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Abstract

The problem of choosing the correct number of clusters is as old as
cluster analysis itself. A number of authors have suggested various indexes
to facilitate this crucial decision. One of the most extensive comparative
studies of indexes was conducted by Milligan & Cooper (1985). The present
piece of work pursues the same goal under different conditions. In contrast
to Milligan and Cooper’s work, the emphasis here is on high-dimensional
empirical binary data. Binary artificial data sets are constructed to reflect
features typically encountered in real-world data situations in the field of
marketing research. The simulation includes 162 binary data sets that are
clustered by two different algorithms and lead to recommendations on the
number of clusters for each index under consideration. Index results are

evaluated and their performance is compared and analyzed.

Key words: Number of Clusters, Clustering Indexes, Binary Data, Artificial

Data Sets, Market Segmentation.

Introduction

Clustering is the partitioning of a set of objects into groups so that objects
within a group are ‘similar’ and objects in different groups are ‘dissimilar’. Thus
the purpose of clustering is to identify ‘natural’ structures in a data set. In real-
life clustering situations, the researcher is confronted with crucial decisions such as
choosing the appropriate clustering method and selecting the number of clusters
in the final solution. The latter is considered to be an unsolved problem of great

significance: The success of the research actually depends on this decision. Numer-



PSYCHOMETRIKA 3

ous strategies have been proposed for finding the right number of clusters and such
measures (indexes) have a long history in the literature. They can be broadly di-
vided into dependent measures, which must be used in combination with a specific
clustering algorithm (e.g. Hall et al., 1973), and independent measures that can be
applied to any algorithm. The later is divided into two major categories. The first,
external measures (see Milligan, 1981), use an independently obtained partition that
must be specified a priori or obtained by clustering a separate data set. Its main
disadvantage is that in empirical data sets a priori information can not be always
obtained. The second category, internal measures (see Milligan & Cooper, 1985),
uses the information obtained from within the clustering process. The internal mea-
sures represent the ‘goodness’ of the fit between the input data and the resulting
cluster partition.

Monte Carlo evaluations of these measures have been conducted by researchers
in order to analyze and compare their performance (see Milligan & Cooper, 1985;
Milligan, 1981, 1980).

The focus of this paper is on binary data sets. Most of the literature on binary
data has emerged from the field of psychometrics, biology (Baroni-Urbani & Buser,
1976; Baulieu, 1989; Cheetham & Hazel, 1969; Gower, 1985; Hubalek, 1982; Li &
Dubes, 1989) and marketing (Green et al., 1988; Ramaswamy et al., 1996; Cox,
1970; Arabie & Hubert, 1996; Rost, 1996; Formann, 1984; Dolnicar et al., 2000).
The central motivation underlying this piece of work is the lack of recommendations
for determining the correct number of clusters in binary data sets similar to those
encountered in empirical research. More specifically, we evaluate the performance of

15 indexes on artificial binary data sets, designed to reflect real-world data situations,
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and we investigate which characteristics of empirical data sets cause systematic
difficulties in determining the correct number of clusters.

The paper is organized as follows: The following two sections give details on the
study carried out. They contain a description of the artificial binary data scenarios
and of the clustering algorithms used for the simulations. In the section ‘Criteria for
the Comparison of Results’, the criteria used to determine the quality of the indexes
are presented. The results section starts with an evaluation of the performance of
the indexes, after which the influence of the data sets’ design factors on the results
is investigated and an ANOVA is performed. The results are compared with latent

class analysis. A summary section concludes the paper.

Binary Data Scenarios

The data generated are based on scenarios presuming typical features—and their
variations—encountered in real-life data: the size of the survey sample, the number
of questions chosen for analysis, the number of clusters in the sample, the size of
the clusters, the factor structure of the items (groups of variables, testing similar
underlying constructs), the degree of interdependence among questions, and the
average agreement level of every cluster with regard to each question.

All these issues were included in an extensive scenario design. Translating the
points listed above into technical terminology leads to the following scenario design
variations: 162 12-dimensional binary data sets are used in the experiments. Each
variable models a ‘1/0” (e.g. ‘yes/no’) statement in a questionnaire. Structure is
introduced in the data by creating 6 types of respondents with different answering
behavior. Table 1 depicts the basic scenario. An ‘H’ entry in the table means that the

variable has a high probability of being 1, whereas ‘L.’ denotes a low probability of
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an 1. As can be seen in the table, the variables are separated into 4 groups (G1-G4,
corresponding to 4 latent variables) of several indicator (manifest) variables (I1-13)

each. Within these groups the probabilities are the same for each type.

TABLE 1.

The Basic Scenario P2DON6S1I1

G1 G2 G3 G4
Type 11 12 I3 11 12 13 I1 12 I3 I1 12 I3 n
1 H H H H H H L L L L L L 1000
2 L L L L L L H H H H H H 1000
3 L L L H H H H H H L L L 1000
4 H H H L L L L L L H H H 1000
5t L L L H H H L L L H H H 1000
6 H H H L L L H H H L L L 1000

5 design factors are varied in the experiments.

1. Probability distribution: In the first level, ‘high’ variables have a 0.9 probability
of being 1, whereas the probability is reduced to 0.8 in the second level and to
0.7 in the third. The ‘low’ variables are modeled accordingly, with probabilities
of 0.1, 0.2, and 0.3 respectively.

2. Dependence of the variables within a group: One level has independent variables,
the second has a correlation of 0.4 between the indicator variables in the group
and the third has a strong dependency (0.8).

3. Number of clusters: There are experiments with 4, 5 and 6 clusters. The 4 types of
the 4 cluster scenarios correspond to the first 4 types from all 6 cluster scenarios.
The 5 cluster scenarios are generated in a similar manner.

4. Size of clusters: There are experiments with equal cluster sizes (1000 for each
type), with unequal cluster sizes (2000-500-1000-700-700-1100) and with highly

varied cluster sizes (3000-300-1000-500-700-500 data points in types 1-6).
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5. Number of indicators (Manifest variables): One level has 3 indicator variables for

each group, the other has 5, 4, 2, and 1 indicator variables for the 4 groups.

