was imposed on
the exact algorithm of Baldacci et al. (2009a), whereas a time limit of 2 h was used by
the BCP of opke and Cordeau.

Table 6 reports a summary of the computational results obtained by the two methods
for the two classes of instances. Table 6 shows the following columns: the number of
instances (np); the average percentage ratio of the lower bound at the root node, com-
puted over all instances solved by both algorithms (%L B); the number of instances
solved (nopt); and the average computing time in seconds, over all instances solved
by both algorithms (tT OT).

Table 7 reports more detailed results on the most difficult instances that could be
solved to optimality by at least one of the two algorithms. Column z∗ of this table
reports the value of the optimal solution, column %L B reports the percentage ratio
of the lower bound at the root node and tT OT the total computing time.

For PDPTW-o2 instances, we do not report column %L B for the BCP algorithm of
Ropke and Cordeau as lower bound at the root node of their BCP cannot be directly
compared with lower bound z(L B) of Baldacci et al. (2009a) (see Sect. 4.2).

The results on the two classes of instances considered indicate that both the lower
bounds and the exact method of Baldacci et al. (2009a) are superior to those of Ropke

123

http://www.diku.dk/~sropke/
http://www.diku.dk/~sropke/
http://www.top.sintef.no/

An exact solution framework for a broad class VRPs 251

Table 7 Results on difficult PDPTW instances

Name z∗ Ropke and Cordeau (2009) Baldacci et al. (2009a)

%LB tT OT %LB tT OT

AA75 52,461.6 – tl 99.981 6,442.4

CC50 41,685.3 – 1,962.3 99.981 38.9

CC55 41,836.3 – 2,729.2 99.970 185.2

CC60 42,009.3 – tl 99.943 2,128.2

CC65 42,164.0 – tl 99.929 7,111.2

CC70 52,201.7 – tl 81.137 5,565.7

CC75 52,359.0 – tl 99.978 259.6

DD50 31,600.9 – 1,976.0 99.958 96.7

DD55 31,743.3 – 1,178.5 99.971 36.5

DD60 32,069.2 – tl 99.685 13,048.3

DD65 42,107.3 – tl 99.935 25,929.1

DD70 42,214.2 – tl 99.943 20,737.5

DD75 42,359.9 – tl 99.937 34,718.6

lc1_2_9 2,724.2 99.684 6,628.6 100.000 55.3

lc1_2_10 2,741.6 99.756 tl 100.000 137.1

lr1_2_3 3,486.8 99.923 tl 100.000 3,690.8

lr1_2_6 3,763.0 100.000 1,041.6 100.000 180.9

lr1_2_10 3,386.3 99.702 tl 100.000 1,376.7

lrc1_2_2 3,292.4 99.830 1,053.3 100.000 322.3

lrc1_2_7 3,317.7 99.412 tl 99.941 408.2

lrc1_2_8 3,086.5 98.033 tl 99.733 1,562.7

lrc1_2_9 3,053.8 98.091 tl 99.360 1,757.2

lr1101 56,744.9 99.993 1,682.3 100.000 233.1

and Cordeau. In particular, the exact algorithm of Baldacci et al. (2009a) is on average
9 times faster on Class 1 instances and solves to optimality 9 problems previously
unsolved. It also outperforms the BCP of Ropke and Cordeau on Class 2 instances,
being on average 8 times faster and solving 6 problems of Class 2 previously unsolved.

5 The heterogenous vehicle routing problem

The heterogenous vehicle routing problem (HVRP) is a generalization of the CVRP
where the vehicle fleet is composed of a set M = {1, . . . , m} of m different vehicle
types. The HVRP can be described as follows.

For each type k ∈ M, Uk vehicles are available at the depot, each having a capacity
equal to Qk . With each vehicle type is also associated a fixed cost Fk modeling, e.g.,
rental or capital amortization costs. In addition, for each edge {i, j} ∈ E and for each
vehicle type k ∈ M , it is given a routing cost dk

i j that represents the cost for traversing
edge {i, j} with a vehicle of type k.

123

252 R. Baldacci et al.

A route R = (0, i1, . . . , ir , 0) performed by a vehicle of type k is a simple cycle in
G passing through the depot and customers {i1, . . . , ir } ⊆ V , with r ≥ 1, such that
the total demand of the customers visited does not exceed the vehicle capacity Qk

(i.e.,
∑r

h=1 qih ≤ Qk). The cost of a route is equal to the sum of the routing costs plus
the fixed cost of the associated vehicle.

The HVRP consists of designing a set of feasible routes of minimum total cost such
that each customer is visited by exactly one route and the number of routes performed
by the vehicles of type k is not greater than Uk, k ∈ M .

This model subsumes the following classes of VRP.

(1) The CVRP corresponds to the HVRP where m = 1, Q1 = Q, F1 = 0 and
U1 = p.

(2) The fleet size and mix CVRP with fixed vehicle costs, unlimited number of vehi-
cles, and independent routing costs (FSMF). This problem is obtained by setting
Uk = n,∀k ∈ M, dr

i j = ds
i j ,∀r, s ∈ M, r �= s.

(3) The fleet size and mix CVRP with fixed vehicle costs, unlimited number of
vehicles, and vehicle dependent routing costs (FSMFD) is obtained by setting
Uk = n,∀k ∈ M .

(4) The heterogeneous CVRP with no fixed vehicle costs and vehicle dependent
routing costs (HD) is obtained by setting Fk = 0,∀k ∈ M .

(5) The fleet size and mix CVRP with no fixed vehicle costs, unlimited number of
vehicles, and vehicle dependent routing costs (FSMD). This problem is obtained
by setting Fk = 0,∀k ∈ M, Uk = n, ∀k ∈ M .

(6) The Site-Dependent CVRP (SDVRP). In the SDVRP a customer i ∈ V can only
be serviced by a subset of vehicle types Mi ⊆ M . The routing costs are vehicle
independent and are represented by a symmetric matrix [di j]. No fixed costs are
associated with the vehicles.
Any SDVRP instance can be converted into an equivalent HD instance by setting
for each vehicle type k ∈ M :

Fk = 0 and dk
i j =

{
di j , if k ∈ Mi ∩ M j

∞, otherwise
, ∀{i, j} ∈ E,

where M0 = M .
(7) The MDVRP. This problem is an extension of the CVRP where a customer can be

serviced by an unlimited fleet of identical vehicles of capacity Q that are located
at p depots. Inter-depot routes are not allowed.
Let [d̂i j] be a (n + p) × (n + p) symmetric cost matrix, where d̂n+k i is the
travel cost for going from depot k = 1, . . . , p to customer i ∈ V . Any MDVRP
instance can be converted into an equivalent HVRP instance involving m = p
different vehicle types and setting for each vehicle type k ∈ M :

Qk = Q, Uk =n, Fk =0 and dk
i j =

{
d̂n+k j , if i = 0,

d̂i j , otherwise,
∀{i, j}∈ E .

