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We analysed the initial/boundary value problem for the second-order homogeneous di
erential equation with constant coe�cients
in this paper. 	e second-order di
erential equation with respect to the fractional/generalised boundary conditions is studied. We
presented particular solutions to the considered problem. Finally, a few illustrative examples are shown.

1. Introduction

	esecond-order di
erential equations provide an important
mathematical tool formodelling the phenomena occurring in
dynamical systems. Examples of linear or nonlinear equations
appear in almost all of the natural and engineering sciences
and arise in many �elds of physics.

Many scientists have studied various aspects of these
problems, such as physical systems described by the Du
-
ing equation [1], noncommutative harmonic oscillators [2],
oscillators in quantum physics [3], the dynamic properties of
biological oscillators [4], the analysis of single and coupled
low-noise microwave oscillators [5], the Mathieu oscillator
[6], the relativistic oscillator [7], or the Schrodinger type
oscillator [8].

Classical di
erential equations are de�ned by using the
integer order derivatives. In recent years, the class of di
er-
ential equations containing fractional derivatives (known as
fractional di
erential equations) have become an important
topic. 	ere are two approaches to obtain these types of
equations. 	e �rst one is to replace the integer order
derivative in classical di
erential equations with a fractional
derivative (see, e.g., [9–14]).

	e second approach is a generalisation of a method
known in classical and quantummechanics, where the di
er-
ential equations are obtained from conservative Lagrangian

or Hamiltonian functions. 	ese equations are known in the
literature as fractional Euler-Lagrange equations, and they
contain both the le� and right fractional derivatives. New
mechanics models for nonconservative systems, in terms of
fractional derivatives, were developed by Riewe in [15, 16]
and extended by Klimek [17, 18] and Agrawal [19, 20]. Since
then, many authors have studied the fractional di
erential
equations of the variational type (see [21–26]).

In contrast to the above-mentioned references, where the
authors analysed the integer order di
erential equations with
classical boundary/initial conditions or fractional di
erential
equations with the Dirichlet or natural boundary conditions,
in this paper we consider the second-order di
erential equa-
tion with the fractional/generalised boundary conditions.

2. Statement of the Problem

In this paper, we solve the second-order di
erential equation

�2� (�) ± �2� (�) = 0, � ∈ [�, �] , � > 0 (1)

with respect to the following fractional/generalised boundary
conditions:

Φ (��1�+� (�)������=� , ��2�+� (�)������=� , ��1�−� (�)�������=� ,
��2�−� (�)�������=�) = 0, (2)
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where 1, 2, �1, �2 ∈ [0, 2], 1 ̸= 2, �1 ̸= �2, and the
operators ���+ , ���− denote the le� and right Riemann-
Liouville derivatives, de�ned, respectively, by [27]

���+� (�) fl {{{
1Γ (� − ) ����� ∫�

�

� (�)
(� − �)�−�+1 ��, for  ∈ R \ N0, � = [] + 1

��� (�) for  = � ∈ N0

���−� (�) fl {{{{{
(−1)�Γ (� − ) ����� ∫�

�

� (�)
(� − �)�−�+1 ��, for  ∈ R \ N0, � = [] + 1

(−1)���� (�) , for  = � ∈ N0

(3)

and ���(�) ≡ ���(�)/���.
Let us consider two particular cases of (1).

Case i. Here, we study the following di
erential equation:

�2� (�) + �2� (�) = 0. (4)

It is well known that (4) has a general solution, for � ̸= 0,
given by

� (�) = �1 sin (��) + �2 cos (��) . (5)

	e solution (5) contains two arbitrary independent con-
stants of integration �1 and �2. A particular solution can be
derived from the general solution by applying the set of initial
or boundary conditions.

	e fractional di
erentiation of general solution (5)
(using the le�-side fractional operator) gives us

���+� (�) = ���+ (�1 sin (��) + �2 cos (��))
= �1���+ sin (��) + �2���+ cos (��) (6)

and di
erentiation by using the right-side operator leads to

���−� (�) = ���− (�1sin (��) + �2cos (��))
= �1���−sin (��) + �2���−cos (��) . (7)

Now, we formulate the following properties for Riemann-
Liouville derivatives of the sine and cosine functions.