All five design factors are crossed, yielding 162 different data sets. For the description
of the results, the following naming convention is chosen for the data sets: Each
scenario is described by P.D.N.S.I., where P (probability) is ‘1’ for the first level,
‘2’ for the second and ‘3’ for the third. D (dependence) equals ‘0’ for independent
variables, ‘4’ for medium dependence and ‘8’ for strong dependence. N indicates the
number of clusters (4, 5 or 6). S (cluster size) is ‘1’ for scenarios with equal cluster
sizes, ‘2’ for unequal cluster sizes and ‘3’ for highly varied cluster sizes. I (number of
indicators) is ‘1’ for scenarios with an equal number of indicators and ‘2 for scenarios
with an unequal number. The null hypothesis concerning the design factors is that
changes in factor levels do not influence the ability of indexes to recommend the
number of clusters modeled in the artificial data sets.

Note that, as in real-world situations, the types are not clearly separated, but
there is an overlapping cluster structure in the data sets. Scenario P2DON6S111, for

example, has a Bayes’ classification rate of 83%.

Clustering Algorithms

Two algorithms, namely k-means (also known as LBG algorithm, see Linde,
Buzo, & Gray (1980)) and hard competitive learning (see Fritzke, 1997), are used for
the experiments in order to provide us with various clustering solutions, in this way
preventing the dependency of the solutions on the clustering method. The decision
in favor of these algorithms and against hierarchical algorithms was made because of
the following consideration: Due to advances in information technology, huge data

sets are often available. In the case of hierarchical methods, it is required to compute
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all pairwise distances. For n data points, the number of pairwise distances equals
n(n — 1)/2. For n = 6000, this already yields approximately 18 million distances,
which makes computation infeasible.

k-Means: The k-means algorithm is one of the classic statistical clustering
methods. As opposed to the competitive learning variants, this is an off-line method,

i.e., the center updates are based on the entire training sample:

1. Initialize the set C' to contain k (k << n) units ¢;: C' = {c1,¢2,...,¢,} with
reference vectors w,, € R¢ chosen randomly from the data set and compute the
clusters corresponding to these centers.

2. Compute the centers of all current clusters.

3. Generate a new partition by assigning each pattern to the closest cluster center.

4. If the partition changes compared to the last iteration, go to step 2, else stop.

Hard Competitive Learning (HCL): HCL (see for example Fritzke, 1997)
is the simplest on-line clustering algorithm, where only one output unit (the cluster
center) is the winner for each given data point and the weight vector of the winner

moves toward the vector of the given point.

1. Initialize the set C' to contain k (k << n) units ¢;: C = {c¢1,¢o,..., ¢k}, with
reference vectors w,, € R? chosen randomly from the data set. Set the iteration
counter to ¢ = 0.

2. Draw a pattern z; from the data set.

3. Determine the winner s(xz;): s(x;) = argmin..c ||z; — w||

4. Move the reference vector of the winner along the gradient of ||z; —wy(,,)|| toward

z;j. In the case of the Euclidean norm this is Awg(,) = €4(7; — ws(s;)), Where &
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is a suitable chosen learning rate.

5. Set t :=t+ 1; if t < tyay, return to step 2.

In Dolnicar et al. (1998), it is shown (for the 6 cluster scenarios) that the k-means and
hard competitive learning algorithms are able to find the correct cluster structure,
but they sometimes get stuck in a local minimum due to the random initialization of
the cluster centers. In order to overcome these instabilities, the following experimen-
tal setup was chosen. Cluster solutions are computed starting with 2 cluster centers
and increasing to 13 centers. The range was chosen so that it contains twice the
number of clusters that are in the data sets, so that the solution where every exist-
ing cluster might be split into two parts is still contained in the range of considered
centers. For each of the different number of clusters, the algorithms are repeated 10
times. The results with minimum sum-of-squares within the clusters are chosen and
used to compute the index for this particular solution. From this vector, the number
of clusters is found as described in the next section. In order to ensure the stability

of the results, the above process is repeated 100 times for each scenario.

Indexes

This paper presents a comparison of 15 different indexes. These indexes rep-
resent 15 internal measures that can be computed independently of the clustering
algorithm. Indexes applied only to hierarchical clustering methods (see Aldenderfer
& Blashfield, 1996; Milligan & Cooper, 1985) are not used, because these methods
are not suitable for large data sets (i.e., one is confronted with memory and time
problems). Moreover, indexes similar to measures used for hierarchical methods, (i.e.,
measures using pairwise distances; e.g., Gamma measure (Baker & Hubert, 1975),

as well as the Point Biserial measure (Milligan, 1981)), are excluded from the study
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for the same reason. There are other measures, including those for determining the
number of fuzzy clusters (e.g., Yang & Yu, 1990), heuristic (depending on graphical
methods (e.g., Arratia & Lander, 1990; Andrews, 1972)) and others valid for data
sets belonging to specific distributions (e.g., the Likelihood Ratio measure; Wolfe,
1970) or requiring prespecified conditions (e.g., the Cubic clustering criterion; Sarle,
1983). For the sake of achieving an objective overall result in this research, they
have been also omitted.

After computing a particular index for a range of cluster numbers, one has to
decide which cluster number to choose. In the simplest case, one can regard that
number of clusters where the index reaches its maximum (or minimum) value as a
solution. However, this simple rule does not work in most cases. In the literature, the
index is often chosen in such a way that the index values are plotted as a function of
the number of clusters and the user chooses a particular number by visual inspection,
often where the curve has an “elbow,” i.e., a positive or negative “jump” of the index
curve, or a local peak. In this paper, the use of such subjective measures is omitted,
but objective ones are computed. Therefore, besides looking at the maximum (or
minimum) value maxy i, (where k is the number of clusters and i; the index value
for k clusters) of the index, the following statistics are considered, cf. Thorndike
(1953); Kaufmann & Pape (1996). The decision on which statistic to use is made
after computing all of them for all the data sets and taking the one that performed
best on average. Here they are described for an index where maximum values are of

interest:

(a) The maximum difference to the cluster at the left side (maxy(ix — ix_1)). This is

the part where the curve has its maximum increase.
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(b) The maximum difference to the cluster at the right side (maxy(ix — ixy1)). This
is the part where the curve has its maximum decrease.
(c) The minimum value of the second differences (miny ((ig+1 — ix) — (ix — ix_1)))-

This measures a positive “elbow.”