All problems described above are NP-hard as they generalize the CVRP. Their main
characteristics are summarized in Table 8.

123

An exact solution framework for a broad class VRPs 253

Table 8 Characteristics of the different problems

Problem Vehicle fixed
costs

Vehicle dependent routing
costs

Heterogenous
vehicle fleet

Limited fleet

HVRP Yes Yes Yes Yes

CVRP No No No Yes

FSMF Yes No Yes No

FSMFD Yes Yes Yes No

HD/SDVRP No Yes Yes Yes

FSMD No Yes Yes No

MDVRP No Yes No No

Many different heuristics have been proposed in the literature for the HVRP and
its variants. A recent survey of lower bounds for the HVRP and its variants can be
found in Baldacci et al. (2008a). An exact method for the FSMF, FSMFD and FSMD
variants was recently proposed by Pessoa et al. (2007). These authors presented an
exact BCP method based on the one proposed by Fukasawa et al. (2006) for the CVRP.
To our knowledge, only three exact algorithms have been proposed for the MDVRP.
Laporte et al. (1984, 1988) have developed exact branch-and-bound algorithms, but
these only work well on relatively small instances (see Crevier et al. 2007). Baldacci
and Mingozzi (2009) present an exact algorithm for the HVRP that generalizes the
bounding procedures and the exact method for the CVRP described in Sect. 2. They
introduce new bounding methods that are particularly effective when the vehicle fixed
cost contribution to the total cost is relevant. The exact algorithm proposed for the
HVRP is able to solve all VRP shown in Table 8. The computational results show that
the proposed lower bound is superior to the lower bounds presented in the literature.
Moreover, the exact algorithm of Baldacci and Mingozzi (2009) outperforms the exact
method of Pessoa et al. (2007) and can solve for the first time several test instances of
all problem types considered.

In this section, we review the method of Baldacci and Mingozzi (2009).

5.1 Mathematical formulation of the HVRP

Let Rk be the index set of all feasible routes of vehicle type k ∈ M , and let R =⋃
k∈M Rk . With each route � ∈ Rk it is associated a routing cost ck

� . Let Rk
i ⊂ Rk

be the index subset of the routes of a vehicle of type k visiting customer i ∈ V . In the
following, we use Rk

� to indicate the subset of customers visited by route � ∈ Rk .
Let xk

� be a (0–1) binary variable equal to 1 if and only if route � ∈ Rk is chosen
in the solution.

(F) z(F) = min
∑

k∈M

∑

�∈Rk

(Fk + ck
�)xk

� (22)

123

254 R. Baldacci et al.

s.t.
∑

k∈M

∑

�∈Rk
i

xk
� = 1, ∀i ∈ V, (23)

∑

�∈Rk

xk
� ≤ Uk, ∀k ∈ M, (24)

xk
� ∈ {0, 1}, ∀� ∈ Rk, ∀k ∈ M. (25)

Constraints (23) specify that each customer i ∈ V must be covered by exactly one
route. Constraints (24) impose an upper bound on the number of vehicles of each type
that can be used.

In the following, we describe the three relaxations of problem F used by Baldacci
and Mingozzi (2009) to derive different lower bounds as well as different methods for
reducing the size of sets Rk, k ∈ M , by eliminating those routes that cannot belong
to any optimal HVRP solution.

5.2 Relaxation L F and procedures H1 and H2

Let L F be the LP-relaxation of problem F , and let z(L F) be its optimal solution cost.
We denote by DF the dual of problem L F . Let u = (u1, . . . , un) and v = (v1, . . . , vm)

be the dual variable vectors associated with constraints (23) and (24), respectively.
A near-optimal DF solution can be obtained by the following theorem, which is

an extension to the HVRP of Theorem 1 introduced in Sect. 2.3.

Theorem 2 Associate penalties λi ∈ R,∀i ∈ V , with constraints (23) and penalties
μk ≤ 0,∀k ∈ M, with constraints (24). Define

bik = qi min
�∈Rk

i

{
ck
� + Fk − λ

(
Rk

l

) − μk

q
(
Rk

l

)
}

, ∀i ∈ V, ∀k ∈ M, (26)

where λ(Rk
�) = ∑

i∈Rk
�
λi and q

(
Rk

l

) = ∑
i∈Rk

�
qi .

A feasible DF solution (u, v) of cost z(DF(λ,μ)) is given by setting:

ui = mink∈M {bik} + λi , ∀i ∈ V, (a)

vk = μk, ∀k ∈ M. (b)

}
(27)

Using Theorem 2, the bounding procedures H1 and H2 described in Sect. 2.3 for the
CVRP can be extended to derive lower bounds L B1 and L B2, respectively.

5.3 Relaxation R P and bounding procedures D P1 and D P2

A second relaxation of the HVRP corresponds to an integer problem, called R P , that
can provide a better lower bound than z(L F) for those HVRP s where the vehicle
fixed cost contribution to the optimal cost is relevant or dominates the routing cost
contribution.

123

An exact solution framework for a broad class VRPs 255

R P involves two types of integer variables: ξik ∈ {0, 1}, i ∈ V, k ∈ M , and
yk ∈ Z

+, k ∈ M . Variable ξik is equal to 1 if and only if customer i ∈ V is serviced
by a vehicle of type k ∈ M . Variable yk represents the number of vehicles of type k
used in the solution.

Let βik be the marginal routing cost for servicing customer i ∈ V with a vehicle
of type k ∈ M . We assume that the values βik, i ∈ V, k ∈ M , satisfy the following
inequalities:

∑

i∈Rk
�

βik ≤ ck
�, ∀� ∈ Rk, ∀k ∈ M. (28)

It can be shown that the following integer problem R P provides a valid lower bound
on the HVRP for any solution βik of inequalities (28).

(R P) z(R P) = min
∑

k∈M

∑

i∈V

βikξik +
∑

k∈M

Fk yk (29)

s.t.
∑

k∈M

∑

i∈V

qiξik = q(V), (30)

∑

i∈V

qiξik ≤ Qk yk, ∀k ∈ M, (31)

yk ≤ Uk, ∀k ∈ M, (32)

ξik ∈ {0, 1}, ∀i ∈ V,∀k ∈ M, (33)

yk ∈ Z
+, ∀k ∈ M. (34)

Relaxation R P is used by two bounding procedures, called D P1 and D P2, that
correspond to two different methods for computing βik satisfying inequalities (28).
D P1 uses q-route relaxation while D P2 uses column generation. Both procedures
are based on the dual ascent procedure CG (see Sect. 2.3) and solve problem R P by
dynamic programming.

The lower bounds L D1 and L D2 correspond to the cost z(R P) of the R P solution
achieved by D P1 and D P2, respectively.

5.3.1 Relaxation L F and procedure H3

A better relaxation than L F , called L F , is obtained by adding to L F a generalization
to the HVRP of the strengthened capacity constraints and of the clique inequalities
described in Sect. 2.3.4 for the CVRP.

