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An Exact Solution to the Relativistic Equation of 
Motion of a Charged Particle Driven by a 
Linearly Polarized Electromagnetic Wave 

Abstract-An exact analytic solution is found for a basic electromag- 
netic wave-charged particle interaction by solving the nonlinear equa- 
tions of motion. The particle position, velocity, and corresponding time 
are found to be explicit functions of the total phase of the wave. Par- 
ticle position and velocity are thus implicit functions of time. Appli- 
cations include describing the motion of a free electron driven by an 
intense laser beam. 

I. INTRODUCTION 
HE PROBLEM of determining the motion of a T charged particle driven by an externally produced 

electromagnetic wave is an old one, and has been consid- 
ered in a variety of contexts. In the absence of other ex- 
ternal fields, a low-amplitude wave causes the charged 
particle to move, to a good approximation, with a velocity 
whose direction is parallel to the wave’s electric field vec- 
tor and whose phase lags that of the electric field by 7r/2. 
As the amplitude of the electromagnetic wave is in- 
creased, however, the wave’s magnetic field begins to no- 
ticeably affect the motion, adding to the velocity a com- 
ponent which lies in the direction of propagation of the 
wave. In general, the motion is now relativistic, and the 
equations describing it are nonlinear. Roberts and Buchs- 
baum [l]  considered the motion of a charged particle in 
the presence of a constant magnetic field and a circularly 
polarized electromagnetic wave which propagates in the 
direction of the field. They were able to transform the 
equations of motion into a single ordinary differential 
equation for the energy. They were then able to find an 
exact solution for the particle energy as a function of time. 

Jory and Trivelpiece [2] numerically analyzed the effect 
of large-amplitude electromagnetic fields on charged-par- 
ticle motion (neglecting radiation reaction) for a variety 
of interesting cases. The first and perhaps most basic case 
they considered was that of a charged particle, initially at 
rest, in the presence of a homogeneous linearly polarized 
plane wave. This basic case is again treated here, result- 
ing in an exact analytic solution of the relativistic equa- 
tions of motion. The purpose of this exercise is both to 
show that an analytic solution to this basic nonlinear prob- 
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lem exists and to present a general procedure which may 
be useful in determining the solution to similar problems. 

11. SOLUTION OF THE EQUATIONS OF MOTION 
The equations of motion for a particle of charge q, rest 

mass mo, position r = ( x ,  y, z ) ,  and velocity v = (ux ,  
vy, v,) in the presence of a linearly polarized plane wave 
with electric field E, magnetic field B, and wave vector k, 
are 

( l a )  d [ m v (  1 - ~ ’ / c ’ ) - ~ ’ ’ ] / d t  = q(E  + v x B )  

and 
dr /d t  = v. ( W  

A frame of reference can always be chosen such that the 
plane-wave solution to Maxwell’s equations is E = E cos 
(at  - kz)e,, B = ( E / c )  cos (at  - k ) e Y  and k = ke,, 
and such that r = v = 0 at t = 0, and uy = 0 for all t .  
When the time derivative of the composite function on the 
left side of (la) is taken, each vector component contains 
time derivatives of both U, = u,/c and U, = v , /c .  These 
time derivatives are then sqparated by matrix inversion 
and, following the notation of Krall and Trivelpiece [3], 
the equations of motion (1) become 

(2a) dU,/de = F( 1 - U, - U : ) (  1 - UI - U z )  

(2b) 

d X / d e  = U, ( 2 4  

d Z / d e  = U, (2d) 

F = A cos (e - z) 

e = at 

x = Q x / c  

z = az/c  

u, = V J C  

u, = v,/c. 

2 1/2 dU,/de = FUJ1 - U,)(1 - U: - U,) 

where 

A = qE/(moc2) 

= kc 
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It will now be shown that U,, U,, X, and Z are explicit 
functions of the phase cp = 8 - Z. (The equation defining 
Z (  e )  is thus a transcendental one.) 

First, a simple differential relation between U, and U, 
can be found by dividing (2a) by (2b) and rearranging the 
result to give 

U,(1 - U,) dU, = (1  - U, - U:)  dU,. (3) 
Upon making the substitutions V = U: and W = 1 - U,, 
a simple equation arises: 

dV/dW = 2(  V / W  - 1).  (4) 
Assuming the solution to (4) is a power series leads to I/ 
= 2W + aW2;  the constant a is found from the initial 
conditions ( U ,  = U, = 0, at t = 0) to be a = -2. Thus, 
the relation between U, and U, is 

u: = 2U,(1 - u,) ( 5 )  
which immediately reveals that the maximum absolute 
value U, can attain is 2-’12, which occurs whenever U, 
- 1  - 2. 

Using (3, (2a) and (2b) become 

dU, /de  = F ( l  - 2UZ)(1 - U,? 

dU, /de  = FU,(1 - U,?. 

( 6 4  

(6b) 

and 

In terms of cp = 8 - 2, d / d e  = ( 1  - U,) d / d p  and 
(2a)-(2d) can now be written as 

dU,/dcp = A cos cp( 1 - U,)(  1 - 2U,) (7a) 

dU,/dcp = A COS cp( 1 - U,)U,  

dX/dcp = Ux/(l - U,) 

dZ/dcp = Uz/(l  - U , ) .  

(7b) 

( 7 4  

( 7 4  
In looking at (7a)-(7d), it is clear that the dynamic vari- 
ables U, and U, are symmetric about cp = nn/2  ( n  = 1, 
3, 5, * * ) and U, and X are symmetric about cp = mu, 
while U, is antisymmetric (m = 1 ,2 ,  3, - - - ). Therefore, 
in order to understand the behavior of U, and U, (and X 
and Z) for all cp (Le., for all time), it suffices to under- 
stand the behavior of U, and U, for 0 I p s a /2 .  