The description of the indexes is categorized into 3 groups, based on the statistics
mainly used to compute them.

The first group is based on the sum of squares within (SSW) and between
(SSB) the clusters. These statistics measure the dispersion of the data points in a

cluster and between the clusters, respectively. The indexes are:

1. Ball and Hall (see Ball & Hall, 1965): 5% where k is the number of clusters.

The maximum value of the second differences is taken as the proposed number
of clusters.

2. Calinski and Harabasz (see Calinski & Harabasz, 1974): %, where n is
the number of data points and k is the number of clusters. The minimum value
of the second differences is taken as the proposed number of clusters.

3. Hartigan (see Hartigan, 1975) log(£52). The minimum value of the second dif-
ferences is taken as the proposed number of clusters.

4. Ratkowsky and Lance (see Ratkowsky & Lance, 1978): mean((2r338)1/2) 'where
varSSB stands for the SSB for each variable and varSST for the total sum of
squares for each variable. The maximum difference to the cluster at the right side
is taken as the proposed number of clusters.

5. Xu (see Xu, 1997): dlog(,/SSW/(dn?)) + log(k), where d is the dimension of

the data points. The maximum value of the second differences is taken as the

proposed number of clusters.



PSYCHOMETRIKA 11

The second group is based on the statistics 7, i.e., the scatter matrix of the data

points, and W, which is the sum of the scatter matrices in each cluster.

1. Marriot (see Marriot, 1971) k%|W |, where k is the number of clusters and |-| stands
for the determinant of a matrix. The maximum value of the second differences is
taken as the proposed number of clusters.

2. Scott and Symons (see Scott & Symons, 1971): nlog(%), where n is the number
of data points. The maximum difference to the cluster at the left side is taken.

3. TraceCovW (see Milligan & Cooper, 1985): TraceCovI¥. The minimum value of
the second differences is taken as the proposed number of clusters.

4. TraceW (see Edwards & Cavalli-Sforza, 1965; Friedman & Rubin, 1967; Orloci,
1967; Fukunaga & Koontz, 1970): TracelW. The maximum value of the second
differences is taken as the proposed number of clusters.

5. TraceW (Y B (see Friedman & Rubin, 1967): TraceW (=Y B, where B is the scat-
ter matrix of the cluster centers. The maximum difference to the cluster at the
left side is taken as the proposed number of clusters.

6. |T'|/|W| (see Friedman & Rubin, 1967): % The minimum value of the second

differences is taken as the proposed number of clusters.

The third group consists of four indexes not belonging to the ones mentioned

above and having nothing in common.

1. Davies and Bouldin (see Davies & Bouldin, 1979): R = (1/n) Y, (R;), where
R; stands for the maximum value of R;; for ¢ # j, and R;; for R;; = (SSW; +
SSW;)/DC;;, where DC;; is the distance between the centers of two clusters 4, j.

The minimum value is taken as the proposed number of clusters.
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Hubert and Levin (C Index) (see Hubert & Levin, 1976): The C Index is a cluster
similarity measure expressed as: [d,, —min(d,,)]/[max(d, ) —min(d, )], where d,, is
the sum of all ng within cluster distances, min(d,,) is the sum of the n; smallest
pairwise distances in the data set, and max(d,) is the sum of the n, biggest
pairwise distances. In order to compute the C Index, all pairwise distances in the
data set have to be computed and stored. In this case of binary data, the storage
of the distances creates no problems since there are only a few possible distances.
However, the computation of all distances can make this index prohibitive for
large data sets. The maximum value of the second differences is taken.
Likelihood (NLL) (see Wedel & Kamakura, 1998): Under the assumption that
the variables within a cluster are independent, a cluster solution can be regarded
as a mixture model for the data where the cluster centers indicate the agreement
probabilities. Therefore, the negative Log-likelihood can be computed and used as
a quantity measure for a cluster solution. Note that the assumptions for applying
special penalty terms, as in the case of AIC or BIC, are not fulfilled in this model,
and also that they show no effect for these data sets. The maximum value of the
second differences is taken as the proposed number of clusters.

SSI (see Dolnicar, Grabler, & Mazanec, 1999): This ‘Simple Structure Index’
combines three elements which influence the interpretability of a solution, i.e.,
the maximum difference of each variable between the clusters, the sizes of the most
contrasting clusters and the deviation of a variable in the cluster centers compared
to its overall mean. These three elements are combined by multiplication and

normalized to give a value between 0 and 1. The maximum value is taken.
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Criteria for the Comparison of Results

Four criteria are used to determine the quality of the indexes, each one of them
emphasizing different aspects that might be of interest (see Table 2).

Number of Clusters Found: The number of clusters recommended by each
index is compared with the true number of clusters. This criterion counts how often
each index makes the correct decision. The higher the number of correct recommen-
dations, the more appropriate the index.

Whereas this criterion is the question of main interest, it can happen that the
correct number of clusters is recommended, although the structure revealed does
not comply with the structure given by the artificial data sets.

For a more clear presentation of the indexes’ recommendations concerning the
‘number of clusters found’ criterion, we use the ‘maximum choice criterion’. It is
based on a voting idea, which means that we do not consider every single result of the
100 repetitions for a particular scenario but we look for the majority decision of these
repetitions. That is, for each scenario and each index, we evaluate which number of
clusters is recommended most often within the 100 repetitions and take this number
as the index’s recommendation for the particular scenario. This corresponds to the
real-life situation in which a researcher has to make one single decision based on
multiple recommendations for only one given data set. A sample chart can be seen
in Figure 3. The best value that can be achieved is 54, as there are 54 scenarios for
a given number of clusters.

