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Abstract. Under certain mode-matching conditions, small-amplitude waves can be trapped by
coupling to solitons of nonlinear fields. We present a model for this phenomenon, consisting of a
linear equation coupled to the Korteweg–de Vries (KdV) equation. The model has one parameter,
a coupling constant κ. For one value of the coupling constant, κ = 1, the linear equation becomes
the linearized KdV equation, for which the linear waves can indeed be trapped by solitons and,
moreover, for which the initial value problem for the linear waves has been solved exactly by Sachs
[S83] in terms of quadratic forms in the Jost eigenfunctions of the associated Schrödinger operator.
We consider in detail a different case of weaker coupling, κ = 1/2. We show that in this case
linear waves may again be trapped by solitons, and like the stronger coupling case κ = 1, the initial
value problem for the linear waves can also be solved exactly, this time in terms of linear forms in
the Jost eigenfunctions. We present a family of exact solutions, and we develop the completeness
relation for this family of exact solutions, finally giving the solution formula for the initial value
problem. For κ = 1/2, the scattering theory of linear waves trapped by solitons is developed. We
show that there exists an explicit increasing sequence of bifurcation values of the coupling constant,
κ = 1/2, 1, 5/3, . . ., for which some linear waves may become trapped by solitons. By studying a
third-order eigenvalue equation, we show that for κ < 1/2 all linear waves are scattered by solitons,
and that for 1/2 < κ < 1, as well as for κ > 1, some linear waves are amplified by solitons.

Key words. solitons, Korteweg–de Vries equation, coupled systems, completeness relations,
wave trapping

AMS subject classifications. 37K40, 35Q53, 42A65

PII. S0036141099365431

1. Introduction. This paper is concerned with solving the coupled system of
equations

∂tA+ ∂x

[
1

2
A2 + ∂2

xA

]
= 0,(1)

∂tB + ∂x
[
κAB + ∂2

xB
]

= 0 ,(2)

where κ is a real parameter. Of course, the nonlinear equation for A(x, t) is simply
the Korteweg–de Vries (KdV) equation, and it can be solved independently by the
inverse-scattering transform [GGKM67]. The coupled system (1) and (2) is a partially
linearized version of the system proposed by Hirota and Satsuma [HS81] as a model
for the dynamics of coupled long waves.

The coupled system (1) and (2) can be solved exactly when κ = 1 and when
κ = 1/2. The case of κ = 1 is well known, for then the equation (2) is just the KdV
equation itself linearized about the solution A(x, t). An elementary exact solution of
the linear equation (2) in this case is given by B(x, t) = ∂xA(x, t). Further solutions
can be expressed in terms of derivatives of the squared eigenfunctions of the related
Schrödinger operator with potential A [S83].
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The case of κ = 1/2 is essentially different. In this case, the linear equation (2) is
no longer the linearization of KdV about any solution. An elementary exact solution
of the linear equation in this case is given simply by B(x, t) = A(x, t). The main goal
of this paper is to construct the general solution of the initial value problem for this
linear equation when A(x, t) is a multisoliton solution of KdV.

One way to make clear the difference between the cases κ = 1 and κ = 1/2 is to
consider A(x, t) to be the simple soliton solution of KdV (1):

A(x, t) = 12η2sech2(η(x− 4η2t− α)) = −V (χ) ,(3)

where χ = x− ct−α and the velocity is c = 4η2. If we look for solutions of the linear
equation (2) that are traveling waves with speed c, we find the equation

[−κV (χ)B(χ) +B′′(χ)]
′

= cB′(χ) .(4)

Integrating once, using vanishing boundary conditions at χ = ±∞, yields a Schrödinger
eigenvalue problem for B:

−B′′(χ) + κV (χ)B(χ) = EB(χ) ,(5)

where E = −c. For κ = 1/2, it follows from the fact that B(x, t) = A(x, t) is a
solution of (2) that the function B(χ) = V (χ) is an eigenfunction of the Schrödinger
operator with eigenvalue E = −c = −4η2. Since it has no zeros, it is the ground
state eigenfunction. We will see below that there is also one excited state for κ = 1/2,
although it is not relevant here since it corresponds to a different velocity. On the
other hand, for κ = 1, B(x, t) = ∂xA(x, t) is a solution of (2), which implies that
the function B(χ) = ∂xV (χ) is an eigenfunction of the Schrödinger operator with the
same eigenvalue E = −c = −4η2. In this case, the eigenfunction has a single zero and
therefore is the first excited state. It follows that there are at least two eigenvalues
for κ = 1. In fact, there are exactly three states in this case. A final observation is
that from the construction of the one-soliton solution of KdV (see (8), (9), and (10)
below) it follows that for κ = 1/6, the function B(χ) = V (χ) is an eigenfunction of
the Schrödinger operator with eigenvalue E = −c/4 = −η2. It is the ground state
and the only eigenfunction. These relationships are summarized in Figure 1.1. We
will have more to say about this picture when we discuss the trapping of linear waves
by solitons for general values of κ in section 6.

The rest of this paper is primarily concerned with developing the general solution
of the initial value problem for (2) with κ = 1/2 when A(x, t) is an N -soliton solution
of KdV (1). In section 2 we show how for κ = 1/2 a large family of exact solutions of
(2) can be obtained from the simultaneous solutions of the Lax pair for KdV. When
the solution of KdV contains only solitons and no radiation, the construction of Lax
eigenfunctions is completely algorithmic and algebraic, and consequently the corre-
sponding family of solutions of (2) for κ = 1/2 can be obtained with great practicality.
In section 3 we then establish that in the N -soliton case there are enough of these
exact solutions of (2) for κ = 1/2 to expand for fixed t any absolutely continuous
L1(R) function of x. This fact then leads to a general solution formula for (2) simply
by expanding the initial data. We present and discuss this formula in section 4. There
will turn out to be N linearly independent solutions that are asymptotically confined
to the union of soliton trajectories and can therefore be considered to be bound states.
In section 5 we compute the scattering matrix that relates the asymptotic behavior of
bound states for t→ −∞ to the corresponding behavior for t→ +∞. In section 6 we
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Fig. 1.1. Energy levels of the 12κη2sech2(ηχ) potential for three different values of the coupling
constant κ.

consider general values of the coupling constant κ and describe the behavior of some
solutions of (2) when A(x, t) is a one-soliton solution of KdV (1). These calculations
indicate the exceptional nature of the two values κ = 1/2 and κ = 1. In the appendix,
we describe several physical applications of the coupled system (1) and (2) to topics
in molecular dynamics, mechanics, soliton theory, and the fluid dynamics of internal
waves.