Now it is useful to define another variable G: G sin 
cp with 0 I G I 1. Since AdG/dcp = F, (7b) can be 
written 

dU,/dG = AU,(1 - U,). (8)  

For this range of G, U, will have the same sign as A, 
which we will assume to be positive, for the sake of def- 
initeness; U, can thus be determined as the positive square 
root of the right side of (5 ) .  Then, (8) takes the form 

dU,/dG = A(2UZ)’/’(  1 - U Z f l 2 .  (9) 

This equation is easily integrable; the solution which sat- 
isfies the initial conditions is U, = A2G2/(  2 + A2G2). 
Using this expression for U,, along with ( 5 ) ,  (7c), and 

(7d), yields the following set: 

U, = 2AG/(2 + A2G2) 

U, = A2G2/(2 + A’G’) 

( 1 0 4  

dX/dcp = AG (lob)  

(W 
dZ/dcp = A2G2/2. ( 1 0 4  

The integrations required to determine X and 2 in the set 
(10) are easily performed; upon replacing G by sin cp, the 
solution to the stated problem is achieved: 

U, = 2A sin cp/(2 + A’ sin2 c p )  (W 

X = A ( l    COS^) (W 
2 = A’(2cp - sin 2p)/8. (W 

U, = A’ sin’ cp/(2 + A’ sin2 c p )  ( l l b )  

Since cp = 8 - 2, ( l ld )  is a transcendental equation 
which implicitly defines Z (  e). Although the numerical 
solution of (1 Id) for Z (  e )  is straightforward, an alter- 
native (and perhaps more natural) approach is to com- 
pletely parameterize the solution in terms of the phase cp 
( and amplitude A) by determining 8 ( cp ) : 

8 = (1 + A2/4)cp - (A2/8) sin 2cp. (12) 

111. DISCUSSION 

Now that the solution to the equations of motion in 
terms of the parameters cp and A exists, some general ob- 
servations can be made. A complete cycle in the motion 
occurs when U,, U,, and X return to their initial values; 
this happens when cp changes by 2a.  The dimensionless 
period T can then be determined from (12): T = 2u(  1 + 
A2/4). During a complete period, Z (and, of course, e )  
increase monotonically with cp, and the charged particle 
moves a net distance L, in the z direction of L, = uA2/2. 

For cp between 0 and 27r, U, has differing numbers of 
maxima and minima, depending on the value of A, as can 
be seen in Fig. 1. If 0 < A I 2’/’, U, has a maximum 
at cp = u / 2  and a minimum at cp = 3u/2;  the value of 
U, at these minima and maxima can be found from (1 la). 
However, if A > 21i2, then the maxima at cp = u /2  be- 
comes a local minimum and the minimum at cp = 3 ~ / 2  
becomes a local maximum; in addition, absolute maxima 
occur in the range 0 < cp < u, and absolute minima in 
the range u < cp < 27r at those values of cp which satisfy 
sin cp = 2Il2/A. (The absolute value of U, at these ab- 
solute extrema is 2-’12, which is the largest absolute value 
U, can have. ) For cp between 0 and 27~, U, has maxima at 
cp = u / 2  and cp = 3u/2,  and minima at cp = 0, u, 2u, 
for any A > 0; the absolute value of U, at its extrema 
tends to unity as A increases without bound, as can be 
seen in Fig. 2. (Graphs of U, and U, for other values of 
A are shown elsewhere [2], [3]. ) 

Using (5) and (l lb),  it follows by substitution that the 
total energy E,,, = rnoc2( 1 - Z I ~ / C ’ ) - ~ / ~  of the charged 
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Fig. 1. Transverse velocity U, as a function of phase 'p and amplitude A .  
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Fig. 2. Longitudinal velocity U, as a function of phase (p and amplitude 

A .  

particle is 
E,, = moc2/(1 - U,) = %c2(1 + 4 A2 sin2 c p ) .  

(13)  
The kinetic energy Ekin is 

2 2  Ebn = E,, - %c2 = 1 moc A sin2 cp. 

IV. CONCLUSION 
In this paper, the equations of motion describing per- 

haps the most basic electromagnetic wave-charged parti- 

(14) 

cle interaction have been shown to have an exact solution. 
The procedure used here may perhaps be useful in deter- 
mining exact solutions in more complicated interactions, 
e.g., a single charged particle in the presence of two or 
more waves, which include the cases of circular and el- 
liptic polarization. That such solutions exist for the case 
of circular polarization has been indicated by Roberts and 
Buchsbaum [ 11, who found an analytic expression for the 
energy of the charged particle. 

The results presented here are perhaps most applicable 
to the case in which a free electron finds itself in the beam 
of a powerful laser, in that region where the amplitude of 
the associated plane wave is essentially constant trans- 
verse to the propagation direction. The results may also 
be applied to electron motion in a coaxial or parallel line 
waveguide operating in a TEM mode; since the amplitude 
of the associated plane wave has transverse variation, the 
solutions given here can possibly serve as a basis for a 
perturbative analysis. 

Finally, the author wishes to thank the referees and to 
mention some further references that they suggested. 
First, Boyd and Sanderson [4] present an approximate 
treatment of this problem and give references to earlier 
work. Second, Davis [5] presents general methods for 
solving first-order nonlinear differential equations such as 
(4), as well as other types of nonlinear equations. 
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