Absolute Profile Identification: Each type in a data scenario is defined by
an item profile. The clustering result recommended by the index is transformed into

a binary profile by rounding the centers of the clusters. This profile is matched with
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the data scenario profiles. Then the number of correctly reconstructed profiles is
divided by the number of clusters in the respective scenario.

A high value for this criterion indicates that the correct structure was identified,
but indexes which tend to overestimate the number of clusters might find many
correct profiles along with many incorrect ones. This overestimation effect thus has
to be penalized, which is the idea behind the ‘relative profile identification criterion.’

Relative Profile Identification: This criterion is obtained by dividing the
correctly identified profiles by the number of clusters recommended by the respective
index.

Classification Rate: This criterion computes how many points have been as-
signed to the right cluster by the clustering algorithm. Calculation of this criterion
requires a two-step procedure: First it is necessary to identify which profiles have
been correctly identified, then to count the number of data points which have been

correctly assigned to these clusters.

Results
Rankings of Indexes

Table 2! includes the criteria values and the ranking for all indexes under in-
vestigation. In the last column the mean of the ranks of all criteria is computed.
Ratkowsky-Lance shows the best results with an overall rank of 2.25, followed by
Xu, Scott-Symons, Calinski-Harabasz and the C Index.

Studying the distribution of recommendations gives a descriptive but more in-

depth understanding of the indexes’ behavior. Five groups of indexes can be formed

TAll simulations were performed in R, a free implementation of the S-language, see

http://www.R-project.org/.
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TABLE 2.

Evaluation Criteria Values and Ranks

Index Found Classification Abs. Profile Rel. Profile mean
Ratkowsky-Lance  52.52/ 1 65.36/ 1 82.17/ 6 86.74/ 1  2.25
Xu 35.29/ 3 61.67/ 2 79.57/ 8 80.76/ 7 5.00
Scott-Symons 35.83/ 2 60.64/ 5 76.34/10 81.85/ 5  5.50
Calinski-Harabasz = 33.81/ 5 60.89/ 4 79.90/ 7 79.19/ 8  6.00
C Index 30.09/ 8 60.99/ 3 69.42/11 84.70/ 2  6.00
Davies-Bouldin 33.83/ 4 58.09/ 9 92.31/ 1 66.96/12  6.50
TraceW~'B 32.64/ 7 59.46/ 6 83.09/ 5 75.86/11  7.25
Marriot 32.79/ 6 59.10/ 7 78.79/ 9 79.12/9 7.75
TraceW 18.24/ 9 59.01/ 8 61.78/13 84.49/ 3  8.25
NLL 17.66/10 57.43/10 62.02/12 82.22/ 4  9.00
SSI 9.77/12 54.42/13 90.85/ 2 57.39/14 10.25
Hartigan 13.70/11 56.23/11 57.35/14 81.48/ 6 10.50
TraceCovW 8.38/14 55.62/12 86.96/ 4 59.12/13  10.75
T/W 9.38/13 53.66/14 90.58/ 3 54.65/15 11.25
Ball-Hall 0.00/15 49.40/15 47.96/15 75.95/10 13.75

by analyzing the histograms described in this section. For representative indexes, we
have included graphs in which the frequency of recommendations is plotted for each
number of clusters. This investigation seems especially important because the rank of
the criterion ‘number of clusters found’ could yield misleading results. For example,
the 4-cluster solution is recommended correctly in 100% of the cases by some index,
while the other two scenarios (5 and 6 clusters) are not correctly untangled at all.
Another index gives the highest recommendation values for the correct number in
all three scenarios, each with 20% of all hits. In this case the first index would be
evaluated as superior when ranked over all scenarios, although its ability to cope
with different conditions is inferior.

Group I (Highly Reliable Indexes): This group contains the Ratkowsky-

Lance and the Davies-Bouldin Index, which are able to indicate the correct num-
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ber of clusters very clearly, with a top recommendation frequency of over 60% for
Ratkowsky-Lance (see Figure 1) when confronted with the 5-cluster scenarios. The
percentage of correct hits is lower in the case of the Davies-Bouldin Index (see Fig-
ure 2) at approximately 35%. Although these values clearly indicate the correct
decisions for each case, this index tends to favor higher numbers of clusters if the
decision does not seem to be clear. The interpretation suggested above is also sup-
ported by the ‘maximum choice criterion’ (an example of the 5-cluster scenario is
given in Figure 3). Only in the case of 6 clusters the Davies-Bouldin Index fails
to derive a clear decision, as the 13-cluster solution reaches the same number of

recommendation maximums.
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FIGURE 1.

Ratkowsky-Lance Index: Number of Clusters Found

Group II (Reliable Indexes): This group contains the Calinski-Harabasz
Index and the Xu Index. The Calinski-Harabasz recommendations on the 5 and 6-
cluster scenarios are correct, but a 3-cluster solution was favored when this index

was applied to the 4-cluster scenario (Figure 4). The same is true of the Xu Index,



Recommendation frequency in percent

Number of recommendations

100

90

80

70

60

50

40

30

20

10

45

PSYCHOMETRIKA

—&— 4 clusters

5 clusters - +- 6 clusters

Cl1 CI2 CI3 Cl4 CI5 Cl6 CI7T CcCI8

Number of clusters

FIGURE 2.

Davies-Bouldin Index: Number of Clusters Found
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Index Group I, 5 Clusters: Maximum Choice Criterion
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the distribution frequency of which is almost identical to the Calinski-Harabasz plot
(Figure 5). Looking at the maximum recommendations, the same diagnosis applies
for the 4 and 5-cluster data. In the 6 cluster scenarios, the Xu Index still renders
the top maximum choice value at the correct number of clusters, whereas Calinski-

Harabasz fails to do so, suggesting the choice of 4 clusters instead (Figure 6).
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FIGURE 4.