2. Exact solution formulas for κ = 1/2. As is well known [GGKM67], the
KdV equation (1) is the compatibility condition for a pair of linear equations involving
a complex parameter λ for an auxiliary function f(x, t, λ). This pair of linear equations
is

∂2
xf = −λ

2

4
f − 1

6
Af and ∂tf =

1

6
∂xA · f +

(
λ2 − 1

3
A

)
∂xf(6)

and is called a Lax pair. A simultaneous solution f(x, t, λ) of these linear equations
exists if and only if the function A(x, t) satisfies KdV (1). Suppose that this is the
case. Then, it is a direct matter to verify that for fixed but arbitrary λ ∈ C, the two
functions defined by

B(x, t) := ∂x

[
f(x, t, λ) exp

(
± i

2
(λx+ λ3t)

)]
(7)

are solutions of the linear equation (2) when κ = 1/2. Note here an important point
of departure from the other solvable case, namely, κ = 1, where (2) is the linearized
KdV equation. In the latter case, particular solutions are expressed in terms of the
x-derivative of the square of the Lax eigenfunction f(x, t, λ) [GGKM74, S83]. By
contrast, the formula (7) for solutions of (2) for κ = 1/2 is linear in f(x, t, λ). This
fact leads to some important simplifications.
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The formula (7) is only really practical to use if one can explicitly compute the
function f(x, t, λ). This will be the case if the solution A(x, t) of KdV (1) is a pure
N -soliton solution. For each fixed t, A(x, t) is then a reflectionless potential of the
Schrödinger equation in the Lax pair (6). The multisoliton solutions of KdV and the
associated solutions of the Lax pair are constructed as follows [KM56]. Let f+(x, t, λ)
be given by

f+(x, t, λ) :=

(
1 +

N−1∑
n=0

λn−Nfn(x, t)

)
exp

(
− i

2
(λx+ λ3t)

)
,(8)

where the fn(x, t) are unknown coefficients. Choose N positive numbers η1 > η2 >
· · · > ηN , and N arbitrary real numbers α1, . . . , αN , and insist that f+(x, t, λ) satisfy
the relations

f+(x, t, 2iηn) = (−1)n+1 exp(2ηnαn)f+(x, t,−2iηn)(9)

for all n = 1, . . . , N . It is easy to see that these relations imply a square linear algebraic
system for the coefficients fn(x, t). The determinant of the system is always nonzero,
and so the coefficients fn(x, t) are determined uniquely from the soliton eigenvalues
{λn = 2iηn} and the norming constants {αn} in terms of exponential functions. From
this construction, it can be shown that if one chooses

A(x, t) := 6i∂xfN−1(x, t) ,(10)

then f+(x, t, λ) and f−(x, t, λ) := f+(x, t,−λ) are two simultaneous solutions of the
Lax pair (6), and the function A(x, t) defined by (10) satisfies KdV (1). The two
functions f±(x, t, λ) are linearly independent for all nonzero λ 	= ±2iηn. According
to the linear relations (9) that determine the coefficients, at the exceptional values of
λ the two functions are proportional.

The solution A(x, t) of KdV so constructed represents the interaction of N soli-
tons. In particular, as t→ ±∞, the solution can be represented in the form

A(x, t) ∼
N∑

n=1

A±
n (x, t) , where A±

n (x, t) := 12η2
nsech2(ηn(x−α±

n )−4η3
nt) ,(11)

where the asymptotic phase constants α±
n are functions of the ηn and αn.

Below we will need the asymptotic behavior of the functions f±(x, t, λ) as x →
±∞ for λ and t fixed. It can be shown that the coefficient functions fn(x, t) remain
bounded as x → ±∞. Then, letting x tend to ±∞ in the linear relations (9), one
finds from dominant balance arguments that

lim
x→±∞

(
1 +

N−1∑
n=0

λn−Nfn(x, t)

)∣∣∣∣∣
λ=±2iηn

= 0 .(12)

These relations imply that

lim
x→±∞

(
1 +

N−1∑
n=0

(±λ)n−Nfn(x, t)

)
= λ−N

N∏
n=1

(λ− 2iηn) .(13)

Therefore, for all λ ∈ C,

lim
x→±∞ f+(x, t, λ) exp

(
i

2
(λx+ λ3t)

)
= λ−N

N∏
n=1

(λ∓ 2iηn) .(14)



INTERACTION OF LINEAR WAVES WITH SOLITONS 265

The large |x| asymptotics for the other solution f−(x, t, λ) follow from the definition
f−(x, t, λ) = f+(x, t,−λ). From these asymptotics, it is easy to construct the appro-
priate linear combinations of f±(x, t, λ) that correspond to the Jost functions of the
Schrödinger equation, normalized at x = ±∞.

In the formula (7) we have a choice of sign in the exponent. In fact, it is easy
to see that if one considers the totality of solutions obtained for all complex λ, the
choice of sign is redundant. In what follows, we adopt a particular choice of the sign
and maintain generality by using both Lax eigenfunctions f+(x, t, λ) and f−(x, t, λ).
Thus, the particular solutions of the linear equation (2) for κ = 1/2 that we will
consider below will be denoted by h±(x, t, λ), given by

h±(x, t, λ) := ∂xg±(x, t, λ) , where g±(x, t, λ) := f±(x, t, λ) exp

(
i

2
(λx+ λ3t)

)
.

(15)
From the Schrödinger equation (6) for f±(x, t, λ), it follows that g±(x, t, λ) satisfies
the ODE

−i∂2
xg± − iA

6
g± = λ∂xg± .(16)

This ODE plays an important role in suggesting the completeness relation for the
solutions h±(x, t, λ).

3. The completeness relation for κ = 1/2. Having in hand a large family
of exact solutions of the linear equation (2) for κ = 1/2 is certainly useful, but we
may then ask whether there are enough of these solutions to construct the general
solution of the initial value problem by superposition. A completeness relation is a
formula that gives the expansion of arbitrary initial data in terms of such a collection
of functions. In this section, we will establish the completeness relation for the exact
solutions h±(x, t, λ) obtained in section 2.

The form of the completeness relation is suggested by a similar argument to that
used by Sachs [S83] in his investigation of the completeness of squared eigenfunction
solutions to the linearized KdV equation. The idea is that ideally we would like
to have a differential eigenvalue problem in standard form satisfied by the functions
h±(x, t, λ):

L(t)h±(x, t, λ) = λh±(x, t, λ) ,(17)

where λ is the eigenvalue and L(t) is some second-order linear differential operator in
x. Then, using the two explicit solutions h±(x, t, λ) of this problem, we could solve
the inhomogeneous problem

L(t)ψ − λψ = φ(18)

by variation of parameters, i.e., by writing ψ as a linear combination of h±(x, t, λ)
with nonconstant coefficients, and substituting into (18). For a fixed function φ(x),
this determines ψ(x, t, λ), and we have thus constructed the resolvent of the operator
L(t),

ψ(x, t, λ) = (L(t) − λI)−1φ(x) .(19)

If the spectrum of L(t) is contained in a bounded region of the complex plane (and
also under some milder conditions), then the Dunford–Taylor integral of the resolvent
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on a positively oriented contour enclosing the spectrum yields the identity operator

− 1

2πi

∮
ψ(x, t, λ) dλ = − 1

2πi

∮
(L(t) − λI)−1φ(x) dλ = φ(x) .(20)

However, we do not have a second-order eigenvalue problem for h±(x, t, λ). In-
stead we have the second-order equation (16) for g±(x, t, λ). However, we make the
guess that a similar procedure will apply here. Namely, for appropriate side conditions
(see below) we solve the inhomogeneous equation

−i∂2
xψ − iA

6
ψ − λ∂xψ = φ(21)

for ψ(x, t, λ) using variation of parameters with the two functions g±(x, t, λ) solving
the homogeneous equation (16), and then we differentiate the resulting formula with
respect to x. Formally speaking only, we have thus constructed the resolvent of the
“operator”

L(t) = −i∂x − iA
6
∂−1
x .(22)

The obstruction to rigor here is that ∂−1
x is not well defined. Nonetheless, we are

guided to hypothesize that

− 1

2πi

∮
∂xψ(x, t, λ) dλ = φ(x)(23)

for an appropriate contour of integration. This formula turns out to be correct, al-
though a direct proof must be supplied. The proof we use follows Miller and Akhme-
diev [MA98].

