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Abstract—This work deals with an exact solution of cylindrical wave
equation for electromagnetic field in fractional dimensional space. The
obtained fractional solution is a generalization of the cylindrical wave
equation from integer dimensional space to a fractional dimensional
space. The resulting theoretical framework can be used to study the
phenomenon of electromagnetic wave propagation in any fractal media
because fractal media can be described as an ordinary media in a
fractional dimensional space. The classical results are recovered from
fractional solution when integer dimensional space is considered.

1. INTRODUCTION

In the last few decades there has been considerable interest in the
study of physical description of confinement in low dimensional systems
assuming a fractional dimension of the space [1–6]. A method to
replace the real confining structures with an effective space, where the
measure of anisotropy or confinement is given by non-integer dimension
D, was proposed in [2, 3]. Fractal structures have been studied within
the fractional-dimensional space approach in [7]. The slight deviation
of the value of dimension of our terrestrial locale from three has also
been considered by several authors [1, 8, 9].
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Axiomatic basis for the concept of fractional space for 2-spatial
coordinate space is proposed in [1] and this work was extended to n-
orthogonal coordinate space in [6]. Fractional calculus [10], which is a
branch of mathematics that deal with generalization of differentiations
and integrations to arbitrary non integer order is used by several
authors to describe many electromagnetic problems as well as fractional
dimensional space [11–21].

A formulation of Schrödinger wave mechanics in D-dimensional
fractional space is provided in [1]. Applications of the concept of
fractional space in electromagnetic research include description of
fractional multipoles in fractional space [3], study of electromagnetic
field in fractional space by solving Poisson’s equation in D-dimensional
space with 2 < D ≤ 3 [4], study of electromagnetic fields on fractals [5]
and a discussion on scattering of electromagnetic fields in fractal
media [22]. A novel generalization of differential electromagnetic
equations in fractional space have been presented recently in [15]. The
radiations from fractal geometries have also been discussed by different
authors recently [27–33].

The study of wave propagation and scattering in fractal structures
is important in practical applications such as communications, remote
sensing and navigation [22]. The phenomenon of wave propagation in
fractal structures can be described by replacing these confining fractal
structures with a D-dimensional fractional space. Thus, given this
simple value of D, the real system can be modeled in a simple analytical
way.

For these reasons a new solution of the wave equation in D-
dimensional factional space is important. General plane wave solutions
of the vector wave equation in fractional space have been presented
in [14]. But the problems that exhibit cylindrical geometries are
needed to be solved using cylindrical coordinate system. In this
work, we present an exact solution of cylindrical wave equation in
fractional space that can be used to describe the phenomenon of wave
propagation in any fractal media.

In Section 2, we investigate full analytical cylindrical wave solution
to the wave equation in D-dimensional fractional space, where the
parameter D is used to describe the measure distribution of space. In
Section 3, the solution of wave equation in integer-dimensional space
is justified from the results of previous section. Finally, in Section 4,
conclusions are drawn.
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2. EXACT SOLUTION OF CYLINDRICAL WAVE
EQUATION IN FRACTIONAL SPACE

The problems that exhibit cylindrical geometries are needed to be
solved using cylindrical coordinate system. As for the case of rectangu-
lar geometries, the electric and magnetic fields of cylindrical geometry
boundary-value problem must satisfy corresponding cylindrical wave
equation [23]. Let us assume that the space in which fields must be
solved is fractional dimensional and source-free. For source-free and
lossless media, the vector wave equations for the complex electric and
magnetic field intensities are given by the Helmholtz equation as fol-
lows [23].

∇2E + β2E = 0 (1)
∇2H + β2H = 0 (2)

where, β2 = ω2µε. Time dependency ejwt has been suppressed
throughout the discussion. Here, ∇2 is the Laplacian operator in D-
dimensional fractional space and is defined in rectangular coordinate
system as follows [6].