Property 1 (the le�-sided Riemann-Liouville fractional
derivatives of the sine and cosine functions). Let  ≥ 0 and� ̸= 0. 	en, the following relations hold:

���+ sin (��) = {{{{{{{
(� − �)−�(cos (��) ∞∑

	=0

(−1)	 (� (� − �))2	+1Γ (2 + 2 − ) + sin (��) ∞∑
	=0

(−1)	 (� (� − �))2	Γ (2 + 1 − ) ) for  > 0 ∧  ∉ N0

��sin(�� + �%2 ) for  = � ∈ N0

���+cos (��) = {{{{{{{
(� − �)−�(cos (��) ∞∑

	=0

(−1)	 (� (� − �))2	Γ (2 + 1 − ) − sin (��) ∞∑
	=0

(−1)	 (� (� − �))2	+1Γ (2 + 2 − ) ) for  > 0 ∧  ∉ N0

�� cos(�� + �%2 ) for  = � ∈ N0.

(8)

Property 2 (the right-sided Riemann-Liouville fractional
derivatives of the sine and cosine functions). Let  ≥ 0 and� ̸= 0. 	en, the following relations hold:

���− sin (��) = {{{{{{{
(� − �)−�(cos (��) ∞∑

	=0

(−1)	 (� (� − �))2	Γ (2 + 1 − ) + sin (��) ∞∑
	=0

(−1)	 (� (� − �))2	+1Γ (2 + 2 − ) ) for  > 0 ∧  ∉ N0

(−1)� �� sin(�� + �%2 ) for  = � ∈ N0

���− cos (��) = {{{{{{{
(� − �)−�(cos (��) ∞∑

	=0

(−1)	 (� (� − �))2	Γ (2 + 1 − ) + sin (��) ∞∑
	=0

(−1)	 (� (� − �))2	+1Γ (2 + 2 − ) ) for  > 0 ∧  ∉ N0

(−1)� �� cos(�� + �%2 ) for  = � ∈ N0.

(9)
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Proof (Properties 1 and 2). We use Taylor’s series expansions
of sine and cosine functions [28]

sin (�) = ∞∑
	=0

(−1)	 �2	+1Γ (2 + 2) ,

cos (�) = ∞∑
	=0

(−1)	 �2	Γ (2 + 1)
(10)

and properties of the le� and right-sided fractional deriva-
tives of power functions [27]

���+ (� − �)
 = Γ (' + 1)Γ (' + 1 − ) (� − �)
−� ,
 ≥ 0, ' > −1

���− (� − �)
 = Γ (' + 1)Γ (' + 1 − ) (� − �)
−� ,
 ≥ 0, ' > −1.

(11)

Also we apply the known fundamental trigonometric identi-
ties

sin (��) = sin (� (� − �) + ��)
= sin (� (� − �)) cos (��)

+ cos (� (� − �)) sin (��)
cos (��) = cos (� (� − �) + ��)

= cos (� (� − �)) cos (��)
− sin (� (� − �)) sin (��)

sin (��) = −sin (� (� − �) − ��)
= −sin (� (� − �)) cos (��)

+ cos (� (� − �)) sin (��)
cos (��) = cos (� (� − �) − ��)

= cos (� (� − �)) cos (��)
+ sin (� (� − �)) sin (��) .

(12)

	en

���+sin (��) = cos (��) ���+sin (� (� − �))
+ sin (��) ���+cos (� (� − �)) (13)

���+cos (��) = cos (��) ���+cos (� (� − �))
− sin (��) ���+sin (� (� − �)) (14)

���−sin (��) = −cos (��) ���−sin (� (� − �))
+ sin (��) ���−cos (� (� − �)) (15)

���−cos (��) = cos (��) ���−cos (� (� − �))
+ sin (��) ���−sin (� (� − �)) , (16)

where

���+sin (� (� − �))
= ���+ (∞∑

	=0

(−1)	Γ (2 + 2) (� (� − �))2	+1)

= ∞∑
	=0

(−1)	 �2	+1Γ (2 + 2) ���+ (� − �)2	+1

= ∞∑
	=0

(−1)	 �2	+1Γ (2 + 2 − ) (� − �)2	+1−�

= (� − �)−� ∞∑
	=0

(−1)	 (� (� − �))2	+1Γ (2 + 2 − )

(17)

and in a similar way we obtain

���+ cos (� (� − �)) = (� − �)−� ∞∑
	=0

(−1)	 (� (� − �))2	Γ (2 + 1 − ) (18)

���− sin (� (� − �))
= (� − �)−� ∞∑

	=0

(−1)	 (� (� − �))2	+1Γ (2 + 2 − )
(19)

���− cos (� (� − �)) = (� − �)−� ∞∑
	=0

(−1)	 (� (� − �))2	Γ (2 + 1 − ) . (20)

Finally, putting (17)–(20) into (13)–(16), we obtain the formu-
las in Properties 1 and 2.