Let z(L F) be the optimal solution cost of L F . Relaxation L F is solved by means
of a standard column-and-cut generation method, called CG, that is described in
Sect. 2.3. The initial master problem is generated by using either the dual solution
(u2, v2) given by H2 or the marginal routing cost β2

ik obtained by D P2 as described
in previous section. The master problem is then solved by using a simplex algorithm
where, at each iteration, a limited subset of strengthened capacity constraints and

123

256 R. Baldacci et al.

clique inequalities that are violated by the current fractional solution are added to the
master. L B3 corresponds to the cost z(L F) of the final L F solution achieved by H3.

It is easy to observe that L B3 ≥ z(L F). No dominance relation exists between
L B3 and z(R P). Furthermore, L D1 and L D2 can be greater than L B3.

5.3.2 An exact method for solving the HVRP

The exact algorithm for solving the HVRP generalizes the method described in Sect. 2.2
for the CVRP. The method consists of finding, by means of a general purpose IP solver,
an optimal integer solution of a reduced problem F̂ obtained from F by replacing each
set Rk, k ∈ M , with a subset R̂k , and adding two subsets Ŝ ⊂ S and Ĉ ⊂ C of
strengthened capacity constraints and clique inequalities, respectively. The subsets
R̂k,∀k ∈ M , are generated in such a way that any optimal F̂ solution is also optimal
for F .

The core of the algorithm is the bounding method that combines different bounding
procedures based on the three relaxations described in the previous section.

Bounding method

1. Execute in sequence H1 and H2. Let L B2 be the cost of the DF solution (u2, v2)

obtained by H2. If Fk = 0,∀k ∈ M , set L D1 = 0, L D2 = 0 and go to Step 3,
otherwise go to Step 2.

2. Execute D P1. If L D1 ≥ L B2, execute D P2 producing the marginal routing costs
β2

ik and the lower bound L D2. If L D1 < L B2 set L D2 = 0.
3. Execute bounding procedure H3. Compute the final lower bound L B =

max{L D2, L B3}.

Generating the reduced problem F̂

The route subsets R̂k, k ∈ M , are generated either using the dual solution of L F
obtained by procedure H3 or the marginal routing costs β2

ik obtained by D P2. We
have the following two cases:

(a) L B = L B3. We replace the route sets Rk, k ∈ M , with the route subsets
R̂k, k ∈ M , containing all routes whose reduced costs with respect to the dual
solution of L F achieved by H3 is smaller than the gap z(UB) − L B3, where
z(UB) is a valid upper bound on the HVRP. We consider only those constraints
generated by H3 that have zero slack in the final L F solution.

(b) L B = L D2. We generate for each k ∈ M the subset R̂k containing all routes
satisfying the following inequalities:

ck
� −

∑

i∈Rk
�

β2
ik < z(UB) − L D2, ∀� ∈ R̂k . (35)

It is quite easy to show that any route � ∈ Rk \ R̂k, k ∈ M , cannot belong to an
optimal HVRP solution of cost smaller than z(UB).

123

An exact solution framework for a broad class VRPs 257

Table 9 Summary results for the HVRP

Variant np Lower bounds Exact methods

Pessoa et al.
(2007)

Choi and Tcha
(2007)

Baldacci and
Mingozzi
(2009)

Pessoa et al.
(2007)

Baldacci and
Mingozzi
(2009)

%L B tL B %L B %LB tL B nopt tT OT nopt tT OT

HVRP 12 – – – 99.6 224.8 – – 10 259.9

FSMF 12 99.6 229.5 98.4 99.8 147.0 9 4,741.2 11 125.4

FSMFD 12 99.7 243.8 98.6 99.7 143.5 10 963.46 11 172.9

HD 8 – – – 99.2 128.9 – – 7 564.8

FSMD 12 99.2 330.5 98.1 99.5 81.9 10 2,309.0 12 281.1

SDVRP 13 – – – 99.1 183.9 – – 9 880.6

MDVRP 9 – – – 99.2 310.5 – – 7 875.3

MDVRP 8 – – – 99.7 189.5 – – 7 4,788.6

86 99.5 176.2 74 993.6

In both cases, the route sets R̂k, k ∈ M , are generated by using procedure genroute
described in Sect. 2.4 for the CVRP.

5.4 Computational results for the HVRP

In this section, we report a comparison of the results obtained by Baldacci and
Mingozzi (2009) with those of Choi and Tcha (2007) and Pessoa et al. (2007) on
three main sets of instances from the literature. These instances correspond to the
HVRP variants, SDVRP and MDVRP. The complete details of the instances can be
found in Baldacci and Mingozzi (2009).

The algorithms described in Baldacci and Mingozzi (2009) were coded in Fortran
77, and the experiments were run on a personal computer with an AMD Athlon 64
X2 Dual Core 4200+ processor at 2.6 GHz and 3 GB of RAM. CPLEX 10.1 was used
as the LP solver in procedure H3 and as the integer linear programming solver in the
exact method. The computing times of the method of Pessoa et al. (2007) are seconds
of a Pentium Core 2 Duo at 2.13 GHz.

Table 9 summarizes the results obtained over all the variants considered by the dif-
ferent methods. This table reports the following columns: the total number of instances
in each class (np), the average percentage ratio of the lower bound with respect to the
optimal solution value (%L B), the average running time in seconds for computing
the lower bound (tL B), the number of instances solved to optimality by each method
(nopt), and the average running time in seconds of the exact method computed over
all the instances solved to optimality by all methods (tT OT).

Table 9 shows that the exact method of Baldacci and Mingozzi (2009) was able to
solve to optimality 74 out of 86 instances considered. The table shows that the average
percentage ratio of lower bound %L B obtained by the method, computed over all 86
instances, is equal to 99.5 and that the corresponding average computing time is 176.2 s.

123

258 R. Baldacci et al.

6 The period vehicle routing problem

The period vehicle routing problem (PVRP) is defined on an undirected graph G =
(V ′, E) and a set P = {1, . . . , p} that represents a p-day planning horizon. With each
day k ∈ P it is associated a non-negative cost matrix [dk

i j] where dk
i j represents the

cost for traversing edge {i, j} ∈ E on day k. A fleet of mk vehicles is available on
each day k to supply the customers V = V ′ \ {0}.

Each customer i specifies a service frequency fi and a quantity qi of product that
must be received from the depot at each visit. The visits of customer i can only occur
in one of a given set Ci of allowable day-combinations of fi days. The fi visit days
of a day-combination are represented by a column of a (0–1) matrix [aks] of p rows
where aks = 1 if day k is an allowable visit day in day-combination s. Hereafter,
we assume that Ci is the index set of those columns of matrix [aks] corresponding to
allowable day-combinations of customer i ∈ V .

Every day, each vehicle can perform at most one route. Each route starts and fin-
ishes at the depot and services a total customer demand smaller than or equal to the
vehicle capacity Q. The cost of a route on day k is given by the sum of the costs dk

i j
of the edges traversed by the route.

