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Abstract. - We consider a diluted and nonsymmetric version of the Little-Hopfield model which 
can be solved exactly. We obtain the analytic expression of the evolution of one configuration 
having a finite overlap on one stored pattern. We show that even when the system remembers, 
two different configurations which remain close to the same pattern never become identical. 
Lastly, we show that when two stored patterns are correlated, there exists a regime for which 
the system remembers these patterns without being able to distinguish them. 

Spin glass models for associative memory have found increasing interest in the last few 
years. As first proposed by Little [ l ]  and Hopfield [2], these models are based on an Ising 
Hamiltonian and hence can be treated by equilibrium statistical mechanics. A detailed 
discussion of the equilibrium properties of the Hopfield model is given in Amit et al. [3]. 

Two assumptions are crucial to allow for an exact solution of the equilibrium properties of 
the model: the synaptic connections are taken to be symmetric and each neuron is connected 
to an infinite number of other neurons. In biological networks the synapses are known t o  be 
asymmetric and on the average a neuron is connected only to a fraction F = lov6 of all 
neurons. Hence it is important to  study the effects of asymmetry and dilution. 

Nonsymmetric models have been investigated by several groups [4-81. One possible way 
to introduce asymmetry is to keep the .learning rules. of Hebb, but cut out some of the 
synaptic connections. As long as the fraction ,o remains finite, the memory states are not 
seriously degraded[4]. On the other hand the effect of extreme dilution, p=O(l/N) is 
expected to be much more drastic. Random systems with long-range interactions, but finite 
coordination number have been discussed in the context of diluted spin glasses [8], graph 
optimization [9] and random networks of automata [lo-121. 

In this paper, we give an exact solution for the dynamics of a dilute nonsymmetric version 
of the Little-Hopfield model [l, 21. The model consists of a system of N Ising spins cr1 = k 1, 
whose interactions Jij depend on p stored patterns. By definition of the model the Jij  are 
given by 
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where 8 (= k 1) is the value of site i in pattern ,U and the Cij are random independent 
parameters which represent the dilution and the asymmetry. For each pair i, j ,  a Cij is 
chosen at  random according to the distribution ,c(CZi) 

,C(C,) = --d(CtJ c - 1) + i 1 - - 9 t'(C,). (2) 

Notice that the interactions J ,  are not symmetric because for each pair (i, j), C, and C,, are 
independent random variables. (However, for the pairs i , j  such that Cv=C32,  one has 
J,, = J,,.) 

N 

For this model the following two dynamics can be considered. 

1) Parallel dynamics for which at  time t ,  all spins are updated simultaneously in the 
following way[13]: on each site i the field h,(t) is computed 

and then the spins are updated according to 

+ 1 with probability (1 + exp [ - 2h,(t)/T0])-l , 

- 1 with probability (1 + exp [Bh,(t)/T,,])- . 
(4) .,(t + At) = 

The parameter To which appears in (4) is by definition the temperature. 
For parallel dynamics, the natural time scale is 

A t = l .  (5 )  

2) Random sequential dynamics for which at time t ,  one chooses at random a site i 
among the N sites and one updates this site according to (3) and (4). Since at  each time step, 
only one spin is updated, one should scale the time with the system size N 

1 At=- 
N 

We will later compare the time evolution of two different configurations. In that case, one 
can decide either that the random sequence of the updated spins is the same for both 
configurations or not. We will describe here only the case where it is the same. 

In this letter, we obtain exact results for the dynamical properties of this model in the 
thermodynamic limit (N-+ m). 

We will first consider the evolution of a configuration ( ~ ~ ( t ) }  having a macroscopic overlap 
on one stored pattern and microscopic overlaps on the other p - 1 random patterns. We will 
show that the evolution of m(t) defined by 

is given for parallel dynamics by 
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and for random sequential updating by 

wheref(m) is given by 

We use the notation (5) = n!(K - 

We will then study the evolution of two configurations having a finite overlap on one 
pattern. This will show that when the system remembers, the attractor is more complicated 
than a single fixed configuration near the stored pattern. 