3.1. Solving the inhomogeneous problem. We express the solution of the
inhomogeneous problem in the form

ψ(x, t, λ) = C+(x, t, λ)g+(x, t, λ) + C−(x, t, λ)g−(x, t, λ) ,(24)

subject to the usual “reduction of order” condition

∂xC+(x, t, λ) · g+(x, t, λ) + ∂xC−(x, t, λ) · g−(x, t, λ) = 0 .(25)

Substituting (24) into the equation for ψ, and using (25), one finds

∂xC+(x, t, λ) = −iφ(x)g−(x, t, λ)

W (g+, g−)
and ∂xC−(x, t, λ) = i

φ(x)g+(x, t, λ)

W (g+, g−)
,(26)

where W (g+, g−) := g+∂xg− − g−∂xg+ is the Wronskian.
From the differential equation (16) satisfied by g±(x, t, λ), it follows that

∂xW (g+, g−) = iλW (g+, g−) .(27)

Using the large |x| asymptotics of f±(x, t, λ) obtained in section 2, one then solves
(27) uniquely and finds that

W (g+, g−) = iλ1−2N exp(i(λx+ λ3t))

N∏
n=1

(λ2 + 4η2
n) .(28)
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In solving the inhomogeneous equation (21) for ψ, we really should impose appro-
priate side conditions. Here, the side conditions we use are not related to boundary
conditions in x as much as to analyticity conditions in λ. It is easy to check that for
each x0,U , the function ψU (x, t, λ) defined by

ψU (x, t, λ) = −
∫ x

x0,U

g−(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏

n=1

(λ2 + 4η2
n)

dz · g+(x, t, λ)(29)

+

∫ x

−∞

g+(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏

n=1

(λ2 + 4η2
n)

dz · g−(x, t, λ)

is a solution analytic in λ for 
(λ) > 0 and |λ| sufficiently large. Similarly, ψL(x, t, λ)
defined for each x0,L by

ψL(x, t, λ) = −
∫ x

x0,L

g−(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏

n=1

(λ2 + 4η2
n)

dz · g+(x, t, λ)(30)

−
∫ ∞

x

g+(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏

n=1

(λ2 + 4η2
n)

dz · g−(x, t, λ)

is a solution analytic for 
(λ) < 0 and |λ| sufficiently large. The qualification of |λ|
being sufficiently large is necessary because the expressions have poles at the soliton
eigenvalues in the respective half-planes where the two functions g±(x, t, λ) become
proportional. However, these are the only finite singularities, and both solutions
ψU (x, t, λ) and ψL(x, t, λ) are meromorphic in the whole of their respective open half-
planes.

The arbitrariness of the parameters x0,U and x0,L would seem to be a problem;
however, it will turn out that these terms contribute nothing to the Dunford–Taylor
integral that we will prove gives the required completeness relation.

3.2. Integrating the resolvent. Here we show that the guess we made is indeed
correct.
Theorem 3.1. Let φ(x) be an absolutely continuous function in L1(R). Let x0,U

and x0,L be constants, and let t ∈ R be fixed. Then,

φ(x) = − 1

2πi
lim

R→∞

[∫
CU

∂xψU (x, t, λ) dλ+

∫
CL

∂xψL(x, t, λ) dλ

]
,(31)

where CU is the positively oriented half-circle from R to −R in the upper half-plane
and CL is the positively oriented half-circle from −R to R in the lower half-plane.

Proof. First, we show that the terms depending on the arbitrary parameters x0,U

and x0,L converge to zero as R→ ∞. This will justify calling the function ψU or ψL
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a “resolvent” even though the inverse is not unique. Consider the integral

JU :=

∫
CU

∂x


−

∫ x

x0,U

g−(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏

n=1

(λ2 + 4η2
n)

dz · g+(x, t, λ)


 dλ

= −
∫
CU

λ2Nh+(x, t, λ)

λ

N∏
n=1

(λ2 + 4η2
n)

∫ x

x0,U

g−(z, t, λ) exp(−i(λz + λ3t))φ(z) dz dλ ,

(32)

where we have used the relation (25). Recall that

h+(x, t, λ) =

N∑
n=1

λ−n∂xfN−n(x, t) ,

g−(z, t, λ) exp(−i(λz + λ3t)) = 1 +

N∑
n=1

(−λ)−nfN−n(z, t) .

(33)

Therefore, for all λ with |λ| = R > 1,

|h+(x, t, λ)| ≤ 1

R

N∑
n=1

|∂xfN−n(x, t)|(34)

and

sup
z∈R

|g−(z, t, λ) exp(−i(λz + λ3t))| ≤ 1 + sup
z∈R

N∑
n=1

|fN−n(z, t)| .(35)

This latter relation assumes the uniform boundedness of the functions fk(z, t) in z.
Finally, it is clear that for |λ| = R > supn 2ηn∣∣∣∣∣λ1−2N

N∏
n=1

(λ2 + 4η2
n)

∣∣∣∣∣ ≥ R
N∏

n=1

(
1 − 4η2

n

R2

)
.(36)

It follows that for all λ with |λ| = R sufficiently large,

|JU | ≤ K(x, t)

R
‖φ‖1(37)

where

K(x, t) = π
N∏

n=1

(
1 − 4η2

n

R2

)−1

·
(

N∑
n=1

|∂xfN−n(x, t)|
)
·
(

1 + sup
z∈R

N∑
n=1

|fN−n(z, t)|
)
.

(38)

The bound (37) clearly vanishes as R→ ∞. A nearly identical argument shows that
the integral
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(39)

JL :=

∫
CL

∂x


−

∫ x

x0,L

g−(z, t, λ) exp(−i(λz + λ3t))φ(z)

λ1−2N
N∏

n=1

(λ2 + 4η2
n)

dz · g+(x, t, λ)


 dλ

satisfies the same bound (37) as JU .
Now we consider integrating the second terms of ∂xψU (x, t, λ) and ∂xψL(x, t, λ),

respectively. For brevity, define

Y (x, z, t, λ) :=
g+(z, t, λ) exp(−i(λz + λ3t))h−(x, t, λ)

λ1−2N
N∏

n=1

(λ2 + 4η2
n)

.(40)

Note that this can be written as

Y (x, z, t, λ) = exp (iλ(x− z))

(
1 +

N∑
n=1

fN−n(z, t)

λn

)

λ

N∏
n=1

(
1 +

4η2
n

λ2

)(41)

×
(
iλ

(
1 +

N∑
n=1

fN−n(x, t)

(−λ)n

)
+

N∑
n=1

∂xfN−n(x, t)

(−λ)n

)
,

and therefore,

Y (x, z, t, λ) = i exp(iλ(x− z)) (1 + ∆(x, z, t, λ)) ,(42)

where ∆(x, z, t, λ) = O(λ−1) uniformly in x and z for fixed t. It also follows from
additional cancellation that for z = x, ∆(x, x, t, λ) = O(λ−2) uniformly in x. Finally,
derivatives of ∆ are controlled as well: ∂z∆(x, z, t, λ) = O(λ−1) uniformly. The
integral we need to compute for the contribution of ∂xψU (x, t, λ) is∫
CU

∫ x

−∞
Y (x, z, t, λ)φ(z) dz dλ = i

∫
CU

∫ x

−∞
exp(iλ(x− z))φ(z) dz dλ

+ i

∫
CU

∫ x

−∞
∆(x, z, t, λ) exp(iλ(x− z))φ(z) dz dλ .(43)

Note that since the integrand is analytic in the upper half-plane, the first term can
be written as

i

∫
CU

∫ x

−∞
exp(iλ(x− z))φ(z) dz dλ = −i

∫ R

−R

∫ x

−∞
exp(iλ(x− z))φ(z) dz dλ .(44)

In order to control the error term, it is necessary to integrate by parts once:

i

∫
CU

∫ x

−∞
∆(x, z, t, λ) exp(iλ(x− z))φ(z) dz dλ = −φ(x)

∫
CU

∆(x, x, t, λ)

λ
dλ

+

∫
CU

∫ x

−∞

exp(iλ(x− z))
λ

∂z(∆(x, z, t, λ)φ(z)) dz dλ .