The PVRP has several practical applications in the grocery industry, the soft drink
industry, the automotive industry, industrial gases distribution and refuse collection,
and admits several variants in terms of the objectives and the specific constraints (see
Mourgaya and Vanderbeck 2006).

The PVRP contains as special cases the CVRP, the MDVRP, and the tactical plan-
ning vehicle routing problem (TPVRP). The PVRP corresponds to the CVRP when
the planning period is a single day (i.e., p = 1) and every customer must be visited
from the depot exactly once (i.e., fi = 1,∀i ∈ V).

Any MDVRP instance with p depots and mk vehicles located at depot k can be con-
verted into a PVRP instance defined on a p-day period, where each day corresponds
to a depot, the (0–1) matrix [aks] is the identity matrix of order (p × p), and each day
combination of Ci represents a depot that can service customer i .

The TPVRP is a problem with practical applications in different fields, such as
food and beverage distribution and maintenance of logistics activities in the field
force planning.

In the TPVRP, each customer i has frequency fi = 1 and requires to be visited
on any day k of a specified day-window [ei , li] of a short term horizon of p-days.
Visiting customer i on day k ∈ [ei , li] involves a service cost τi (k) that is proportional
to the number of days of delay with respect to the first day of his day-window. The
TPVRP requires to assign a visit day k ∈ [ei , li] to each customer i and to design
at most mk routes for each day of the period in order to visit each customer exactly
once while minimizing the sum of the routing costs and service costs. Any TPVRP
solution having all customers serviced on their first allowable day has service cost
equal to zero. However, this solution can be too expensive in terms of routing costs
or infeasible as it could require too many vehicles on some day of the period.

The TPVRP can be modeled as a PVRP as follows. Let [aks] be the (p × p) iden-
tity matrix. Associate with each customer the set of day-combinations Ci = {s : s ∈
[ei , li]} and define the edge cost matrix [dk

i j] as dk
i j = d̂i j + τi (k)/2 + τ j (k)/2,∀k ∈

123

An exact solution framework for a broad class VRPs 259

P,∀{i, j} ∈ E , where d̂i j is the travel cost associated with each edge {i, j} ∈ E (we
assume that τ0(k) = 0,∀k ∈ P).

All papers on the PVRP in the literature present heuristic methods. A recent survey
of the PVRP and its extensions, discussing modeling and heuristic methods, can be
found in the chapter of Francis et al. (2008). To our knowledge, no exact methods
have been proposed in the literature for both the PVRP and the TPVRP so far. The
paper recently proposed by Baldacci et al. (2009b) is the first one presenting lower
bounds and an exact method that can solve the PVRP and its variants. In this section,
we shortly describe the mathematical formulation, the lower bounds, and the exact
method proposed by Baldacci et al. (2009b) for the PVRP.

6.1 Mathematical formulation of the PVRP

In this section, we describe a SP-like formulation of the PVRP and three relaxations
used to derive valid lower bounds on the PVRP.

The customer set V can be partitioned as V = V 1 ∪ V 2, where V 1 contains the
customers having frequency equal to one (i.e., V 1 = {i ∈ V : fi = 1}), and V 2

contains the customers having frequency greater than or equal to two (i.e., V 2 = {i ∈
V : fi ≥ 2}). We denote by Vk ⊆ V the subset of customers that can be visited on
day k ∈ P (i.e., Vk = {i ∈ V : ∑

s∈Ci
aks ≥ 1}).

Let Rk be the index set of all routes of day k ∈ P visiting the customers in Vk

on day k, and let Rk
i ⊆ Rk be the index set of the route subset covering customer

i ∈ Vk . We use Rk
� and ck

� to indicate the subset of customers and the cost of route
� ∈ Rk on day k ∈ P , respectively. Let yis be a (0–1) binary variable equal to 1 if and
only if day-combination s ∈ Ci is assigned to customer i ∈ V 2. Define a (0–1) binary
variable xk

� that is equal to 1 if and only if route � ∈ Rk of day k ∈ P is in solution.
The PVRP is as follows:

(F) z(F) = min
∑

k∈P

∑

�∈Rk

ck
�xk

� (36)

s.t.
∑

k∈P

∑

�∈Rk
i

xk
� = fi , ∀i ∈ V, (37)

∑

�∈Rk
i

xk
� −

∑

s∈Ci

aks yis = 0, ∀i ∈ V 2,∀k ∈ P, (38)

∑

�∈Rk

xk
� ≤ mk, ∀k ∈ P, (39)

xk
� ∈ {0, 1}, ∀� ∈ Rk,∀k ∈ P, (40)

yis ∈ {0, 1}, ∀s ∈ Ci ,∀i ∈ V 2. (41)

Constraints (37) impose that each customer i is visited exactly fi times. In particu-
lar, as a consequence of the definition of customer subsets Vk and of the route sets
Rk, k ∈ P , every customer i ∈ V 1 is visited exactly once in one of its allowable days.

123

260 R. Baldacci et al.

Constraints (38) impose that every customer i ∈ V 2 is visited exactly fi times during
the fi days of the day-combination assigned to the customer. Constraints (39) force
the solution to contain at most mk routes on day k ∈ P . Finally, constraints (40) and
(41) are the integrality constraints for the decision variables xk

� and yis , respectively.
Notice that constraints (37) and (38) imply that one day combination s ∈ Ci is

assigned to each customer i ∈ V 2, that is
∑

s∈Ci
yis = 1,∀i ∈ V 2. In fact, sum-

ming all constraints (38) associated with a customer i ∈ V 2 over the p-days of the
period and considering that

∑
k∈P aks = fi ,∀s ∈ Ci , we obtain

∑
k∈P

∑
�∈Rk

i
xk
� =∑

s∈Ci
fi yis . From the latter expression and equations (37), we derive

∑
s∈Ci

fi yis =
fi , that is,

∑
s∈Ci

yis = 1.
Let L F be the LP-relaxation of problem F . We denote by z(L F) the optimal solu-

tion cost of L F . In the following sections, we describe three relaxations of problem
F used by five procedures for computing different lower bounds on the PVRP. These
procedures are based on the three bounding procedures H1, H2 and H3 described in
Sect. 2 for the CVRP.

6.2 Relaxation RF and procedures H1 and H2

Relaxation RF corresponds to an integer problem whose optimal cost z(RF) is a valid
lower bound on z(F). Problem RF can be described as follows.

Let us associate with each edge {i, j} ∈ E the cost di j = mink∈P {dk
i j }. Let I be a

(n × n) (0–1) matrix, where Ii j = 0 if and only if there exists at least one day k ∈ P
on which both i and j can be visited (i.e., i, j ∈ Vk , for some k ∈ P).