∇2 =
∂2

∂x2
+

α1 − 1
x

∂

∂x
+

∂2

∂y2
+

α2 − 1
y

∂
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α3 − 1
z

∂

∂z
(3)

where x, y and z are rectangular coordinates. Equation (3) uses
three parameters (0 < α1 ≤ 1, 0 < α2 ≤ 1 and 0 < α3 ≤ 1) to
describe the measure distribution of space where each one is acting
independently on a single coordinate and the total dimension of the
system is D = α1 + α2 + α3. To find cylindrical wave solutions of
wave equation in D-dimensional fractional space, it is likely that a
cylindrical coordinate system (ρ, φ, z) will be used. In cylindrical
coordinate system (3) becomes

∇2 =
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+

1
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∂

∂ρ

+
1
ρ2

(
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α3 − 1
z

∂

∂z
(4)

Once the solution to any one of Equations (1) and (2) in fractional
space is known, the solution to the other can be written by an
interchange of E with H or H with E due to duality [23]. We will
examine the solution for E.
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In cylindrical coordinates, a general solution for E can be written
as

E(ρ, φ, z) = âρEρ(ρ, φ, z) + âφEφ(ρ, φ, z) + âzEz(ρ, φ, z) (5)

Substituting (5) into (1) we can write that

∇2(âρEρ + âφEφ + âzEz) + β2(âρEρ + âφEφ + âzEz) = 0 (6)
Since,

∇2(âρEρ) 6= âρ∇2Eρ (7)

∇2(âφEφ) 6= âφ∇2Eφ (8)

∇2(âzEz) = âz∇2Ez (9)
So, Equation (6) cannot be reduced to simple scalar wave equations,
but it can be reduced to coupled scalar partial differential equations.
However for simplicity, the wave mode solution can be formed in
cylindrical coordinates that must satisfy the following scalar wave
equation:

∇2ψ(ρ, φ, z) + β2ψ(ρ, φ, z) = 0 (10)
where, ψ(ρ, φ, z) is a scalar function that can represent a field or vector
potential component. In expanded form (10) can be written as

∂2ψ

∂ρ2
+

1
ρ
(α1 + α2 − 1)

∂ψ

∂ρ

+
1
ρ2

(
∂ψ2

∂φ2
− {(α1 − 1) tanφ + (α2 − 1) cotφ}∂ψ

∂φ

)

+
∂2ψ

∂z2
+

α3 − 1
z

∂ψ

∂z
+ β2ψ = 0 (11)

Equation (11) is separable using method of separation of variables. We
consider

ψ(ρ, φ, z) = f(ρ)g(φ)h(z) (12)
the resulting ordinary differential equations are obtained as follows:[

ρ2 d2

dρ2
+ ρ(α1 + α2 − 1)

d

dρ
+ (βρρ)2 −m2

]
f(ρ) = 0 (13)

[
d2

dφ2
+ {(α1 − 1) tanφ + (α2 − 1) cotφ} d

dφ
−m2

]
g(φ) = 0 (14)

[
d2

dz2
+

α3 − 1
z

d

dz
+ β2

z

]
h(z) = 0 (15)

where, m is a constant (integer usually). In addition,

β2
ρ + β2

z = β2 (16)
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Equation (16) is referred to as constraint equation. In addition βρ, βz

are known as wave constants in the ρ, z directions, respectively, which
will be determined using boundary conditions.

Now, Equations (13) through (15) are needed to be solved for
f(ρ), g(φ) and h(z), respectively. We choose to work first with f(ρ).
Equation (13) can be written as:

[
ρ2 d2

dρ2
+ aρ

d

dρ
+ (bρ` + c)

]
f(ρ) = 0 (17)

where, a = α1 + α2 − 1, b = β2
ρ , c = −m2, ` = 2. Equation (15) is

closely related to Bessel’s equation and its solutions is given as [24]:

f(ρ) = ρ
1−a
2

[
C1Jv

(
2
`

√
bρ

`
2

)
+ C2Yv

(
2
`

√
bρ

`
2

)]
(18)

where, v = 1
`

√
(1− a)2 − 4c.

Using (18), the final solution of (13) is given by

f1(ρ) = ρ1−α1+α2
2 [C1Jv(βρρ) + C2Yv(βρρ)] (19)

or

f2(ρ) = ρ1−α1+α2
2

[
D1H

(1)
v (βρρ) + D2H

(2)
v (βρρ)

]
(20)

where, v = 1
2

√
(2− α1 − α2)2 + 4m2. In (19) Jv(βρρ) is referred to as

Bessel function of the first kind of order v and Yv(βr) as the Bessel
function of the second kind of order v. They are used to represent
standing waves. In (20) H

(1)
v (βr) is referred to as Hankel function of

the first kind of order v and H
(2)
v (βρρ) as the Hankel function of the

second kind of order v, and are used to represent traveling waves.
Now, we find the solution of Equation (14) for g(φ). Equation (14)

can be reduced to following Gaussian hypergeometric equation after
proper mathematical steps under substitution ξ = sin2(φ) [24]:

ξ(1− ξ)
d2g(φ)

dξ2
+ {(A + B + 1)ξ − C}dg(φ)

dξ
+ ABg(φ) = 0 (21)

where,

A + B + 1 =
1
2
(2− α2 + α1) (22)

AB = −m2

4
(23)

C =
1
2
(2− α2) (24)
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solution to Equation (21) is given as [24]:

g(φ) = C3F (A,B, C; ξ)+C4ξ
1−CF (A−C+1, B−C+1, 2−C; ξ) (25)

where,

F (A,B, C; ξ) = 1 +
∞∑

k=1

(A)k(B)k

(C)k

ξk

k!
(26)

with,
(A)k = A(A + 1) . . . (A + k + 1) (27)

F (A, B,C; ξ) is known as Gaussian hypergeometric function, and A,
B, C are known from (22) through (24).

Now, we find the solution of Equation (15) for h(z). Equation (15)
can be written as: [

z
d2

dz2
+ e

d

dz
+ β2

zz

]
h(z) = 0 (28)

where, e = α3 − 1. Equation (28) is reducible to Bessel’s equation
under substitution h = znζ as follows:[

z2 d2

dz2
+ z

d

dz
+ (β2

zz2 − n2)
]

ζ(z) = 0, n =
|1− e|

2
(29)

The solution of Bessel’s equation in (29) is given as [24]

ζ(z) = C5Jn(βzz) + C6Yn(βzz) (30)

where, Jn(βzz) is referred to as Bessel function of the first kind of order
n, Yn(βzz) as the Bessel function of the second kind of order n. Finally
the solution of (15) becomes

h(z) = zn [C5Jn(βzz) + C6Yn(βzz)] , n = 1− α3

2
(31)

The appropriate solution forms of f(ρ), g(φ) and h(z) depend
upon the problem. From (12), (19), (25) and (31), a typical solution
for ψ(r, θ, φ) to represent the fields within a cylindrical geometry may
take the form

ψ(ρ, φ, z) =
[
ρ1−α1+α2

2 {C1Jv(βρρ) + C2Yv(βρρ)}
]
× [{C3F (A, B,C; ξ)

+C4ξ
1−CF (A− C + 1, B − C + 1, 2− C; ξ)}]

× [zn{C5Jn(βzz) + C6Yn(βzz)}] (32)

where, ξ = sin2(φ) and C1 through C6 are constant coefficients.
Equation (32) provides a general solution to cylindrical wave equation
in fractional space. This solution can be used to study the phenomenon
of electromagnetic wave propagation in any non-integer dimensional
space.
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3. DISCUSSION ON CYLINDRICAL WAVE SOLUTION
IN FRACTIONAL SPACE

Equation (32) is the generalization of the concept of wave propagation
from integer dimensional space to the non-integer dimensional space.
As a special case, for three-dimensional space, this problem reduces
to classical wave propagation concept; i.e., as a special case, if we
set α1 = α2 = α3 = 1 in Equations (19), (25) and (31), we get
cylindrical wave solution in integer dimensional space. For α1 = α2 = 1
Equations (19) and (20) provide

f1(ρ) = C1Jm(βρρ) + C2Ym(βρρ) (33)

and
f2(ρ) = D1H

(1)
m (βρρ) + D2H

(2)
m (βρρ) (34)

Similarly, if we set α1 = α2 = 1 in Equations (22) and (24), we
get A = −B = m

2 , C = 1
2 . Now, considering following special forms of

Gaussian hypergeometric function [25]:

F

(
λ,−λ,

1
2
; sin2 ν

)
= cos(2λν) (35)

F

(
λ, 1− λ,

3
2
; sin2 ν

)
=

sin[(2λ− 1)ν]
(2λ− 1) sin(ν)

(36)

Equation (25) can be reduced to

g(φ) = C3 cos(mφ) + C4 sin(mφ) (37)

In a similar way, if we set α3 = 1 in (32) then n = 1
2 and it gives

h(z) = z
1
2

[
C5J 1

2
(βzz) + C6Y 1

2
(βzz)

]
(38)

Using Bessel functions of fractional order [26]:

J 1
2
(z) =

√
2
πz

sin (z) (39)