(45)
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The boundary term at z = −∞ vanishes because ∆(x, z, t, λ) is bounded there, φ is
continuous and integrable, and exp(iλ(x − z)) is exponentially small for 
(λ) > 0.
Since the exponential is bounded in magnitude by unity for 
(λ) > 0 and the contour
is of length πR, the above estimates of ∆ imply that there exist K0(x, t), K1(x, t),
and K2(x, t) all positive, such that∣∣∣∣

∫
CU

∫ x

−∞
∆(x, z, t, λ) exp(iλ(x− z))φ(z) dz dλ

∣∣∣∣
=
K0(x, t)

R2
|φ(x)| +

K1(x, t)

R
‖φ‖1 +

K2(x, t)

R
‖φ′‖1 .

(46)

This proves that

(47)

lim
R→∞

∫
CU

∫ x

−∞
Y (x, z, t, λ)φ(z) dz dλ = −i lim

R→∞

∫ R

−R

∫ x

−∞
exp(iλ(x− z))φ(z) dz dλ .

Similar arguments applied to the contribution of ∂xψL(x, t, λ) show that

− lim
R→∞

∫
CL

∫ ∞

x

Y (x, z, t, λ)φ(z) dz dλ = −i lim
R→∞

∫ R

−R

∫ ∞

x

exp(iλ(x− z))φ(z) dz dλ ,

(48)
and therefore,

− 1

2πi
lim

R→∞

[∫
CU

∂xψU (x, t, λ) dλ+

∫
CL

∂xψL(x, t, λ) dλ

]

=
1

2π
lim

R→∞

∫ R

−R

∫ ∞

−∞
exp(iλ(x− z))φ(z) dz dλ = φ(x)

(49)

with the last equality following from Fourier inversion. This establishes (31) and the
theorem.

As it stands, the completeness relation given in Theorem 3.1 is not really an ex-
pansion of φ(x) in terms of the functions h−(x, t, λ) because the expansion coefficients
themselves depend on x. This is easily remedied by casting the right-hand side of the
completeness relation into a more useful form. We do this now.
Theorem 3.2. Let φ(x) be an absolutely continuous function in L1(R). Let t ∈ R

be fixed, and choose any w ∈ R ∪ {−∞,+∞}. Define the mode function
H(x, t, λ) := λNh−(x, t, λ) ,(50)

which is an entire function of λ, and the amplitudes

b+(t, λ) :=

∫ ∞

w

λNg+(z, t, λ) exp(−i(λz + λ3t))

λ

N∏
n=1

(λ2 + 4η2
n)

φ(z) dz ,

b−(t, λ) :=

∫ w

−∞

λNg+(z, t, λ) exp(−i(λz + λ3t))

λ

N∏
n=1

(λ2 + 4η2
n)

φ(z) dz ,

(51)
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and set b(t, λ) := b+(t, λ) + b−(t, λ). The amplitudes have simple poles at λ = 0 and
λ = ±2iηn for n = 1, . . . , N . Finally, set

b0(t) :=
1

2
Res
λ=0

(b+(t, λ) − b−(t, λ)) and b±n (t) := ∓ Res
λ=±2iηn

b∓(t, λ) .

(52)
Then we have the expansion

φ(x) = lim
R→∞

1

2πi
P.V.

∫ R

−R

b(t, λ)H(x, t, λ) dλ

+ b0(t)H(x, t, 0) +

N∑
n=1

[
b−n (t)H(x, t,−2iηn) + b+n (t)H(x, t, 2iηn)

]
.

(53)

Remark 1. Since w is now fixed and not a function of x, this expansion (53) is
a true completeness relation, expressing an arbitrary given function φ(x) as a sum of
known functions H(x, t, λ). From the exact formulas (50), (15), and (8), it is clear
that the part of the expansion (53) represented by the singular integral is Fourier-
like, with the corresponding components of the solution, H(x, t, λ) for λ ∈ R being
bounded oscillatory functions tending to complex exponentials for large x. On the
other hand, the discrete contributions to the solution represent bound states. The
2N + 1 bound state terms in (53) are not linearly independent. From the fact that
at the eigenvalues ±2iηn the functions g−(x, t, λ) are all linear combinations of the
same N functions f0(x, t), . . . , fN−1(x, t), it is clear that only N of the bound states
are linearly independent. These facts are easiest to see when one takes w to ∞ or
−∞. Then, half of the contributions from the eigenvalues disappear, and it remains
only to express the bound state at zero, H(x, t, 0), in terms of H(x, t,±2iηn). This
can be done directly. From the exact formulas (50), (15), and (8), we see that

H(x, t, 0) = (−1)N∂xf0(x, t) ,(54)

and making use of the relations (9) satisfied by f+ at the eigenvalues,

H(x, t, 2iηn) = (−1)n+1 exp(−2ηnαn)

N−1∑
p=0

(2iηn)p∂xfp(x, t) .(55)

Expressing H(x, t, 0) in terms of H(x, t, 2iηn) is therefore a polynomial interpolation
problem. Introduce the polynomial

P (λ) =

N−1∑
p=0

∂xfp(x, t)λp .(56)

Given isolated values of this polynomial

P (2iηn) = (−1)n+1 exp(2ηnαn)H(x, t, 2iηn) for n = 1, . . . , N ,(57)

we are to find P (0) and thus H(x, t, 0) = (−1)N∂xf0(x, t) = (−1)NP (0). Expressing
P (λ) explicitly in terms of Lagrange polynomials gives

P (λ) =
N∑

n=1

(−1)n+1 exp(2ηnαn)H(x, t, 2iηn)
∏
k 
=n

λ− 2iηk
2iηn − 2iηk

,(58)
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and therefore

H(x, t, 0) =

N∑
n=1


(−1)n exp(2ηnαn)

∏
k 
=n

ηk
ηn − ηk


H(x, t, 2iηn) .(59)

There is, indeed, a similar expression for H(x, t, 0) in terms of H(x, t,−2iηn).
Remark 2. An important distinction between the completeness relation stated

in Theorem 3.2 and that found by Sachs [S83] for derivatives of squared Schrödinger
eigenfunctions is in the nature of the singularity at λ = 0. Sachs shows that in the
expansion of φ in terms of derivatives of squared eigenfunctions, there is an appar-
ent singularity at λ = 0 that is in fact removable. On the other hand, the integral
in Theorem 3.2 is essentially singular and the residue contribution of b0(t) is
nonzero.

Proof of Theorem 3.2. We first establish that in the formulas (29) for ∂xψU (x, t, λ)
and (30) for ∂xψL(x, t, λ) we may replace x in the limits of integration by any other
value without changing the result of the theorem. That is, we will now show that the
integral ∫

CU

∫ w

−∞
Y (x, z, t, λ)φ(z) dz dλ−

∫
CL

∫ ∞

w

Y (x, z, t, λ)φ(z) dz dλ ,(60)

which we have already seen converges as R tends to infinity to −2πiφ(x) in the case
that w = x, is in fact independent of w. Holding R fixed and differentiating with
respect to w, we must show that for sufficiently large R,

φ(w)

∮
|λ|=R

Y (x,w, t, λ) dλ ≡ 0(61)

identically in x, w, and t. Being as the integrand is meromorphic in the finite λ
plane, we can evaluate the integral by residues. There are simple poles at λ = 0 and
λ = ±2iηn for n = 1, . . . , N . Using the linear relations (9) satisfied by f± at the
eigenvalues λ = 2iηn, we find

Res
λ=2iηk

Y (x,w, t, λ) =

N−1∑
p=0

(2iηk)N+p−1

Dk
∂xfp(x, t)