It is quite easy to observe that, by using the edge costs di j , the cost of the least
cost route in G visiting any subset of customers S is a lower bound on the cost ck

� of
any route � ∈ Rk, k ∈ P , such that Rk

� = S. Let R be the index set of all least cost
routes in G with respect to the modified edge costs di j and satisfying, in addition to
the capacity constraints, the constraint

∑
i∈R�

∑
j∈R�

Ii j = 0, ∀� ∈ R, where R� is

the subset of customers visited by route �. We denote by c� the cost of route � ∈ R and
by Ri ⊆ R the index subset of the routes visiting customer i ∈ V . Problem RF is to
select at most m = ∑

k∈P mk routes from R, where each route can be in a solution
more than once, and each customer i ∈ V is visited exactly fi times.

Let x� be a non-negative integer variable representing the number of times that
route � ∈ R is in the solution. Problem RF is the following.

(RF) z(RF) = min
∑

�∈R

c�x� (42)

s.t.
∑

�∈Ri

x� = fi , ∀i ∈ V, (43)

∑

�∈R

x� ≤ m, (44)

x� ≥ 0 integer , ∀� ∈ R. (45)

123

An exact solution framework for a broad class VRPs 261

z(RF) provides a valid lower bound on the PVRP as any route � ∈ Rk , for some
k ∈ P , corresponds to a route �′ ∈ R of cost c�′ ≤ ck

� . Thus, any solution (x′, y′)
of problem F of cost z′(F) can be transformed into a feasible RF solution x of cost
z̄(RF) ≤ z′(F).

We denote by DRF the dual of RF and by w = (w0, w1, . . . , wn) the vector of
n + 1 variables, where variable w0 is associated with constraint (44) and variables wi ,
∀i ∈ V , are associated with constraints (43).

Notice that problem DRF differs from the dual DF of the SP formulation of the
CVRP described in Sect. 2 only for the coefficients of the dual variables in the objec-
tive function. Thus, the procedures H1 and H2 described in Sect. 2.3 can be used in
sequence to find two near-optimal DRF solutions w1 and w2 of cost L B1 and L B2,
respectively.

6.3 Relaxation L F and procedures H F1 and H F2

A second relaxation of the PVRP is based on the dual problem of L F , called DF .
Associate dual variables vi , i ∈ V , with constraints (37), uik, i ∈ V 2, k ∈ P , with
constraints (38), and σk, k ∈ P , with constraints (39). Let Bk

� = Rk
� ∩V 2 be the subset

of customers visited by route � ∈ Rk having frequency greater than one.
The following theorem, that is a generalization of Theorem 1 described in Sect. 2,

provides a method for computing a near-optimal DF solution without generating all
route sets Rk, k ∈ P .

Theorem 3 Associate penalties μi ∈ R with each customer i ∈ V , penalties λik ∈ R

with each customer i ∈ V 2 and day k ∈ P, and penalties γk with each day k ∈ P.
For each route � ∈ Rk, k ∈ P, define μ(Rk

�) = ∑
i∈Rk

�
μi , λ(Rk

�) = ∑
i∈Bk

�
λik and

q(Rk
�) = ∑

i∈Rk
�

qi . Compute

bik = qi min
�∈Rk

i

{(ck
� − μ(Rk

�) − λ(Rk
�) − γk)/q(Rk

�)} + μi + λik, ∀i ∈ V, ∀k ∈ P.

(46)

A feasible solution (u, v, σ) of cost z(DF(λ,μ, γ)) of problem DF can be obtained
as follows:

vi = mink∈P {bik}, ∀i ∈ V 1, (a)

vi = 1
fi

mins∈Ci

{∑
k∈P aksbik

}
, ∀i ∈ V 2, (b)

uik = bik − vi , ∀i ∈ V 2, ∀k ∈ P, (c)
σk = γk, ∀k ∈ P. (d)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(47)

Problem DF is solved using two bounding procedures, called H F1 and H F2, that
are extensions of procedures H1 and H2 described in Sect. 2 for the CVRP. H F1 and
H F2 use procedure CG (see Sect. 2) for computing expressions (46) and (47).

123

262 R. Baldacci et al.

6.4 Relaxation L F and bounding procedure H3

A better relaxation than L F , called L F , is obtained by adding to L F the following
extensions of two well-known valid inequalities designed for the CVRP.

(a) Generalized Capacity Constraints. Let P ⊆ P , and let q̂i =qi mins∈Ci {∑k∈P aks}
be a lower bound on the total demand delivered to customer i ∈ V during days
in P . Any feasible F solution must satisfy the following inequalities:

∑

k∈P

∑

�∈Rk (S)

xk
� ≥

⌈
∑

i∈S

q̂i/Q

⌉
, ∀S ∈ S , (48)

where Rk(S) = {� ∈ Rk : Rk
� ∩ S �= ∅}.

(b) Clique Inequalities. Let H = (R,E) be the conflict graph associated with the
routes of sets Rk,∀k ∈ P . Node i of graph H represents route �(i) of day k(i).
The edge set E contains every pair {i, j}, i < j , such that the set of conflicting
customers S = Rk(i)

�(i) ∩ Rk(j)
�(j) �= ∅ and one of the following two conditions is

satisfied: (a) k(i) = k(j); (b) k(i) �= k(j) or at least one conflicting customer
either has frequency equal to one or cannot be serviced on both days k(i) and
k(j) according to the customer day combinations (i.e., either minh∈S{ fh} = 1
or ak(i)s + ak(j)s ≤ 1,∀s ∈ Ch , for some h ∈ S). Then, any feasible F solution
must satisfy the following inequalities:

∑

i∈C

xk(i)
�(i) ≤ 1, ∀C ∈ C , (49)

where C is the set of all cliques of graph H .

L F is solved using a column-and-cut generation method, called H3, that is based on
the simplex algorithm. The initial master problem of H3 is generated using the best
dual solution computed by H1, H2, HF1 and HF2.

We denote by L B3 the optimal solution cost of L F achieved by H3.

6.5 An exact algorithm for solving the PVRP

The exact algorithm for the PVRP is based on the exact method described in Sect. 2.
It generates the reduced problem F̂ obtained from F by replacing each Rk with the
subset R̂k containing all routes of reduced cost smaller than z(UB) − LB3, with
respect to the final dual solution of H3, and adding the subsets of generalized capacity
and clique inequalities generated by H3. Then, problem F̂ is solved using an integer
programming solver.

A valid lower bound on the PVRP can be obtained by executing in sequence proce-
dures H1, H2, HF1, HF2 and H3, where each procedure starts from the dual solution
found by the previous one. However, this method can be time consuming and can be
improved without affecting the quality of the final lower bound LB3 by removing

123

An exact solution framework for a broad class VRPs 263

from the sequence either H1 and H2 or HF1 and HF2, according to the type of PVRP
instance considered.

In our computational experience, we observed that L B2 is almost equal to L B F2
for PVRP instances having the following characteristics: (a) the edge costs of graph
G do not depend on the day of the period; and (b) the customer frequencies and the
day-combinations are such that every customer can be serviced on any day of the
period. For these type of instances it is worth executing the sequence H1, H2 and
H3, where the initial master of H3 is generated using the dual solution of cost L B2
produced by H2.