Lastly we will consider the evolution of a*configuration having finite overlaps on two 
stored correlated patterns. We will see that in general there are three regimes: 1) the 
system remembers the two patterns as distinct patterns, 2) the system remembers the 2 
patterns, but cannot distinguish them, 3) the system does not remember. 

Let us start by deriving formulae (8) and (9). The reason that the model is solvable is the 
same as the reason [12] which was already applied to the problem of random networks of 
automata [12, 14, 151 to show that the annealed and the quenched models are identical in the 
limit N+ W .  The argument is the following. Consider a site i and let us call j ,  , j,, . . . , j K  the 
K sites j such that Ji, # 0. Assume that a t  time t 

where the average in (10) means both a thermal average at  temperature T and over an 
ensemble of initial conditions at  time t = 0 (for example all initial configurations having a 
fixed overlap m(0) over the first pattern). Equation (10) means that 

1 + m,,(t) 
l;, with probability 0 '  

ii 

- {jr with proba 

In principle the spins c,,(t), ~,,(t) ,  ..., gjK(t) could be correlated because they might have 
ancestors in common. However, one can show [le, 151 that as long as the constant C is finite 
or more precisely if 

c << log N (12) 

for almost all sites i ,  the spins gJl(t), ..., cJK(t) are uncorrelated. The calculation of spin ~ ~ ( t )  
involves a tree of ancestors which connects site i to the initial conditions a t  time t = 0. The 
typical number of sites in this tree is less than Ct and as long as Ct << N1", all the sites in this 
tree are different. So, if condition (12) is satisfied, the spins nJi(t), ..., oj,(t) are uncorrelated 
for almost all sites i. The field h,(t) is given by 
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and the probability P ( { q } ,  s) that 

is 

P K  
where T~~ = gJt) and ( p  - 1) K - 2s = 

It is then easy to compute the average m,(t+At). One sees that m,(t+At) is a linear 
function of the m,,(t). Therefore, when one averages over all the shapes of the tree of 
ancestors (in particular over K ) ,  all the m,,(t) have the same average m(t) and one finds 

C 2 E ;  l;? gJt) . 
1 = 2  r = 1  

m,(t + At) =f(m(t)) ,  (15) 

where f is given by (9). 

easily establish (8b) by considering that 
For parallel dynamics, this proves formula (8~) .  For random sequential updating, one can 

(16) 1 
N 

- 

N m(t) + -mm,(t + At) = m(t) + At[f(nz( t ) )  - m(t)]. m(t + At)  = - 

The time evolution given by (8) and (9) is valid for random uncorrelated patterns {c} and 
for an initial configuration having a finite projection on only one pattern. The system 
remembers if there is a nonzero attractive fixed point nz* of the map (8a) or of the flow (8b). 
One can determine the temperature T*(C,  p )  below which the system remembers stored 
patterns. We did not find a closed expression of T*  for finite p and C, but we think that there 
should be no problem to determine T* numerically. 

In  the limit C and p-+ CQ,  keeping in mind that N-+ 00 first (see condition 12), if one 
defines a and a reduced temperature T by 

a ='A and T = ToIC,  (17) C 

the expression (9) of f ( m )  becomes 

1 f (m)  = - 1% dy exp[- y21 tgh 
$ - =  

The critical temperature T* is given byf'(0) = 1. The transition is second order because m* 
vanishes as  T-+T*. At 0 temperature, the critical value a, of a is 

a, = 21x = 0.6366 ... (19) 

One can also see from (18) that for T = 0 and the transition is second order m* - (a, - 
and a-0 
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One should notice that the dilute asymmetric model studied here has a second-order 
transition at  ac instead of the first-order transition predicted for the symmetric nondiluted 
case [3]. Also the value a, is larger than 0.14 (even if one takes into account that the 
nonsymmetry forces one to store two bonds instead of one). 