Remark 3. Note that the in�nite series included in formu-
las (17)–(20) can be expressed by formulas containing the
Mittag-Le�er function. 	is observation leads us to the
following expressions:

���+sin (� (� − �))
= � (� − �)1−� *2,2−� (−�2 (� − �)2)

���+cos (� (� − �)) = (� − �)−� *2,1−� (−�2 (� − �)2)
���−sin (� (� − �))

= � (� − �)1−� *2,2−� (−�2 (� − �)2)
���−cos (� (� − �)) = (� − �)−� *2,1−� (−�2 (� − �)2) ,

(21)

where*�,� denotes theMittag-Le�er function de�ned in [27]

*�,� (�) = ∞∑
	=0

�	Γ (4 + 5) , 4, 5 ∈ R, 4 > 0, � ∈ R. (22)

	e above-mentioned notations can be useful in case when
one uses the built-in function (the Mittag-Le�er function)
in a mathematical so�ware.
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Case ii. 	e second problem has the following form:

�2� (�) − �2� (�) = 0. (23)

In this case the general solution of (23), for � ̸= 0, is given by

� (�) = �1 sinh (��) + �2 cosh (��) . (24)

	e fractional di
erentiation of solution (24) (using the le�-
side operator) gives

���+� (�) = ���+ (�1 sinh (��) + �2 cosh (��))
= �1���+ sinh (��) + �2���+ cosh (��) (25)

and for the right-side derivative we have

���−� (�) = ���− (�1 sinh (��) + �2 cosh (��))
= �1���− sinh (��) + �2���− cosh (��) . (26)

Next, we formulate the following properties for Riemann-
Liouville derivatives of the hyperbolic sine and hyperbolic
cosine functions.

Property 4 (the le�-sided Riemann-Liouville fractional
derivatives of the hyperbolic sine and hyperbolic cosine
functions). Let  ≥ 0 and � ̸= 0.	en, the following relations
hold:

���+ sinh (��) =
{{{{{{{{{{{{{

(� − �)−�(cosh (��) ∞∑
	=0

(� (� − �))2	+1Γ (2 + 2 − ) + sinh (��) ∞∑
	=0

(� (� − �))2	Γ (2 + 1 − )) for  > 0 ∧  ∉ N0

��{{{
cosh (��) for � = 1, 3, 5, . . .
sinh (��) for � = 0, 2, 4, . . . for  = � ∈ N0.

���+ cosh (��) =
{{{{{{{{{{{{{

(� − �)−�(cosh (��) ∞∑
	=0

(� (� − �))2	Γ (2 + 1 − ) + sinh (��) ∞∑
	=0

(� (� − �))2	+1Γ (2 + 2 − ) ) for  > 0 ∧  ∉ N0

��{{{
sinh (��) for � = 1, 3, 5, . . .
cosh (��) for � = 0, 2, 4, . . . for  = � ∈ N0

(27)

Property 5 (the right-sided Riemann-Liouville fractional
derivatives of the hyperbolic sine and hyperbolic cosine

functions). Let  ≥ 0 and � ̸= 0.	en, the following relations
hold:

���−sinh (��) =
{{{{{{{{{{{{{

(� − �)−�(−cosh (��) ∞∑
	=0

(� (� − �))2	+1Γ (2 + 2 − ) + sinh (��) ∞∑
	=0

(� (� − �))2	Γ (2 + 1 − )) for  > 0 ∧  ∉ N0

(−1)� ��{{{
cosh (��) for � = 1, 3, 5, . . .
sinh (��) for � = 0, 2, 4, . . . for  = � ∈ N0

���− cosh (��) =
{{{{{{{{{{{{{

(� − �)−�(cosh (��) ∞∑
	=0

(� (� − �))2	Γ (2 + 1 − ) − sinh (��) ∞∑
	=0

(� (� − �))2	+1Γ (2 + 2 − ) ) for  > 0 ∧  ∉ N0

(−1)� ��{{{
sinh (��) for � = 1, 3, 5, . . .
cosh (��) for � = 0, 2, 4, . . . for  = � ∈ N0.