On the other hand, we observed that for any PVRP instances not satisfying at least
one of the two conditions (a) and (b) both LBF1 and LBF2 are better than LB1 and
LB2, respectively. In particular, whenever condition (a) is not satisfied, then LBF2
is significantly greater than LB2. In these cases, it is computationally convenient to
execute in sequence HF1, HF2 and H3. Notice that conditions (a) and (b) are satis-
fied by all PVRP instances proposed in the literature, but they are not satisfied by the
PVRP instances corresponding to the MDVRP and the TPVRP.

6.6 Computational results for the PVRP

The exact algorithm of Baldacci et al. (2009b) was coded in Fortran 77, compiled
with the Intel Visual Fortran 10.1 compiler and linked with the C source codes of the
packages CVRPSEP (see Lysgaard 2003) and CLIQUER (see Niskanen and Östergård
2003). CPLEX 11.0 was used as the LP solver in procedure H3 and as the integer
programming solver in the exact method. All the experiments were run on a Fujitsu
Siemens Primergy TX200S3 running an Intel Xeon E5310 processor at 1.6 GHz with
8 Gb of RAM. The algorithm was tested on two sets of instances.

(a) 28 PVRP instances from the literature that are publicly available at http://
neumann.hec.ca/chairedistributique/data/pvrp/. These instances were proposed
by Christofides and Beasley (1984), Russel and Igo (1979), Russel and Gribbin
(1991) and Chao et al. (1995).

(b) 20 TPVRP instances introduced by Baldacci et al. (2009b). These instances were
derived from five CVRP instances, namely E-n51-k5, E-n76-k10, E-n101-k8, M-
n121-k7, M-n151-k12 and M-n200-k16 and are available at http://branchandcut.
org/VRP/data. In these instances, each customer i has frequency fi = 1, p = 5,
and day windows have width of at most 3 days. A service cost is imposed for
visiting a customer at a later day than the first one in its day-window.

Table 10 reports computational results over those PVRP instances from the literature
that could be solved to optimality or for which the best known upper bound was im-
proved by the exact method of Baldacci et al. (2009b). The first three columns report the
name of the instance, the number of customers involved, and the number of days of the
planning period, respectively. Column z∗ reports the value of the optimal solution or
the value of the best known upper bound. In this column, “a” indicates that the solution
found by the exact algorithm could not be proved to be optimal, and values in bold indi-
cate that the solution found improves the previously best known upper bound. Columns
%L B1, %L B2 and %L B3 report the percentage ratio 100.0L Bx/z∗ of lower bounds

123

http://neumann.hec.ca/chairedistributique/data/pvrp/
http://neumann.hec.ca/chairedistributique/data/pvrp/
http://branchandcut.org/VRP/data
http://branchandcut.org/VRP/data

264 R. Baldacci et al.

Table 10 Summary results for the PVRP

Name |V | p z∗ Bounding procedure Exact method

%LB1 %LB2 %LB3 tB P |R̂| tT OT

p01 52 2 524.61 98.5 99.3 100.0 4.4 0 4.4

p03 51 5 524.61 98.5 99.3 100.0 4.7 0 4.7

p04 76 2 835.26 97.6 97.8 99.5 81.3 19,399 335.6

p06 76 10 835.26 97.6 97.8 99.5 81.2 27,644 670.3

p14 21 4 954.81 89.3 100.0 100.0 0.7 0 0.7

p15 39 4 1,862.63 95.2 100.0 100.0 3.5 0 3.5

p16 57 4 2,875.24 97.1 100.0 100.0 6.8 0 6.8

p17 41 4 1,597.75 92.3 99.8 100.0 2.6 0 2.6

p21 61 4 2,170.61 92.5 99.6 99.9 145.1 27,005 163.5

p24 52 6 3,687.46 86.0 99.8 99.8 2.3 5,628 61.6

p25 52 6 3,777.15 88.3 99.4 99.4 4.2 18,390 223.2

p26 52 6 3,795.32 90.6 99.9 99.9 1.9 1,500 3.8

p27 103 6 21,912.85a 77.5 99.4 99.4 81.5 300,000 tl

p28 103 6 22,242.51 80.0 99.8 99.8 12.5 141,246 13,866.8

p29 103 6 22,543.76 85.9 99.9 99.9 8.2 7,680 6,458.8

p31 154 6 76,322.04a 78.1 99.3 99.3 186.8 300,000 tl

90.3 99.5 99.8 39.2

L B1, L B2 and L B3, respectively. Column tB P reports the total computing time in
seconds used by procedures H1, H2 and H3. Finally, columns |R̂| and tT OT report the
total number of routes in the final route subsets and the total computing time, respec-
tively.

A time limit of 14,400 s was imposed on CPLEX for solving the reduced problem F̂ .
An entry “tl” under column tT OT indicates that the algorithm terminated prematurely
as CPLEX reached the imposed time limit.

Table 11 reports the results obtained on the new TPVRP instances. In this table,
columns |V |, Q and m report for each problem the number of customers, the vehicle
capacity, and the number of vehicles available daily. Columns %LBF1, %LBF2 and
%LB3 report the percentage ratio of lower bounds LBF1, LBF2 and LB3. Column tBP

reports the total computing time of procedures HF1, HF2 and H3. Columns z∗, |R̂|
and tT OT have the same meaning as in Table 10 except that a time limit of 7,200 s was
imposed on CPLEX for these instances. For the TPVRP instances in this table, the
upper bounds were obtained by Baldacci et al. (2009b) using a tabu search heuristic.
Values in bold in column z∗ indicate that the solution found by the exact algorithm
improves this upper bound.

Table 10 shows that the exact method of Baldacci et al. (2009b) was able to opti-
mally solve for the first time 14 out of the 28 PVRP instances from the literature and to
improve the best known upper bound of 5 instances. On these instances, the final lower
bound computed is close to optimality and required on average 40 s of computing time.