+
N−1∑
p,q=0

(−1)N−q (2iηk)p+q−1

Dk
fq(w, t)∂xfp(x, t) ,

Res
λ=−2iηk

Y (x,w, t, λ) =

N−1∑
p=0

(−1)N−p (2iηk)N+p−1

Dk
∂xfp(x, t)

+
N−1∑
p,q=0

(−1)N−p (2iηk)p+q−1

Dk
fq(w, t)∂xfp(x, t) ,(62)

where

Dk :=
∏
n 
=k

(2iηk − 2iηn)

N∏
n=1

(2iηk + 2iηn) .(63)
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Similarly, for the residue at zero,

Res
λ=0

Y (x,w, t, λ) = (−1)N
f0(w, t)∂xf0(x, t)

N∏
n=1

4η2
n

.(64)

Adding all the residues and collecting coefficients of the terms ∂xfp(x, t) and fq(w, t)
∂xfp(x, t), we find that the sum of the residues will be zero if

Ip :=

N∑
k=1

(2iηk)p

Dk
= 0(65)

for all odd p = 1, 3, 5, . . . , 2N − 3, and if

1
N∏

n=1

4η2
n

+ 2

N∑
k=1

1

2iηkDk
= 0 .(66)

These expressions are themselves sums of residues of meromorphic differentials. Thus,
by inspection, one finds that for p = 1, 3, 5, . . . , 2N − 3,

Ip =
1

2πi

∮
C

λp dλ
N∏

n=1

(λ2 + 4η2
n)

,(67)

where C is any simple counterclockwise oriented contour that encircles the points
λ = 2iηn for n = 1, . . . , N (but without enclosing the conjugate eigenvalues or λ = 0).
With p bounded by 2N − 3, the path of integration can be blown out to infinity in
the upper half-plane and then brought down to the real axis so that

Ip =
1

2πi

∫ ∞

−∞

λp dλ
N∏

n=1

(λ2 + 4η2
n)

= 0(68)

with the last equality following from the oddness of the integrand for odd p. Finally,
consider the integral I−1 defined by

I−1 :=
1

2πi

∮
C

dλ

λ

N∏
n=1

(λ2 + 4η2
n)

.(69)

Evaluating the residues inside C, we find

I−1 =

N∑
k=1

1

2iηk
∏
n 
=k

(2iηk − 2iηn)

N∏
n=1

(2iηk + 2iηn)

.(70)
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On the other hand, we can again blow the contour C out to infinity in the upper
half-plane and bring it down to the real axis. This time, there is a singularity at
λ = 0, so the Plemelj formula must be used. We find

I−1 = −1

2
· 1

N∏
n=1

4η2
n

+
1

2πi
P.V.

∫ ∞

−∞

dλ

λ

N∏
n=1

(λ2 + 4η2
n)

.(71)

Once again, by oddness, the principal value integral vanishes identically, and then
combining this result with the previous expression, we obtain the required vanishing.

This shows that for any w,

φ(x) = − 1

2πi
lim

R→∞

[∫
CU

∫ w

−∞
Y (x, z, t, λ)φ(z) dz dλ−

∫
CL

∫ ∞

w

Y (x, z, t, λ)φ(z) dz dλ

]
.

(72)
Establishing (53) and therefore the theorem now amounts to using the residue theorem
once again to deform the integration paths CU and CL in (72) to the real axis. One
finds discrete contributions at the poles λ = ±2iηn, and then applying the Plemelj
formula to contract the contour to the real axis in the neighborhood of λ = 0 gives a
discrete contribution proportional to H(x, t, 0) and the principal value regularization
of the singular integral over the continuous spectrum.

4. Solution of the initial value problem for κ = 1/2. It is easy to see
that when A(x, t) is an N -soliton solution of KdV (1), one can use the completeness
relation to solve the initial value problem

∂tB + ∂x

[
1

2
AB + ∂2

xB

]
= 0 , B(x, 0) = φ(x) .(73)

Setting t = 0, and picking a convenient value of w, say, w = +∞, one computes the
amplitudes (51) and discrete coefficients (52). Then, because the function H(x, t, λ)
satisfies (2) for κ = 1/2 and for each complex λ, the expression

B(x, t) := lim
R→∞

1

2πi
P.V.

∫ R

−R

b(0, λ)H(x, t, λ) dλ

+ b0(0)H(x, t, 0) +

N∑
n=1

[
b−n (0)H(x, t,−2iηn) + b+n (0)H(x, t, 2iηn)

]
,

(74)

provides the solution of the initial value problem (73), generally in the sense of distri-
butions. That is, B(x, 0) = φ(x) by Theorem 3.2, and for each test function ϕ(x, t)
that is differentiable in t and three times differentiable in x and has compact support
in (x, t) ∈ R × R+, one shows by exchanging the order of integration that∫ ∞

0

∫ ∞

−∞

[
∂tϕ(x, t) +

1

2
A(x, t)∂xϕ(x, t) + ∂3

xϕ(x, t)

]
B(x, t) dx dt = 0 .(75)

The solution will be classical in as much as it is possible to differentiate with respect to
x and t under the integral sign in the solution formula (74). This requires additional
smoothness and decay assumptions on the initial data φ(x) that we do not consider
here.
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5. Scattering of bound states for κ = 1/2. Of particular interest in ap-
plications is the N -dimensional (recall that A(x, t) is an N -soliton solution of KdV)
subspace of solutions of (2) for κ = 1/2 consisting of bound states. This subspace
represents linear waves that are trapped by the solitons of the potential A(x, t). For
large |t|, these bound state solutions are all confined to the trajectories of the solitons.
Therefore, it follows that each bound state B(x, t) has two asymptotic representations:

B(x, t) ∼
N∑

n=1

β±n A
±
n (x, t) , t→ ±∞ ,(76)

for some constants β±n depending on B(x, t), where A±
n (x, t) are defined by (11). Since

there are exactly N linearly independent bound states, it follows that the constants
β+
n are completely determined from the constants β−n . In particular, there exists an

invertible N × N matrix T with entries depending only on the data specifying the
N -soliton solution A(x, t), such that

β+
j =

N∑
k=1

Tjkβ
−
k .(77)

The matrix T is called the bound state scattering matrix. In this section, we compute
the scattering matrix explicitly and show that its elements only depend on the soliton
eigenvalues η1, . . . , ηN .

If A(x, t) is an N -soliton solution of KdV (1), then a family of solutions to (2) for
κ = 1/2, parametrized by complex λ, is given by

h+(x, t, λ) =
A(x, t)

6iλ
+

N−2∑
n=0

λn−N∂xfn(x, t) .(78)

We want to analyze these solutions in the limit of large |t|, in a frame of reference
traveling with constant velocity c.

The first step is to see how the coefficients fn(x, t) behave for large |t|. Let χ =
x− ct be fixed as τ = t goes to either +∞ or −∞. Begin by taking η2

m < 4c < η2
m−1

to see how the coefficients behave in between the solitons. In the limit τ → +∞, the
equations (9) imply that

1 +
N−1∑
k=0

(−2iηn)k−Nfk → 0 , n = 1, . . . ,m− 1 ,

1 +

N−1∑
k=0

(2iηn)k−Nfk → 0 , n = m, . . . , N .

(79)

This is an invertible Vandermonde system for the coefficients fk, so that as τ →
+∞, the fk all become constants, independent of χ and τ . Thus, ∂xfk(x, t) vanishes
between the solitons for all k. The analogous result holds as τ → −∞. This shows
that the solutions of (2) for κ = 1/2 described by the formula (78) are asymptotically
confined to the individual frames of reference of the moving solitons in the potential
field A(x, t).
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Now set c = 4η2
m to go into the moving frame of reference of one of the solitons.