Calinski-Harabasz Index: Number of Clusters Found

Group IIT (Indexes with Data-Independent Favorite Recommenda-
tions): Some indexes seem to have clear favorites, therefore recommending a certain
number of clusters most often rather independently of the actual data properties,
but not—as is the case in group IV—without any relation to the data sets. Scott-
Symons, Marriot and TraceW !B belong to this group.

The C Index has to be included in this group as well, although higher recom-
mendation frequencies occur for 5 and 6 clusters the respective scenarios.

The ‘maximum choice criterion’ supports these findings. All indexes belonging

to group III recommend a 4-cluster solution most often under all scenario conditions.
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Group IV (Three Cluster Favoring Indexes): Ball-Hall, Hartigan, TraceW
and NLL favor the 3-cluster solution without regard to the data presented. The most
extreme case is the Ball-Hall Index with a 100% recommendation rate for this kind
of solution.

Group V (Special-Interest Indexes): For these indexes (TraceCovW, SSI,
T/W), it is impossible to make any kind of decision, because the recommendations
are almost evenly distributed over the different numbers of clusters.

As can be seen, the recommendation for one single number of clusters never even
comes near 20%. However, it turns out that these indexes have strengths in other
fields, as one can easily see in Table 2. They are among the top scorers in terms of
absolute profile identification, which is caused by the systematic overestimation of
the number of clusters. The problem of overestimating the number of clusters for
profile identification optimization purposes was already addressed in the description
of the ‘absolute profile criterion’. The same problem is encountered when using
the special interest indexes: The profiles actually present in the artificial data are
identified very well, but a number of additional clusters not modeled in the artificial
data sets are found. For our purposes, these indexes thus appear to be of limited use,
and for other questions it would seem interesting to do some further investigation
on the applicability of such indexes to real-world data analysis.

As far as the ‘maximum choice measure’ is concerned, there is no single way of

describing this group’s behavior.

Coping with Adverse Data Structures

The percentage of the correct number of clusters decision is obviously interre-

lated with the data conditions. First, we have a look at the mean percentage of
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correctly identified numbers of clusters over all indexes under specific conditions, as

shown in Figure 7.
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Overall Mean Percentage of Correctly Identified Clusters

The vertical lines indicate the factor blocks, P1 to P3 stand for variations in
probability, DO to D8 indicate the level of dependence modeled in the data, S1 to
S3 give the size of clusters, and I1 to 12 indicate the groups of manifest variables. In
general it can be assumed that higher levels of probability make the scenario more
difficult, as does higher contrast in cluster size. Dependence seems to influence the
performance rather negatively, although this is not true in the 4-cluster case. The
same is true of the manifest variables, where unequal numbers of manifest variables
again ease the task to be solved in the 4-cluster case.

In the following index-specific reactions to the design factors in the scenarios are
described.

Group I (Highly Reliable Indexes): In an explorative analysis of index be-

havior, the differences between the percentage of correctly identified number of clus-
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ters decisions among factors are examined. Index-specific behavior is the deviation

from the mean. The Ratkowsky-Lance Index is given as an example in Figure 8.
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Deviation from Mean ‘Number of Clusters Found’ Values (Ratkowsky-Lance Index)

The black line gives the same information as seen in the previous figure, only
in terms of difference. Looking at the first bar, the interpretation is as follows: The
difference from probability level 1 (P1) to probability level 2 (P2) in the case of the
4-cluster scenarios only (N4) is 13% for the Ratkowsky-Lance Index, meaning that
the correct number of decisions decreases by 13 percentage points due to the fact
that the probability level changes. This value equals the average difference 13%.

The most systematic deviation from the mean is the behavior towards varying
cluster sizes. Ratkowsky-Lance seems to cope fairly well with maximum cluster sizes
of 1000 and 2000, while the most extreme case—a maximum of 3000—causes serious
problems.

Two characteristics are very interesting when investigating the behavior of the

Davies-Bouldin Index: First, the initial step of decreasing probability leads to a
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considerate loss in quality. Second, the inequality of manifest variables in all cases
seems to help the index to make correct decisions.

Group II (Reliable Indexes): The Calinski-Harabasz Index generally reacts
in a more extreme way than the average (see Figure 9). The direction of change is the
same except for the changes in the manifest variable design for 5-cluster scenarios.
In particular, probability level changes from level 1 (the easiest) to level 2 decrease

the quality of results dramatically. The same is true of the Xu Index.
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FIGURE 9.

Deviation from Mean ‘Number of Clusters Found’ Values (Calinski-Harabasz Index)

ANOVA Results

The null hypothesis that variations in factor levels do not lead to changes in
recommendation difficulties for the indexes was tested by an analysis of variance
(ANOVA) for the two highly reliable indexes without taking two-way interactions
into account. The adjusted R-squared values range from 50% (using the criterion
‘absolute profile criterion’) to 96% (‘classification rate’). As the main focus of this

research is on the correct number of clusters found, the relevant ANOVA results are
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TABLE 3.

Correct Number of Clusters Found (Ratkowsky-Lance Index)

Effect Estimate t¢-value p-value
(Intercept) 103.0 17.4 ok
Probability P2 -21.9 -4.8 HHE
Probability P3 -46.4 -10.1  F*E
Dependence D4 -1.9 -0.4 n.s.
Dependence D8 -12.8 -2.8 Kk
Number N5 11.3 2.5 *
Number N6 -7.8 -1.7 n.s.
Cluster size S2 -17.9 -3.9 kX
Cluster size S3 -52.8  -11.5 k¥
Indicators 12 -0.8 -0.2 n.s.
R-squared 0.61

K < 0.0001, *F: < 0.001, *: < 0.05, n.s.: not significant

TABLE 4.