123

An exact solution framework for a broad class VRPs 265

Table 11 Summary results for the TPVRP

Name |V | Q m z∗ Bounding procedure Exact method

%LBF1 %LBF2 %LB3 tB P |R̂| tT OT

E-n51-k5 51 80 4 988.98 95.4 99.8 100.0 6.7 0 6.7

E-n76-k10 76 80 6 1,574.10 93.0 99.5 100.0 8.4 0 8.4

E-n101-k8 101 80 5 1,791.78 89.5 98.5 99.5 34.4 20,752 58.0

M-n151-k12 151 80 7 2,648.73 86.3 98.7 99.4 78.3 73,913 1,211.9

M-n200-k16 200 80 9 3,507.50a 83.4 98.6 99.2 82.0 300,000 tl

E-n51-k5 51 100 3 937.96 91.5 99.4 100.0 7.9 0 7.9

E-n76-k10 76 100 5 1,418.71 92.6 98.9 99.8 14.7 11,384 15.4

E-n101-k8 101 100 5 1,517.89 93.8 98.9 99.6 34.4 20,996 54.8

M-n151-k12 151 100 6 2,246.07a 89.6 98.4 99.1 85.5 300,000 tl

M-n200-k16 200 100 8 2,877.23a 87.6 97.3 97.9 96.9 300,000 tl

E-n51-k5 51 140 3 869.24 86.7 97.0 99.7 498.5 16,744 639.3

E-n76-k10 76 140 4 1,203.91 93.9 98.9 99.5 25.5 14,541 27.5

E-n101-k8 101 140 4 1,330.74 91.9 98.9 99.8 619.3 20,892 956.1

M-n151-k12 151 140 5 1,867.06a 91.4 97.4 98.1 252.8 300,000 tl

M-n200-k16 200 140 6 2,317.54a 90.3 98.6 98.8 804.7 300,000 tl

E-n51-k5 51 160 3 839.05 86.0 96.9 99.6 624.2 17,003 1,012.1

E-n76-k10 76 160 4 1,151.66 93.6 99.1 100.0 33.3 0 33.3

E-n101-k8 101 160 3 1,292.41 90.3 98.3 98.9 1,120.9 267,839 10,666.0

M-n151-k12 151 160 4 1,772.27a 91.2 97.9 98.2 929.2 300,000 tl

M-n200-k16 200 160 5 2,241.47a 87.4 96.3 96.9 730.3 300,000 tl

90.3 98.4 99.2 304.4

Table 11 shows that the lower bound achieved on the TPVRP is on average within
one percent of the optimal solution. The exact method was able to solve to optimality
13 out of the 20 TPVRP instances considered and all the TPVRP instances involving
up to 100 customers.

7 Conclusions

In this paper, we presented an exact solution framework for solving some variants of
the VRP that can be modeled as SP problems with additional constraints.

We described how the framework has been used to derive exact algorithms for the
CVRP, the VRPTW, the PDPTW, all types of HVRP including the MDVRP, and the
PVRP.

For each VRP variant, we reported a computational comparison of the results
obtained with the best methods presented in the literature. The computational results
show that the exact algorithm derived for each of these VRP variants outperforms all
other exact methods published so far and can solve several test instances that were
previously unsolved.

123

266 R. Baldacci et al.

Acknowledgments The authors thank two anonymous referees for helpful comments.

References

Augerat P (1995) Approche polyédrale du problème de tournées de véhicules. PhD thesis, Institut National
Polytechnique de Grenoble

Augerat P, Belenguer JM, Benavent E, Corberán A, Naddef D, Rinaldi G (1995) Computational results
with a branch and cut code for the capacitated vehicle routing problem. Technical Report 1 RR949-M,
ARTEMIS-IMAG, Grenoble, France

Baldacci R, Mingozzi A (2009) A unified exact method for solving different classes of vehicle routing
problems. Math Program Ser A 120(2):347–380

Baldacci R, Hadjiconstantinou EA, Mingozzi A (2004a) An exact algorithm for the capacitated vehicle
routing problem based on a two-commodity network flow formulation. Oper Res 52:723–738

Baldacci R, Maniezzo V, Mingozzi A (2004b) An exact method for the car pooling problem based on
lagrangean column generation. Oper Res 52:422–439

Baldacci R, Bodin LD, Mingozzi A (2006) The multiple disposal facilities and multiple inventory locations
rollon-rolloff vehicle routing problem. Comput Oper Res 33:2667–2702

Baldacci R, Toth P, Vigo D (2007) Recent advances in vehicle routing exact algorithms. 4OR: Q J Oper
Res 5(4):269–298

Baldacci R, Battarra M, Vigo D (2008a) Routing a heterogeneous fleet of vehicles. In: Golden BL,
Raghavan S, Wasil E (eds) The vehicle routing problem: latest advances and new challenges, vol
43. Springer, Berlin

Baldacci R, Christofides N, Mingozzi A (2008b) An exact algorithm for the vehicle routing problem based
on the set partitioning formulation with additional cuts. Math Program Ser A 115(2):351–385

Baldacci R, Bartolini E, Mingozzi A (2009a) An exact algorithm for the pickup and delivery problem with
time windows (submitted)

Baldacci R, Bartolini E, Mingozzi A, Valletta A (2009b) An exact algorithm for the period routing problem
(submitted)

Baldacci R, Mingozzi A, Roberti R (2009c) Solving the vehicle routing problem with time windows using
new state space relaxation and pricing strategies (submitted)

Baldacci R, Mingozzi A, Roberti R (2009d) New benchmarks results for the capacitated vehicle routing
problem. Working paper

Boschetti MA, Mingozzi A, Ricciardelli S (2004) An exact algorithm for the simplyfied multi depot crew
scheduling problem. Ann Oper Res 127:177–201

Braysy O, Gendreau M (2005a) Vehicle routing problem with time windows, part II: metaheuristics. Transp
Sci 39(1):119–139

Braysy O, Gendreau M (2005b) Vehicle routing problem with time windows, part I: route construction and
local search algorithms. Transp Sci 39(1):104–118

Chao IM, Golden BL, Wasil E (1995) An improved heuristic for the period vehicle-routing problem.
Networks 26(1):25–44

Choi E, Tcha DW (2007) A column generation approach to the heterogeneous fleet vehicle routing problem.
Comput Oper Res 34:2080–2095

Christofides N, Beasley JE (1984) The period routing problem. Networks 14:237–256
Christofides N, Eilon S (1969) An algorithm for the vehicle dispatching problem. Oper Res Q 20:309–318
Christofides N, Mingozzi A (1989) Vehicle routing: practical and algorithmic aspects. In: van Rijn CFH

(ed) Logistics: where ends have to meet. Pergamon Press, New York pp 30–48
Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. In: Christofides N, Mingozzi A,

Toth P, Sandi C (eds) Combinatorial optimization. Wiley, Chichester pp 315–338
Christofides N, Mingozzi A, Toth P (1981a) Exact algorithms for the vehicle routing problem based on

spanning tree and shortest path relaxation. Math Program 10:255–280
Christofides N, Mingozzi A, Toth P (1981b) State-space relaxation procedures for the computation of

bounds to routing problems. Networks 11:145–164
Christofides N, Mingozzi A, Toth P (1981c) Exact algorithms for the vehicle routing problem based on

spanning tree and shortest path relaxations. Math Program 20(20):255–282

123

An exact solution framework for a broad class VRPs 267

Cordeau J-F, Laporte G, Savelsbergh MWP, Vigo D (2007) Vehicle routing. In: Barnhart C, Laporte G
(eds) Transportation, handbooks in operations research and management science, vol 14. Elsevier,
Amsterdam, pp 367–428