Taking the limit τ → +∞ yields

1 +

N−1∑
k=0

(−2iηn)k−Nfk → 0 , n = 1, . . . ,m− 1 ,

1 +

N−1∑
k=0

(2iηn)k−Nfk → 0 , n = m+ 1, . . . , N .

(80)

This is a system of N−1 equations in N unknowns, so it can be used to asymptotically
eliminate ∂χf0 through ∂χfN−2 in favor of ∂χfN−1, which we know is proportional to
the N -soliton solution of KdV, A(x, t). Thus, as τ → +∞, with c = 4η2

m,

∂χfk = Qmk∂χfN−1 =
1

6i
QmkA(81)

for k = 0, . . . , N − 2, where the numbers Qmk are the unique solution of the inhomo-
geneous system of linear algebraic equations

(−2iηn)−1 +

N−2∑
k=0

(−2iηn)k−NQmk = 0 , n = 1, . . . ,m− 1 ,

(2iηn)−1 +

N−2∑
k=0

(2iηn)k−NQmk = 0 , n = m+ 1, . . . , N .

(82)

One can similarly show that as τ → −∞, with c = 4η2
m,

∂χfk = Q∗
mk∂χfN−1 =

1

6i
Q∗

mkA(83)

for k = 0, . . . , N − 2, where the star denotes complex conjugation.
Now consider particular solutions Bj(x, t) of (2) for κ = 1/2 obtained as linear

combinations of N others expressed by the formula (78) evaluated on the N soliton
eigenvalues. The formula for Bj(x, t) is

Bj(x, t) =

N∑
k=1

Fjkh+(x, t, 2iηk) =

N∑
k=1

Fjk

[
−A(x, t)

12ηk
+

N−2∑
n=0

(2iηk)n−N∂xfn(x, t)

]
,

(84)
where F = {Fjk} is a matrix of arbitrary constants. From the asymptotics of fn(x, t),
we have as τ → −∞ with c = 4η2

m

Bj → A

N∑
k=1

FjkG
−
km , where G−

km := − 1

12ηk
+

1

6i

N−2∑
n=0

(2iηk)n−NQ∗
mn .(85)

So, with the choice that the matrix {Fjk} is the inverse of the matrix G− = {G−
km},

the particular solution Bj(x, t) of (2) for κ = 1/2 will be completely confined as
t→ −∞ to the frame of reference moving with speed c = 4η2

j , where it will be locally
indistinguishable from the solution A(x, t) of KdV. Let us now determine how Bj(x, t)
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will behave in the various soliton frames as t→ +∞. Passing to the limit of τ → +∞
in the frame with velocity c = 4η2

m gives

Bj → A

N∑
k=1

FjkG
+
km , where G+

km := − 1

12ηk
+

1

6i

N−2∑
n=0

(2iηk)n−NQmn .(86)

These asymptotics give us a formula for the bound state scattering matrix:

T :=
[
(G−)−1G+

]T
.(87)

It is clear that the elements of T depend only on the N soliton eigenvalues η1, . . . , ηN .
There is no dependence on the soliton phase variables α1, . . . , αN . Therefore, the
asymptotic scattering properties of linear waves in (2) with κ = 1/2 are insensitive
to phase shifts among the solitons in the potential A(x, t). As a concrete example of
the scattering matrix, we compute it explicitly for N = 2 for arbitrary η1 > η2 > 0:

T =
1

η2
1 − η2

2

[
(η1 − η2)2 2η2(η1 − η2)

2η1(η1 − η2) −(η1 − η2)2

]
.(88)

The fact that T22 is negative means that it is possible for the interactions of the solitons
in A(x, t) to convert trapped linear waves of elevation into waves of depression, and
vice-versa.

6. General values of κ. We expect that for most values of κ, the linear waves
satisfying (2) will not be permanently trapped by solitons present in the potential
A(x, t). This is suggested by considering the simplest case, namely, taking A(x, t) to
be the one-soliton solution of KdV (1). The soliton travels with velocity c = 4η2 so
that A = −V (χ) with χ = x − ct − α. Corresponding traveling wave solutions B(χ)
of the linear problem that propagate with the same velocity and decay as χ → ±∞
satisfy

−B′′(χ) + κV (χ)B(χ) = −cB(χ) .(89)

Since c is fixed, we can view this as an eigenvalue equation with κ as the eigenvalue.
We therefore expect that only isolated values of κ will admit nontrivial decaying
solutions B(χ). We have already seen that κ = 1/2 and κ = 1 are indeed eigenvalues.
For κ = 1/2 the eigenfunction B(χ) is an even function of χ, while for κ = 1 the
eigenfunction B(χ) is odd in χ. Since eigenfunctions of (89) must be nondegenerate
and therefore have either odd or even parity in χ, there cannot exist a nontrivial
bound state eigenfunction of (89) for all κ ∈ [1/2, 1] because the eigenfunction would
have to change parity from one endpoint to the other. Therefore, at least one value
of κ ∈ [1/2, 1] is not an eigenvalue. For such κ, there is no bound state traveling wave
solution of (2) that is trapped in the soliton trajectory.

We can be more precise about this phenomenon. The left-hand side of (89) can
also be viewed as a Schrödinger operator L(κ) depending on a coupling constant κ, and
the condition for wave trapping by solitons is simply that −c ∈ Σp(L(κ)), where Σp

denotes the point spectrum. The number of discrete eigenvalues is a nondecreasing
function of κ > 0, corresponding to the deepening of the potential well. There is
an infinite unbounded sequence of cutoff values κcut

n of κ at which the number of
eigenvalues changes by one, and the new eigenvalue is born from the continuum.
Each eigenvalue, once born, is distinct and is a decreasing function of κ. From these
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arguments, it follows that there exists an infinite unbounded sequence of bifurcation
values κbif

n of κ at which one eigenvalue crosses the level E = −c, and a bound state
traveling wave solution of (2) exists.

It is easy to find the bifurcation points because the hyperbolic secant squared
potential is so well understood. The potential κV (χ) is exactly reflectionless for
12κ = n(n+ 1) for n = 1, 2, 3, . . .. The corresponding energy levels are En,k = −k2η2

for k = 1, . . . , n. Therefore, for n > 1 in this sequence, there is always one eigenvalue
that is exactly equal to −c = −4η2. The corresponding eigenstate is always the
(n − 1)st state and therefore has n − 2 zeros. It follows that the bifurcation points
are κ = κbif

n = (n+ 1)(n+ 2)/12 for n = 1, 2, 3, . . ..
The fact that some linear waves may be permanently trapped by isolated solitons

at a bifurcation point κ = κbif
n does not necessarily imply that there will be no losses to

radiation when solitons in the field A(x, t) interact with one another. Such a lossless
interaction might suggest the “integrability” of the linear equation (2). We have
indeed seen that this is the case for the first two bifurcation points, κ = κbif

1 = 1/2
and κ = κbif

2 = 1, but it is by no means clear that the trend continues for higher-order
bifurcation points. For the rest of this section, we therefore restrict attention to the
case N = 1, that is, we take the nonlinear field A(x, t) to be a one-soliton solution of
KdV (1).

Using (3) and the change of variables x′ = η(x − 4η2t − α) and t′ = η3t, (2)
becomes, after dropping primes,

∂tB + ∂x[−4B + 12κ sech2(x)B + ∂2
xB] = 0 .(90)

This equation is of course solved by separation of variables. We seek separated solu-
tions B(x, t) = bσ(x) exp(σt) and obtain the third-order eigenvalue problem

[4bσ(x) − 12κ sech2(x)bσ(x) − b′′σ(x)]′ = σbσ(x) ,(91)

where the prime denotes differentiation with respect to x. In this context, what we
have been calling “trapped linear waves” correspond to bound-state eigenfunctions of
(91) with σ = 0. Such solutions have finite mass and energy and are stationary in
the moving frame of reference of the soliton A(x, t). As we know, such eigenfunctions
with σ = 0 exist only at the bifurcation values of κ = κbif

n . However, it is clear that
for general values of κ there are other possibilities. There may be eigenvalues σ that
are purely imaginary, giving rise to oscillating modes that travel in the soliton frame.
More generally, if an eigenvalue has a nonzero real part for some κ, then there will
be a mode that is either amplified or exponentially damped as it propagates with the
soliton.