Correct Number of Clusters Found (Davies-Bouldin Index)

Effect Estimate ¢-value p-value
(Intercept) 86.9 13.4 ok
Probability P2 -43.3 -8.6 HHE
Probability P3 -65.0 -12.9  FHE
Dependence D4 -4.3 -0.9 n.s.
Dependence D8 -29.9 -6.0 KK
Number N5 1.9 0.4 n.s.
Number N6 -1.2 -0.2 n.s.
Cluster size S2 -13.3 2.6 *F
Cluster size S3 -31.4 -6.2  HEE
Indicators 12 18.2 4.5 KHE
R-squared 0.62

K < 0.0001, **F: < 0.001, *: < 0.05, n.s.: not significant
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given in Tables 3 and 4.

The null hypothesis is falsified. The size influences the Ratkowsky-Lance results
significantly, and level S3 has the strongest negative impact on the index’s perfor-
mance. Also the first step in increasing cluster size inequality significantly decreases
the quality of the recommendations. Probability level P3 creates the second highest
level of distortion of the results.

Probability changes have the worst consequences for the Davies-Bouldin Index.
A moderate increase in dependence does not influence the quality of the results,
but the D8 level of dependence seems to cause a problem for Davies-Bouldin. The
inequality of manifest variables, however, does ease the problem for the Davies-
Bouldin Index. A highly significant influence can be detected in this direction.

As is the case for the Ratkowsky-Lance Index, the existence of small clusters has
a significant effect on the quality of the Davies-Bouldin Index’s recommendations. In-
cluding the remaining criteria for the index evaluation does not dramatically change
the interpretation offered on the basis of the ‘number of clusters found’ criterion, as
can be seen in the summary given in Table 5.

Table 6 includes all results obtained by ANOVA for main factors only. The

following conclusions can thus be drawn:

e Table 6 supports the assumption that changes in the probability level from P1 to
P3 strongly decrease recommendation quality.

e Another design factor that worsens all results significantly, regardless of which cri-
terion is used for the ANOVA, is the size of the clusters. The results indicate that
increasing differences in cluster sizes strongly decrease recommendation quality.

The most dramatic results are observed for the ‘number of clusters found’ criterion
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TABLE 5.

Significance Levels of ANOVA Results for the Remaining Criteria Studied

Effect Class Class Absolute Absolute Relative Relative
Profile Profile Profile Profile

Davies Ratkow. Davies Ratkow. Davies Ratkow.

Probability P2 Rk Rk ko Rk Rk Rk
Probability P3 Rk Rk ko Rk Rk Rk
Dependence D4 rorok rorok n.s. n.s. n.s. n.s.
Dependence D8 Rk Rk * ok Rk Rk
Number N5 n.s. Ak n.s. n.s. n.s. n.s.
Number N6 * ok * ok n.s. *
Cluster size S2 n.s. * Hok ok n.s. n.s.
Cluster size S3 ook ook ko ook ook ook
Indicators 12 ok * ol n.s ok n.s.

p-value: ***: < 0.0001, **: < 0.001, *: < 0.05, n.s.: not significant

(The reduction amounts to 16% at the second factor level and 27% at the third
level). These results lead to the interpretation that certain indexes tend more to
overestimate the number of clusters and correctly identify part of the profiles than
make the correct guess, a central and crucial insight for niche market segmenta-
tion. Consequently, the chance of identifying a niche segment correctly is higher
when the number of clusters is overestimated. The open question is which of the
segments identified by such a solution actually exist in the data and which do not,
a crucial question for making strategic decisions.

The number of clusters actually present in the data also strongly influences the
results, with higher numbers of clusters generating worse results.

The influence of dependency is strongest for the classification rate results. The
results decrease by 7 and 13%.

Different groupings of manifest variables to latent variables generally do not in-

fluence the cluster number recommendations dramatically. Only the classification
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rate and the profile identification suffer (in a slight but significant manner) from

unequal groups of variables loading heavily on an underlying latent trait.

TABLE 6.

ANOVA Including All Main Effects

Effect Est., Sign. Est., Sign.  Est., Sign. Est., Sign.

(Class) (Abs. Prof.) (Rel. Prof.) (No. Found)
Tntercept 84, ¥F¥ 76, ¥*¥* 91, **F¥ 40, ¥F¥
Calinski-Harabasz 11, *** 32, *** 3, n.s. 34, ***
C Index 12, *** 91, ¥%x g, ¥*% 30, **%
Davies-Bouldin 9, ¥¥* 44, F** -9, *xk 34, F*x
Hartigan 7, *Hx g, ¥ 6, ¥ 14, %5
Marriot 10, *** 31, ¥** 3, n.s. 33, ***
NLL g, ¥ 14, *¥* 6, ¥ 18, %
Ratkowsky-Lance 16, *** 34, ¥** 11, *** 53, *¥**
SSI 5, %k 43, *k* 19, ** 10, **
Scott-Symons 11, ¥%% 98, ¥** 6, ¥F¥ 36, *F¥
T/W 4, *Hx 43, *k* 1, kR g, **
TraceCovW 6, *¥** 39, *¥** -17, *¥** 8, *
TraceW 10, *** 14, *** 9, ¥¥* 18, ***
TraceW—'B 10, *kk 35, *** 0, n.s. 33, ***
Xu 12, % 32, Fxk 5, ** 35, wk*
Probability P2 290, **¥ 7, *E _10, **% 15, **%
Probability P3 42, *F% 17, **% 25, FF% 25, ¥F%
Dependence D4 -7, FkE -1, n.s. 3, kxx -1, n.s.
Dependence D8 -13, *x* -4, FH* -2, ¥ -4, **
Number N5 7, RRE 10, *** 2, * 13, FF%
Number N6 12, *F% (18, *** R 17, *%
Cluster size S2 1, ** -5, kx* 0, n.s. -16, *¥**
Cluster size S3 -2, kEk -18, *** -11, *FFk* -27, ¥k*
Indicators 12 -1, ** -3, Fk* 5, Hk* -2, n.s.
R-squared 0.80 0.64 0.53 0.35

p-value: ¥**: < 0.0001, **: < 0.001, *: < 0.05, n.s.: not significant

Comparison with Latent Class Analysis

Latent class analysis (Formann, 1984; McCutcheon, 1987) is a technique for
analyzing relationships in general categorical data. In the field of psychology, LCA

is one of the most common tools to identify subgroups of individuals on the basis of
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TABLE 7.