(28)

Proof (Properties 4 and 5). Here we apply Taylor’s series
expansions of the hyperbolic sine and cosine functions [28]

sinh (�) = ∞∑
	=0

�2	+1Γ (2 + 2) ,

cosh (�) = ∞∑
	=0

�2	Γ (2 + 1)
(29)

and the trigonometric identities

sinh (��) = sinh (� (� − �) + ��)
= sinh (� (� − �)) cosh (��)

+ cosh (� (� − �)) sinh (��)
cosh (��) = cosh (� (� − �) + ��)

= cosh (� (� − �)) cosh (��)
+ sinh (� (� − �)) sinh (��)
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sinh (��) = −sinh (� (� − �) − ��)
= −sinh (� (� − �)) cosh (��)

+ cosh (� (� − �)) sinh (��)
cosh (��) = cosh (� (� − �) − ��)

= cosh (� (� − �)) cosh (��)
− sinh (� (� − �)) sinh (��) .

(30)

	en

���+sinh (��) = cosh (��) ���+sinh (� (� − �))
+ sinh (��) ���+cosh (� (� − �))

���+cosh (��) = cosh (��) ���+cosh (� (� − �))
+ sinh (��) ���+sinh (� (� − �))

���−sinh (��) = −cosh (��) ���−sinh (� (� − �))
+ sinh (��) ���−cosh (� (� − �))

���−cosh (��) = cosh (��) ���−cosh (� (� − �))
− sinh (��) ���−sinh (� (� − �)) ,

(31)

where

���+sinh (� (� − �)) = (� − �)−� ∞∑
	=0

(� (� − �))2	+1Γ (2 + 2 − )
���+cosh (� (� − �)) = (� − �)−� ∞∑

	=0

(� (� − �))2	Γ (2 + 1 − )
���−sinh (� (� − �)) = (� − �)−� ∞∑

	=0

(� (� − �))2	+1Γ (2 + 2 − )
���−cosh (� (� − �)) = (� − �)−� ∞∑

	=0

(� (� − �))2	Γ (2 + 1 − ) .

(32)

Finally, putting (32) into (31), we obtain the formulas in
Properties 4 and 5.

Remark 6. In formulas (32), the in�nite series can be also
expressed by using theMittag-Le�er function, and we obtain

���+sinh (� (� − �))
= � (� − �)1−� *2,2−� (�2 (� − �)2)

���+cosh (� (� − �)) = (� − �)−� *2,1−� (�2 (� − �)2)
���−sinh (� (� − �))

= � (� − �)1−� *2,2−� (�2 (� − �)2)
���−cosh (� (� − �)) = (� − �)−� *2,1−� (�2 (� − �)2) .

(33)

3. Examples of the Determination of
Particular Solutions

	eboundary conditions, written in the general form (2), can
be used in many combinations. Now, we show three selected
examples. Other combinations of the particular boundary
conditions can be easily adopted by the reader (in a similar
way).

Example 7. Equation (4) with the following boundary condi-
tions given on both sides of the domain:

��1�−� (�)�������=� = 91 ∧ ��1�+� (�)������=� = 92. (34)

We substitute the general solution (5) into (34) and we have

�1��1�− sin (��)�������=� + �2��1�− cos (��)�������=� = 91
�1��1�+ sin (��)������=� + �2��1�+ cos (��)������=� = 92.

(35)

	e independent constants of integration �1 and �2 can
be determined from the solution of the following system of
equations:

[�1�2] = [
[

��1�−sin (��)�������=� ��1�−cos (��)�������=���1�+sin (��)������=� ��1�+cos (��)������=�
]
]
−1

⋅ [9192] .
(36)

	e analytical solution of (36) is of the form

�1 = 91��1�+ cos (��)������=� − 92��1�− cos (��)�������=�
��1�− sin (��)�������=� ⋅ ��1�+ cos (��)������=� − ��1�+ sin (��)������=� ⋅ ��1�− cos (��)�������=�

�2 = −91��1�+ sin (��)������=� + 92��1�− sin (��)�������=�
��1�− sin (��)�������=� ⋅ ��1�+ cos (��)������=� − ��1�+ sin (��)������=� ⋅ ��1�− cos (��)�������=�

.
(37)
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Example 8. Equation (23) with the conditions given on the
le� side of the domain (� = �): this case corresponds to the
initial value problem

��1�−� (�)�������=� = 91 ∧ ��2�−� (�)�������=� = 92, �1 ̸= �2. (38)

When we put the general solution (24) into (38), then we
obtain the following linear system of equations:

�1��1�− sinh (��)�������=� + �2��1�− cosh (��)�������=� = 91
�1��2�− sinh (��)�������=� + �2��2�− cosh (��)�������=� = 92

(39)

that can be also written in the matrix form

[�1�2] = [
[

��1�− sinh (��)�������=� ��1�− cosh (��)�������=���2�− sinh (��)�������=� ��2�− cosh (��)�������=�
]
]
−1

⋅ [9192] .
(40)

Example 9. Equation (4) with the following set of boundary
conditions:

C1��1�−� (�)�������=� + C2��2�−� (�)�������=�
= 91 ∧ ��1�+� (�)������=� = 92,

C1, C2 ∈ R, ����C1���� + ����C2���� > 0.
(41)

	is case corresponds to the generalisation of the Robin
boundary condition given at � = �. Also here we put general
solution (5) into (41) and we obtain

C1 (�1��1�− sin (��)�������=� + �2��1�− cos (��)�������=�)
+ C2 (�1��2�− sin (��)�������=� + �2��2�− cos (��)�������=�)= 91

�1��1�+ sin (��)������=� + �2��1�+ cos (��)������=� = 92
(42)

or

[�1�2] = [
[

C1��1�− sin (��)�������=� + C2��2�− sin (��)�������=� C1��1�− cos (��)�������=� + C2��2�− cos (��)�������=���1�+ sin (��)������=� ��1�+ cos (��)������=�
]
]
−1

⋅ [9192] (43)

from which we can easily determine the constants of integra-
tion �1 and �2.
Remark 10. One can note that the fractional boundary

conditions ���−�(�)|�=� and ���+�(�)|�=� for integral values
of parameters  and � take the classical forms of boundary

conditions; this means ���−�(�)|�=� ≡ (−1)��(�)(�) and���+�(�)|�=� ≡ �(�)(�). In particular, it should be noted
that the di
erence occurs, among others, in the boundary

condition �1�−�(�)|�=� ≡ −�(�) and this form should be
taken into account.

4. Example of Solutions

On the basis of the proposed method, to �nd the particular
solutions to the considered equations (4) and (23), we
calculated constants of integration �1 and �2 occurring
in the general solutions that satisfy the sets of the given
initial or boundary conditions (various combinations). In
Figures 1–3, numerous examples of solutions have been
presented.

5. Conclusions

	e initial/boundary value problem for the second-order
homogeneous di
erential equations with constant coe�-
cients has been considered. 	e general solutions to these

equations are widely known and involve arbitrary con-
stants. Our aim was to �nd the particular solutions to
this problem which satisfy the generalised boundary con-
ditions. Such boundary conditions complement the set
of classic boundary conditions (including the Dirichlet,
Neumann, and Robin types) by including the fractional
ones.

	e use of the fractional boundary conditions in the
considered initial/boundary value problem required the frac-
tional di
erentiation of the general solutions. We derived
the formulas for the le�- and right-sided Riemann-Liouville
fractional derivatives of the sine, cosine, hyperbolic sine,
and hyperbolic cosine functions that occur in the general
solutions. On this basis, the integration constants in these
solutions were determined analytically.

On the plots, one can observe that the obtained results
for the fractional boundary conditions are located between
the solutions to the considered problem with respect to
the classical (integer order) boundary conditions. Such
behaviour of the particular solutions gives new possibilities in
physical phenomena modelling, like the harmonic oscillator
modelling, among others. In the future, we plan to apply
this approach to seek solutions to other types of the ini-
tial/boundary value problems, in particular to the four-order
problems.
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Figure 1: 	e particular solutions of (4) for selected boundary conditions (see details in the legends).
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Figure 2: 	e particular solutions of (23) for selected boundary conditions (see details in the legends).
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Figure 3: 	e particular solutions of (4) for selected boundary conditions (see details in the legends).
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