The eigenvalue problem (91) has two simple symmetries. Whenever bσ(x) is an
eigenfunction with eigenvalue σ, then bσ(−x) is an eigenfunction with eigenvalue −σ
and bσ(x)∗ is an eigenfunction with eigenvalue σ∗. Therefore, the eigenvalues either
come in purely real pairs (|σ|,−|σ|), purely imaginary pairs (i|σ|,−i|σ|), or in complex
quartets (σ,−σ, σ∗,−σ∗). These symmetries indicate the distinguished role of σ = 0
as a point that if it appears in the spectrum for some κ can signal a bifurcation in
the number of eigenvalues. This explains our terminology and notation for the values
κ = κbif

n .
Most points on the imaginary σ axis correspond to continuous spectrum. This

can be seen by the following argument. Let κ be fixed. Suppose σ = iω with ω ∈ R.
For large |x|, the solutions of (91) have the form of linear combinations of exp(ikω,jx)
where k = kω,j are the three roots of k3 + 4k − ω = 0. Exactly one of these roots,
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say, k = kω,0, is real, while the other two form a complex-conjugate pair. If we seek a
generalized eigenfunction normalized to exp(ikω,0x) as x→ −∞ through a “shooting”
method, we have three complex constants to exploit: the coefficient of the decaying
mode for large negative x, and the coefficients of the decaying mode for large positive
x and the finite amplitude contribution for large positive x. Matching the values of
biω(x), b′iω(x), and b′′iω(x) at x = 0 gives three complex equations in three complex
unknowns. If this system of equations is solvable at all, one expects it to be solvable
for almost all real ω, yielding a generalized eigenfunction. For exceptional values of
ω where there is not a generalized eigenfunction, there will be a genuine bound-state
eigenfunction since the spectrum is a closed set.

We have used a numerical Fourier-based collocation (pseudospectral) method to
find the discrete eigenvalues of (91) over a range of values of the coupling constant κ.
Essentially this involves approximating the continuous function bσ(x) by a periodic
discrete series. Then the derivative ∂x can be approximated to exponential accuracy
by a derivative matrix D for which an explicit formula is given in [CHQZ88]. This is
then used to construct a discrete approximation to the operator on the left-hand side of
(91). Standard techniques can then be used to obtain the eigenvalues and eigenvectors
of this matrix. The corresponding eigenfunctions always decay exponentially, but
sometimes they decay very slowly for large x of one or the other sign—luckily not both.
To obtain accurate results it was necessary in these cases to change the dependent
variable by multiplying by an appropriate exponential function of x to enhance the
decay on the slowly decaying side without changing decay into growth on the other
side. Our results over the range 0 < κ < 5 are shown in Figure 6.1. The bifurcation
values κbif

n appear to be of two different types. If n is odd, then when κ increases
through the value κ = κbif

n , a new pair of real eigenvalues is born from the origin
σ = 0. As κ is further increased, the pair of eigenvalues moves at first away from the
imaginary axis and then changes direction and contracts toward the origin. When
κ increases through the even bifurcation value κ = κbif

n+1, the pair enters the origin
and re-emerges as a complex eigenvalue quartet. Further increasing the value of κ
causes the quartet of eigenvalues to move through a maximum in the magnitude of
the real part and then toward the imaginary axis with the magnitude of the real part
decreasing to zero while the magnitude of the imaginary part increases without bound.
It does not appear that the quartet of eigenvalues ever disappears into the continuous
spectrum, although it comes arbitrarily close as κ increases. This scenario is repeated
again and again as κ increases through each odd bifurcation value. Representative
eigenfunctions are plotted in Figure 6.2. Here, one can see that when the eigenvalue
σ has a nonzero imaginary part, the decay of the eigenfunction can be quite slow on
the “downstream” side of the soliton. As remarked above, this effect is compensated
for in our numerics by working with a modified eigenfunction.

There are no discrete eigenvalues at all for κ < 1/2 (and in particular for κ < 0),
and for all κ satisfying 1/2 < κ < 1 and κ > 1, there is always at least one eigenvalue
with a nonzero real part, which corresponds to an exponentially growing eigenfunction
and therefore instability. The values κ = 1/2 and κ = 1 are distinguished as the only
values for which there exist discrete eigenvalues and at the same time all eigenvalues
have zero real parts, so the system is neutrally stable. For all other values of κ,
either there are no discrete eigenvalues at all in which case all initial conditions for
(2) disperse away algebraically in time, or there are discrete eigenvalues with positive
real parts in which case the linear waves are amplified by the soliton in the field
A(x, t).
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Fig. 6.1. Real (above) and imaginary (below) parts of the discrete eigenvalues σ for the eigen-
value problem (91) as a function of the parameter κ. Different eigenvalue branches are displayed
with different styles of lines (solid, dashed, etc.).

7. Conclusion. The coupled system consisting of the KdV equation (1) and the
linear equation (2) is integrable for two distinct values of the coupling parameter κ.
The integrable case of κ = 1 has been studied by other authors [GGKM74, S83]. In
this paper, we have given new results for the other integrable case, namely, κ = 1/2.
In particular, we have shown how to construct the general solution of (2) for κ = 1/2
when the nonlinear field A(x, t) is an N -soliton solution of the KdV equation. This
general solution is represented in terms of a number of bound states (equal to the
number N of solitons in the field A(x, t)) and a continuum superposition of radiative
states given by a singular integral. With the help of numerical computations, we
have placed the integrable cases in context by examining the behavior of the linear
equation (2) for general values of κ, when A(x, t) is a one-soliton solution of KdV.
These calculations show that the linear equation (2) behaves as an unstable dynamical
system for most positive κ. The integrable value of κ = 1, for which the equation
(2) is the linearized KdV equation, is an isolated stable point, since a small change
of either sign in the value of κ will lead to the presence of exponentially growing
modes. The other integrable value of κ = 1/2 represents the boundary between a
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Fig. 6.2. Above: the real-valued eigenfunction corresponding to the eigenvalue σ with positive
real part for κ = 0.85. Below: the complex-valued eigenfunction corresponding to the eigenvalue
σ in the first quadrant for κ = 1.2. The solid curve is the real part and the dashed curve is the
imaginary part.

stable system without any bound states for κ < 1/2 and an exponentially unstable
system for κ > 1/2.

In physical applications of the coupled system (1) and (2) as discussed in the
appendix, the presence of instabilities indicates that more terms need to be included in
the model. However, in the stable cases the model is indeed expected to be physically
meaningful. And in this regard, the two integrable cases can provide useful starting
points for perturbation theory.

As a final remark, let us indicate the kind of calculations that are possible for the
coupled system (1) and (2) for κ = 1/2 with the aid of the completeness relation. For
a family of relevant initial data for the linear equation, one can explicitly compute the
projection onto the bound states and consequently determine the long time behavior
of the corresponding solution of (2). Also, the long time behavior of the dispersive part
of the solution can be computed from the explicit representation of this component
of the solution as a singular integral. We leave such applications of the completeness
relation for further investigations.