Y 1
2
(z) = −

√
2
πz

cos (z) (40)

Equation (13) can be reduced to

h(z) = C ′
5 sin(βzz) + C ′

6 cos(βzz) (41)

where, C ′
i = Ci

√
2

πβz
, i = 5, 6.
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From (12), (33), (37) and (41), a typical solution in three
dimensional space (a special case of fractional space) for ψ(ρ, φ, z) to
represent the fields within a cylindrical geometry will take the form

ψ(ρ, φ, z) = [C1Jm(βρρ) + C2Ym(βρρ)]× [C3 cos(mφ) + C4 sin(mφ)]
×[C ′

5 sin(βzz) + C ′
6 cos(βzz)] (42)

which is comparable to the cylindrical wave solutions of the wave
equation in integer dimensional space obtained by Balanis [23].

As an example, the fields inside a circular waveguide filled with
fractal media of dimension D can be obtained by assuming a D-
dimensional fractional space inside the circular waveguide. Within
such circular waveguide of radius a (see Figure 1), standing waves are
created in the radial (ρ) direction, periodic waves in the φ-direction,
and traveling waves in the z-direction.

Figure 1. Cylindrical waveguide of circular cross section.

For the fields to be finite at ρ = 0 where Y v(βρρ) possesses a
singularity, (32) reduces to

ψ1(ρ, φ, z) =
[
ρ1−α1+α2

2 {C1Jv(βρρ)}
]
× [{C3F (A,B,C; ξ)

+C4ξ
1−CF (A− C + 1, B − C + 1, 2− C; ξ)}]

×
[
zn

{
C5H

(2)
n (βzz) + C6H

(1)
n (βzz)

}]
(43)

To represent the fields in the region outside the cylinder, where three
dimensional space is assumed because there is no fractal media outside
the cylinder, a typical solution for ψ(ρ, φ, z) would take the form

ψ2(ρ, φ, z) =
[
C2H

(2)
m (βρρ)

]
× [C3 cos(mφ) + C4 sin(mφ)]

×[C ′
5 sin(βzz) + C ′

6 cos(βzz)] (44)
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In the region outside the cylinder, outward traveling waves are formed,
in contract to standing waves inside the cylinder. In this way, the
general cylindrical wave solution in fractional space can be used to
study the wave propagation in the cylindrical geometries containing
fractal media.

Now, as another example we assume that a cylindrical wave exists
in a fractional space due to some infinite line source. Since the source
do not vary with z, the fields will not vary with z but will propagate
away from the source in ρ-direction. Also for simplicity, we choose
to visualize only the radial amplitude variations of scalar field ψ in

Figure 2. Cylindrical wave propagation in Euclidean space (D = 3).

Figure 3. Cylindrical wave propagation in fractional space (D = 2.5).
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Figure 4. Cylindrical wave propagation in fractional space (D = 2.1).

fractional space which is given by (32) as:

ψ(ρ) = Aρ1−α1+α2
2 H(2)

v (βρρ) (45)

Also, if we choose a single parameter for non-integer dimension D
where 2 < D ≤ 3, i.e, we take α2 = α3 = 1 so D = α1 + 2. In this
case (45) becomes

ψ(ρ) = Aρ
3−D

2 H(2)
v (βρρ) (46)

In (46), using asymptotic expansions of Hankel functions [25] for
ρ → ∞, we see that the amplitude variations of field ψ are related
with radial distance ρ as

ψ(ρ) ∝ ρ1−D
2 (47)

From (47),
for D = 3, ψ(ρ) ∝ 1√

ρ ,

for D = 2.5, ψ(ρ) ∝ 1
ρ0.25 ,

for D = 3, ψ(ρ) ∝ 1
ρ0.05 .

Assuming a time dependency ejwt, the radial amplitude variations
of scalar field ψ are shown for different values of dimension D in
Figure 2 through Figure 4. It is seen that the amplitude of cylindrical
wave propagating in higher dimensional space decays rapidly.

4. CONCLUSION

An exact solution of cylindrical wave equation for electromagnetic field
in D-dimensional fractional space is presented. The obtained exact
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solution of cylindrical wave equation is a generalization of classical
integer-dimensional solution to a non-integer dimensional space. For
all investigated cases when D is an integer dimension, the classical
results are recovered. The investigated solution provides a basis for the
application of the concept of fractional space to the wave propagation
phenomenon in fractal media.
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