Comparative Evaluation with LCA

Clustering Algorithm LCA
mean  sd range mean sd  range
indep. 59 0.3 5-6 5 0 5
Profiles found —7-> 33 0.7 25 35 07 24
Classification indep. 76.2 2.2  69-77.5 60.4 2.06 58.2-65.6
rate dep. 42.1 4.2 32.6-53.9 40.5 6.7 25.3-46.6

binary data sets. LCA fits a simple parametric model. It is assumed that the data
are generated by a finite mixture of ‘latent’ classes. Each latent class is defined by its
conditional response probabilities and its relative size. One important assumption of
LCA is ‘local independence’ in each class, meaning that each variable is statistically
independent of all other variables within each latent class.

The likelihood ratio statistic and Pearson chi square value are used to evaluate
the goodness-of-fit of LCA results. Note that these values are only asymptotically
chi-square distributed, and reliable results can thus only be obtained if the number
of data points is significantly larger than the number of possible binary patterns.
This requirement is not fulfilled in our scenarios, where we have 6000 data points
and 2'2(= 4096) possible binary patterns. Confidence intervals for the two statis-
tics can be obtained by parametric bootstrap techniques, but these methods are
computationally expensive.

Number of cluster recommendations were deduced from the development of the
BIC measure (Schwarz, 1978; Rost, 1996) over the same range of cluster numbers
(2-13) as for the clustering algorithms.

Table 7 shows a comparison between LCA and a clustering algorithm, meaning

that LCA is treated as a clustering algorithm and its performance is evaluated in



PSYCHOMETRIKA 29

this respect. This comparison is made for the scenarios P2DON6S3I1 (independent)
and P2D8N6S3I1 (dependent). These two scenarios were chosen to give a represen-
tative example of how LCA can handle clustering problems with independent and
dependent variables. Since it is usually not known in real-world situations whether
the local independence condition is fulfilled, we were interested in the performance
of LCA for dependent scenarios as well.

For these specific scenarios, it is obvious that the performance of LCA is worse
than that of the clustering algorithm. However, it managed to react well to the de-
pendent scenarios, which shows that LCA can be considered a clustering algorithm,
even in situations where the validity of the local independence condition is unknown.
For the rest of the scenarios the results are similar, whereas both algorithms perform
equally in the case of the scenarios which are easy to cluster successfully.

When applying LCA, the BIC is the appropriate measure for finding the number
of clusters. However, it turns out that the BIC is only able to find the right number
of clusters in the case of simple, independent scenarios. For scenarios where the local
independence assumption is not fulfilled, the BIC criterion does not find the right
number of clusters. However, it also fails for the more difficult independent scenarios.
Generally, LCA using BIC yields the same performance quality as average indexes

in the case of independent scenarios.

Summary

In this paper, the performance of 15 indexes for determining the number of
clusters in a binary data set is analyzed. In order to ensure that the right number
of clusters is known, only artificial scenarios designed to simulate the difficulties of

real-world data were used. Five design factors—mnamely the probability of a variable
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being 1, the level of dependency, the number of clusters, the size of clusters, and the
number of indicators in a group—are crossed, yielding 162 different artificial data
sets. In the evaluation of the indexes’ performance, k-means and hard competitive
learning methods were applied 100 times for each scenario so as to overcome the
instabilities imposed by the clustering algorithms. The selection of the number of
clusters, based on the indexes’ values, was done automatically. Since the artificial
data sets were generated to resemble real-world data, the analysis of the indexes’
performance helps a researcher to choose the appropriate index for each individual
problem.

A comparison with the results reported by Milligan & Cooper (1985) is not
possible due to completely different simulation assumptions in both the data used
and, as a consequence, the applicable algorithms and indexes.

Central findings include the major negative influence of non-extreme answer
probability levels and of unequal cluster sizes on the correct identification of data-
inherent cluster structures. Compared to these two factors, the influence of the
number of clusters actually modeled in the data, the number of manifest variables
and the dependence level of individual items is rather weak.

Depending on the evaluation criterion chosen, various rankings of the indexes
emerge, with the Ratkowsky-Lance Index scoring highest in all but one criterion
(’absolute profile’). Based on their ability to recommend the correct number of
clusters through a majority vote over replications, the Ratkowsky-Lance and Davies-
Bouldin Index render the best results over all data scenarios investigated, followed
by the indexes proposed by Calinski-Harabasz and Xu.

Tables 8-11 give the ranking information for the four criteria split up into the
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various factor levels. This nicely demonstrates that the superiority of the Ratkowsky-
Lance Index is not an artificial phenomenon arising from calculating the mean over
a multitude of levels; thus Ratkowsky-Lance really is the best recommendation for
working with binary data. Out of 112 ranks (2 algorithms, 4 criteria and 14 factor
levels) Ratkowsky-Lance misses first place only 42 times, the majority of which is
due to its weakness in identifying the correct absolute cluster profiles. So, as far
as the number-of-clusters decision is concerned, Ratkowsky-Lance is the absolute
high scorer, but for profile identification it seems recommendable to use indexes

specialized in this field, such as the Davies-Bouldin, the SST or the T/W Index.

Appendix

TABLE 8.