Appendix A. Some applications. It is useful to keep in mind some applica-
tions in which the coupled system (1) and (2) might arise. In fact, such equations
appear in the modeling of coupling of acoustic phonons in long polymer molecules.
Many organic polymers (e.g., DNA and α-helix proteins like acetanelide) may be con-
sidered from the mechanical point of view as long chains of nearly identical masses.
This “backbone” of the molecule supports a longitudinal vibrational mode in which
the masses are all moving in tandem with zero frequency (i.e., simple translation) in
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L M

m

Fig. A.1. The equilibrium configuration of the mechanical model.

the long-wave limit; the associated quanta are called acoustic phonons. In the pres-
ence of intrinsic weak nonlinearity, the KdV equation describes these vibrations in the
long-wave limit. Usually, the masses making up the chain contain internal degrees of
freedom (e.g., the “breathing” modes of base-pairs in DNA, and the so-called amide
I exciton modes of the C=O bond in each peptide group of an α-helix protein). The
coupling of these internal degrees of freedom to the motion of the backbone leads to
a variety of interesting dynamical models (e.g., the discrete sine-Gordon equation for
DNA and the discrete nonlinear Schrödinger equation for α-helix proteins).

We may consider a situation in which the internal degrees of freedom are them-
selves acoustic phonons associated with transverse vibrational modes. This can be
visualized with the help of a concrete mechanical model, whose equilibrium configu-
ration is shown in Figure A.1. The backbone is made of heavy masses M connected
by stiff springs. Mounted on each heavy mass is a transversely-oriented frictionless
track in which rides a small mass m. The mass M is assumed to include the mass of
the track and small mass m. The small masses are themselves connected by weaker
springs. Assigning longitudinal displacements un to the large massesM and transverse
displacements vn to the small masses m in the frictionless tracks, the Hamiltonian of
the mechanical model is

H =
∑
n

[
1

2
Mu̇2

n +
1

2
mv̇2n +W (L+ un+1 − un)

+V
(√

(L+ un+1 − un)2 + (vn+1 − vn)2
) ]

,

(A1)
where W is the potential energy of the stiff springs connecting the large masses and
V is the potential energy of the weaker springs.

The associated equations of motion are

Mün = W ′(L+ un+1 − un) −W ′(L+ un − un−1)

+ S(Dn+1)(L+ un+1 − un) − S(Dn)(L+ un − un−1),

mv̈n = S(Dn+1)(vn+1 − vn) − S(Dn)(vn − vn−1) ,

(A2)
where we have set S(D) := V ′(D)/D and Dn :=

√
(L+ un − un−1)2 + (vn − vn−1)2.
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It is clear that one may take the undisturbed state of the internal modes vn+1 = vn
for all n to hold exactly, in which case only the backbone motion is relevant. We will
be interested in small amplitude, linear motions of the vn, and how they are affected
by the motion of the backbone.

The disparity between the masses M and m, and that of the strengths of the
associated springs, is introduced by letting µ be a small parameter and assuming
m = µM and V = µU (and correspondingly, S = µZ). We make the small-amplitude
long-wave ansatz

un(t) = hu(X = hn, T = ht) and vn(t) = hv(X = hn, T = ht) ,

(A3)
where h is a small lattice-spacing parameter. Expanding the functions W and Z
in Taylor series about the equilibrium position, the equations of motion become

Mh3∂2
Tu = h3W ′′(L)∂2

Xu+
h5

12
W ′′(L)∂4

Xu

+h5W ′′′(L)∂Xu · ∂2
Xu+O(h6) +O(h3µ) ,

Mh3∂2
T v = h3Z(L)∂2

Xv +
h5

12
Z(L)∂4

Xv

+h5Z ′(L)∂2
Xu · ∂Xv + h5Z ′(L)∂Xu · ∂2

Xv +O(h6).

(A4)
Trapping of v-waves by u-waves becomes possible if the wave speeds are equal. There-
fore, we assume that W ′′(L) = Z(L) = Mc2. Changing variables to χ = X − cT and
τ = h2T yields

Mh2∂2
τu− 2Mc∂χ∂τu =

Mc2

12
∂4
χu+W ′′′(L)∂χu · ∂2

χu+O(h) +O(µ/h2) ,

Mh2∂2
τv − 2Mc∂χ∂τv =

Mc2

12
∂4
χv + Z ′(L)∂2

χu · ∂χv + Z ′(L)∂χu · ∂2
χv +O(h) .

(A5)
As h ↓ 0 with µ� h2, we find the coupled system

∂τA + ∂χ

[
1

2
A2 +

c

24
∂2
χA

]
= 0 ,

∂τB + ∂χ

[
Z ′(L)

W ′′′(L)
AB +

c

24
∂2
χB

]
= 0

(A6)
as a formal limit, where A = W ′′′(L)∂χu/(2Mc) and B = ∂χv. After a simple
rescaling of χ and τ , this becomes (1) and (2) with κ = Z ′(L)/W ′′′(L). As described
in section 6, the influence of solitons on linear waves can be qualitatively different for
different values of the coupling constant κ with important bifurcations occurring at
the values κ = κbif

n = (n + 1)(n + 2)/12 for n = 1, 2, 3, . . .. As we have seen, this
coupled system can be solved exactly in (at least) two cases: κ = 1 and κ = 1/2. The
former case is just the linearized KdV; see Sachs [S83]. The latter case is the one that
is solved in the main text of this paper.

Consider this example with the potential of the strong and weak springs given
respectively by
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W (D) :=
1

2
κwD

2 +
1

24
αD4 and V (D) := µ(

1

2
κvD

2 +
1

24
βD4) .

(A7)
Thus β = 3ακ and the condition that the wave speeds are equal is

1

2
αL2(κ− 1) = κw − κv .

(A8)
The effect of each bifurcation point in κ is now clear. At κ = 1/2 the first har-
monic of the v-waves begins to resonate with the u-waves. As κ increases through
κ = 1 we pass through a transition from supercritical resonance to subcritical reso-
nance. Similarly, at the odd bifurcation points, κ = κbif

2m−1 for m = 1, 2, 3, . . ., the
mth harmonic v-wave begins to resonate with the u-waves. Then at the even bifur-
cation points, κ = κbif

2m for m = 1, 2, 3, . . ., the nature of the resonance for this mode
changes from supercritical to subcritical.

Coupled systems of equations like the pair (1) and (2) often arise as formal asymp-
totic reductions of mechanical models for complicated one-dimensional waves. Often
these asymptotic models are integrable. For example, in an elastic rod, the interaction
between axial twist waves and helical deformation waves gives rise to an integrable
Manakov system of coupled nonlinear Schrödinger equations [LG99].

The coupled system (1) and (2) for κ = 1/2 is also intimately connected with
an integrable multicomponent (an arbitrary number of components, all appearing
symmetrically) coupled KdV equation [MC99]. Indeed, from one point of view it is
this connection that yields the solvability of (1) and (2) for κ = 1/2 described in
detail in this paper. The solution method presented here also can be used to give the
complete solution of the coupled KdV system. That system in turn can be interpreted
as a phenomenological model for the transport of the mass integral through an N -
soliton solution of KdV [MC99].

Finally, we would like to point out that there are also some applications in which
linear equations of the form (2) occur with κA(x, t) being a given function. In this
case, c(x, t) = κA(x, t) represents a given spatiotemporal modulation of the speed of
linear dispersive waves, say, due to propagation in an inhomogeneous medium. Such
problems arise in the modeling of the propagation of weak internal waves in a channel
of varying width [CG99]. For such applications, we may view the solvability of the
coupled system (1) and (2) for κ = 1 and κ = 1/2 as a kind of (big) catalog of special
cases of the function c(x, t) for which the linear equation (2) is solvable in its own
right. For other values of κ > 1/2 the linear wave system is unstable, while for all
values of κ < 1/2 it is stable.
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