In order to understand the nature of the attractor near a stored pattern, we are now 
going to study the evolution of two configurations ~ , ( t )  and ei(t) having a finite projection on 
one pattern (say pattern 1) and zero projections on the other p - 1 patterns. For the same 
reason as in the case of one configuration, the spins s,,(t), . . . ,crJt) are uncorrelated and the 
spins 5,1(t), ..., 5J t )  are uncorrelated. However, crJt) and ejJt) are correlated. One can then 
consider 3 quantities: m(t), %(t) defined by (7) and q(t)  defined by 

where 

The evolution of m(t) and f i ( t )  are still given by (8) and (9). The only new information is the 
time evolution of q(t) .  If one defines hi(t) and h,(t) by 

K K P  

these two fields are correlated. One can compute the probability P(nl, %, n3, n4, sl, se) that 

6,’ h,(t) = n, + nz - % - n4 + ( p  - l)(nl + nz + n3 + n4) - 2sl - 2s2, 

tfhi(t) = nl - nz + n3 - n4 + ( p  - l)(nl - nz - n3+ n4) - ZS, + 2s2, 
(24) 

is given by 

where m, m and y are the values at time t. These expressions are rather easy to understand. 
They express the fact that among the K ancestors j of site i, nl are such that Ej = crj = 6j, nz 
such that (j = ~j = - j j ,  n3 such that = - crj = - ej. One can 
then compute qi(t + At) by averaging over nl, n,, n3, n4, s1 and s2: 

= - ~j = ej ,  n4 such that 
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and from that obtain the time evolution of q( t )  in the parallel and the sequential dynamics. 
Let us write here the evolution of q(t) in the limit p and C+ (see eq. (17)) 

where on the right-hand side of (27), m, A and q are the values a t  time t. In the limit t+ m) 

m(t) and rh(t)-+ m" given by (18), whereas q(t) converges to the fixed point q* of (27). For 2 
small, one finds 

a1 * 
8 q * = l - -  exp[- l i  2 

It is interesting to compare (20) and (28) for a small 1 - q* << 1 - m*. Since q* is not 1, this 
means that near a stored pattern there is not a single attractive fixed configuration but 
either a more complicated attractor or a cloud of attractors as in the symmetric case [3,16]. 
So the picture of a single valley near a stored pattern is certainly too simplified. 

A similar result has been obtained recently by Feigelman and Ioffe [8] for a nondiluted 
and nonsymmetric version of the Hopfield model that they can solve in the limit a+O. 

Lastly let us consider briefly the case of a configuration { ~ ( t ) }  having projections ml(t) 
and mz(t) on two patterns {ti} and {E:} (see eq. (7)) and a zero projection of the p - 2 other 
random patterns. We shall consider the case for which the two patterns 1 and 2 have a finite 
overlap Q 

The other p - 2 patterns being random, they have, with probability 1, zero projection on 
patterns 1 and 2. One can repeat calculations similar to those given above to obtain the 
evolution of ml(t)  and mz(t). Let us just give here the result in the limit p and C+ M (see eq. 
(17)): 

for ~ = + l .  
In the limit T+ 0 and t+ a, one finds two critical values of a: 

(31) and 

For a > ai1) the system does not remember anything (mT = m$ = 0). For a:') < x < ai'), one 
finds an attractive fixed point mf = rr$ # 0. The system remembers patterns 1 and 2, but 
cannot distinguish them. For  CL^^), one finds two attractive fixed points with 
O#mr#m$#O which means that the system remembers the two patterns and can 
distinguish them. 

In this letter, we have seen that the dynamics of a diluted and asymmetric version of the 

$1 - 2 2 - - (1 + Q)' a',") = - (1 - Q)'. 
x x 
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Little-Hopfield model can be solved exactly. As for other models we find a critical z, above 
which the system does not remember. For a < a,, two initial configurations close to a stored 
pattern, remain close to the pattern, but do not become identical. This shows that the 
attractor near a stored pattern has a more complex structure than a single attractive 
configuration. Lastly, we have seen that when some of the stored patterns are correlated, 
there exist regimes for which the system remembers the patterns, but cannot distinguish 
them. 

We think that our approach could be generalized to other situations like for example the 
case of time-dependent stored patterns. However, the case of symmetric bonds Jij is 
probably impossible to  treat by this approach because after two times steps the same site 
appears several times in the tree of ancestors. 
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