Clusters found

P1 P2 P3 DO D4 D8 N4 N5 N6 S1 S2 S3 I1 I2 mean std
Calinski-Harabasz 4 8 8 5 6 3 7 4 4 3 511 7 5 5.7 22

C Index 8 5 5 7 8 6 5 8 5 5 8 9 4 8 6616
Davies-Bouldin 1 613 2 210 8 2 2 4 2 5 8 2 46 36
Hartigan 10 10 12 12 14 15 11 14 15 11 15 15 13 12 128 1.8
Ratkowsky-Lance 21 1 1 1 1 4 1 111411 15 1.1
Scott-Symons 6 6 1 711 7 4 2 3 4 44 26
Marriot 7 3 3 8 4 2 3 6 910 7 3 5 7 56 25
Ball-Hall 16 12 16 15 16 16 16 16 16 16 16 16 16 16 15.7 1.0
TraceCovW 15 10 9 14 15 9 14 15 13 15 11 6 14 15 12.7 29
TraceW 1 8 10 10 9 14 10 10 10 6 13 14 10 11 10.3 2.1
TraceW !B 5 7 4 3 T T 2 5 712 6 1 6 6 56 26
T/W 9 11 14 13 10 8 12 13 12 13 10 7 12 10 11.1 2.0
SSI 14 12 15 15 12 11 15 11 6 14 9 10 15 14 12,5 2.7
NLL 13 12 7 11 11 13 9 12 14 8 12 13 9 13 11.1 2.1

Xu 312 6 4 5 5 6 3 3 2 3 8 2 3 4527
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TABLE 9.

Classification Rate

P1 P2 P3 DO D4 D8 N4 N5 N6 S1 S2 S3 I1 I2 mean std
Calinski-Harabasz 4 411 3 4 3 8 4 4 3 411 5 3 49 28
C Index 1 2 3 4 5 4 3 5 9 6 3 2 2 6 46 2.6
Davies-Bouldin 1 914 8 7 11 12 7 2 4 81210 4 7.9 38
Hartigan 15 13 5 11 13 15 4 14 15 15 10 3 13 10 11.2 4.1
Ratkowsky-Lance 21 1 1 1 1 1 1 1 1 1 11 1 1103
Scott-Symons 6 6 4 6 5 11 7 5 6 4 5 5419
Marriot 10 8 9 9 6 9 10 6 12 9 710 7 9 86 1.6
Ball-Hall 16 16 8 15 16 16 11 16 16 16 13 4 16 16 14.1 3.7
TraceCovW 7 12 12 12 12 7 14 10 5 12 12 13 11 12 10.8 2.5
TraceW 13 5 2 7 814 2 913 8 9 5 8 8 7.9 36
TraceW 1B 5 710 5 9 6 9 8 711 6 7 6 7 7318
T/W 8 15 13 14 15 10 15 13 8 10 15 14 14 14 12.7 2.5
SSI 9 14 15 16 11 8 16 11 6 13 14 15 12 15 12.6 3.0
NLL 14 10 6 10 10 13 7 12 14 14 11 &8 9 11 10.6 2.5
Xu 3 3 7 2 2 2 6 2 3 2 2 9 3 2 3322

TABLE 10.
Absolute Profiles Found

P1 P2 P3 DO D4 D8 N4 N5 N6 S1 S2 S3 Il I2 mean std
Calinski-Harabasz 8 10 6 9 9 10 10 8 9 &8 8 910 7 86 1.2
C Index 11 11 12 12 12 12 12 12 12 12 12 12 12 12 119 04
Davies-Bouldin 111 2 1 1 2 1 1 1 1 11 2 1204
Hartigan 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15.0 0.0
Ratkowsky-Lance 4 710 7 6 5 9 5 6 6 6 8 6 6 65 1.6
Scott-Symons 9 911 11 10 8 7 11 11 11 11 10 11 11 10.1 1.3
Marriot 10 8 9 8 8 11 6 9 1010 7 6 710 85 1.6
Ball-Hall 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16.0 0.0
TraceCovW 3 5 5 4 4 4 5 4 4 5 4 5 5 4 43 0.6
TraceW 13 13 14 14 13 14 14 13 14 13 14 14 14 13 13.6 0.5
TraceW—'B 6 6 7 6 5 6 4 6 7 9 5 4 3 8 5816
T/W 5 3 3 3 3 3 3 3 3 4 3 3 4 3 3306
SSI 2 2 2 1 2 2 1 2 2 3 2 2 2 1 1905
NLL 14 14 13 13 14 13 13 14 13 14 13 13 13 14 134 0.5
Xu 712 8 10 11 9 11 10 8 7 911 9 9 94 15
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TABLE 11.

Relative Profiles Found

P1 P2 P3 DO D4 D8 N4 N5 N6 S1 S2 S3 I1 I2 mean std
Calinski-Harabasz 3 59 6 8 5 8 9 7 3 9 9 6 8 69 21
C Index 5 4 3 2 4 4 4 2 3 4 1 6 2 4 3413
Davies-Bouldin 8 12 13 12 12 16 12 12 10 11 12 12 14 12 12.0 1.7
Hartigan 1 8 2 8 7 3 2 6 110 5 2 8 5 63 31
Ratkowsky-Lance 11 4 1 1 7 6 1 1 1 2 1 1 1 2020

6

4

Scott-Symons 8 5 6 9 9 4 4 6 7 8 7 7 6715

Marriot 910 11 9 8 10 8 5 8 10 11 9 10 8.7 2.0
Ball-Hall 13 11 6 10 10 11 7 11 16 15 4 3 10 11 9.9 3.6
TraceCovW 15 14 12 14 15 14 15 14 13 14 14 13 13 15 139 0.9
TraceW 9 2 1 3 2 2 1 3 8 5 3 4 3 2 3.3 24
TraceW~'B 7 10 11 7 11 10 11 10 6 9 11 10 11 9 95 1.6
T/W 14 16 14 15 16 13 14 15 14 13 15 15 16 14 146 1.0
SSI 16 15 16 16 13 15 16 16 15 16 16 16 15 16 15.5 0.8
NLL 10 6 5 9 3 1 3 7 9 7 8 5 5 6 59 25
Xu 2 3 7 4 5 6 5 5 2 2 6 7 4 3 4.3 1.7
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