Cordeau J-F, Laporte G, Ropke S (2008) Recent models and algorithms for one-to-one pickup and delivery
problems. In: Golden B, Raghavan S, Wasil E (eds) The vehicle routing problem: latest advances and
new challenges, vol 43. Springer, Berlin, pp 327–357

Crevier B, Cordeau JF, Laporte G (2007) The multi-depot vehicle routing problem with inter-depot routes.
Eur J Oper Res 176:756–773

Desaulniers G, Lessard F, Hadjar A (2008) Tabu search, partial elementarity, and generalized k-path inequal-
ities for the vehicle routing problem with time windows. Transp Sci 42(3):387–404

Desrochers M, Desrosiers J, Solomon M (1992) A new optimization algorithm for the vehicle-routing
problem with time windows. Oper Res 40(2):342–354

Dumas Y, Desrosiers J, Soumis F (1991) The pickup and delivery problem with time windows. Eur J Oper
Res 54(1):7–22

Francis PM, Smilowitz KR, Tzur M (2008) The period vehicle routing problem and its extensions. In:
Golden BL, Raghavan S, Wasil E (eds) The vehicle routing problem: latest advances and new
challenges, vol 43. Springer, Berlin

Fukasawa R, Longo H, Lysgaard J, Poggide Aragão M, Reis M, Uchoa E, Werneck RF (eds) (2006) Robust
branch-and-cut-and-price for the capacitated vehicle routing problem. Math Program Ser A 106:
491–511

Gendreau M, Laporte G, Potvin J-Y (2002) Metaheuristics for the capacitated VRP. In: Toth P, Vigo D (eds)
The vehicle routing problemm, vol 9. SIAM Monographs on Discrete Mathematics and Applications,
Philadelphia pp 129–154

Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset-row inequalities applied to the vehicle-
routing problem with time windows. Oper Res 56(2):497–511

Laporte G, Semet F (2002) Classical heuristics for the capacitated VRP. In: Toth P, Vigo D (eds) The vehicle
routing problem, vol 9. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia
pp 109–128

Laporte G, Nobert Y, Arpin D (1984) Optimal solutions to capacitated multi depot vehicle routing problems.
Congressus Numerantium 44:283–292

Laporte G, Nobert Y, Taillefer S (1988) Solving a family of multi-depot vehicle routing and location-routing
problems. Transp Sci 22:161–172

Li H, Lim A (2001) A metaheuristic for the pickup and delivery problem with time windows. In: 13th IEEE
international conference on tools with artificial intelligence, ICTAI-2001, Dallas, USA

Lu Q, Dessouky M (2004) An exact algorithm for the multiple vehicle pickup and delivery problem. Transp
Sci 38(4):503–514

Lysgaard J (2003) CVRPSEP: a package of separation routines for the capacitated vehicle routing problem.
Technical report, Dept. of Mgt. Science and Logistics, Aarhus School of Business

Lysgaard J, Letchford AN, Eglese RW (2004) A new branch-and-cut algorithm for the capacitated vehicle
routing problem. Math Program Ser A 100:423–445

Mingozzi A, Christofides N, Hadjiconstantinou EA (1994) An exact algorithm for the vehicle routing
problem based on the set partitioning formulation. Technical report, University of Bologna

Mingozzi A, Giorgi S, Baldacci R (1999) An exact method for the vehicle routing problem with backhauls.
Transp Sci 33(3):315–329

Mourgaya M, Vanderbeck F (2006) The periodic vehicle routing problem: classification and heuristic.
Rairo-Oper Res 40(2):169–194

Niskanen S, Östergård PRJ (2003) Cliquer user’s guide. Technical Report 48, Helsinki University of Tech-
nology Communications Laboratory

Parragh SN, Doerner KF, Hartl RF (2008) A survey on pickup and delivery problems part II: transportation
between pickup and delivery locations. J Betriebswirtschaft 51:81–117

Pessoa A, Poggi de Aragão M, Uchoa E (2007) A robust branch-cut-and-price algorithm for the hetero-
geneous fleet vehicle routing problem. Lecture notes in computer science, vol 4525. Springer, Berlin
150–160

Ropke S, Cordeau J-F (2009) Branch-and-cut-and-price for the pickup and delivery problem with time
windows. Transp Sci (Forthcoming)

Ropke S, Cordeau JF, Laporte G (2007) Models and branch-and-cut algorithms for pickup and delivery
problems with time windows. Networks 49(4):258–272

Russel RA, Gribbin D (1991) A multiphase approach to the period routing problem. Networks 21:747–765

123

268 R. Baldacci et al.

Russel RA, Igo W (1979) An assignment routing problem. Networks 9:1–17
Savelsbergh MWP, Sol M (1998) Drive: dynamic routing of independent vehicles. Oper Res 46(4):474–490
Solomon M (1987) Algorithms for the vehicle routing and scheduling problems with the time window

constraints. Oper Res 35:254–265
Toth P, Vigo D (eds) (2002) The vehicle routing problem. Monographs on discrete mathematics and appli-

cations. SIAM, Philadelphia

123

	An exact solution framework for a broad class of vehicle routing problems
	Abstract
	1 Introduction
	2 The capacitated vehicle routing problem
	2.1 SP model of the CVRP with additional cuts
	2.2 An exact method for the CVRP
	2.3 Bounding procedures H1, H2 and H3
	2.3.1 Algorithm CG
	2.3.2 Procedure H1
	2.3.3 Procedure H2
	2.3.4 Procedure H3

	2.4 Route generation algorithm genroute
	2.5 Computational results for the CVRP

	3 The vehicle routing problem with time windows
	3.1 Procedure H1 based on ng-route relaxation
	3.2 Procedure H2
	3.3 Procedure H3
	3.3.1 Pricing scheme of H3
	3.3.2 Genroute and pricing by different dual solutions

	3.4 Computational results for the VRPTW

	4 The pickup and delivery problem with time windows
	4.1 Solving the PDPTW-o1
	4.1.1 BCP algorithm for PDPTW-o1

	4.2 Solving the PDPTW-o2
	4.3 Procedure GENR
	4.4 Bounding functions f(t,i) and g(t,i)
	4.5 Bounding functions f(D"0365D,t,i)
	4.6 Computational results for the PDPTW

	5 The heterogenous vehicle routing problem
	5.1 Mathematical formulation of the HVRP
	5.2 Relaxation LF and procedures H1 and H2
	5.3 Relaxation RP and bounding procedures DP1 and DP2
	5.3.1 Relaxation LF and procedure H3
	5.3.2 An exact method for solving the HVRP

	5.4 Computational results for the HVRP

	6 The period vehicle routing problem
	6.1 Mathematical formulation of the PVRP
	6.2 Relaxation RF and procedures H1 and H2
	6.3 Relaxation LF and procedures HF1 and HF2
	6.4 Relaxation LF and bounding procedure H3
	6.5 An exact algorithm for solving the PVRP
	6.6 Computational results for the PVRP

	7 Conclusions
	Acknowledgments
	References

