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AN EXAMPLE OF A PERIODIC MAGNETIC SCHRÖDINGER
OPERATOR WITH DEGENERATE LOWER EDGE

OF THE SPECTRUM

R. G. SHTERENBERG

Dedicated to my dear teacher M. Sh. Birman

Abstract. The structure of the lower edge of the spectrum of a periodic magnetic
Schrödinger operator is investigated. It is known that in the nonmagnetic case the
energy depends quadratically on the quasimomentum in a neighborhood of the lower
edge of the spectrum of the operator. An example of a magnetic Schrödinger operator
is constructed for which energy is partially degenerate with respect to one component
of the quasimomentum.

§0. Introduction

0.1. Let Γ be a lattice in Rd, d ≥ 1, and let Ω be an elementary cell of the lattice Γ.
Γ-periodic differential operators (DO’s) can be partially diagonalized with the help of the
Gelfand transformation (see, e.g., [Sk]). Then the initial DO is represented as a direct
integral of a family of DO’s that act on the torus associated with Ω. The operators in
this family depend on a parameter k ∈ Rd (called the quasimomentum).

We consider lower semibounded selfadjoint DO’s. For most of DO’s of mathematical
physics, the spectrum of the corresponding operators acting in L2(Ω) is discrete. The
eigenvalues Ej(k), j = 1, 2, . . . , arranged in nondecreasing order, depend on k contin-
uously. Then the spectrum of the initial DO has a band structure, with bands corre-
sponding to the band functions Ej(·). For convenience, we assume that the lower edge
of the spectrum is λ = 0. For some problems, it turns out that their solution requires
only the knowledge of the approximate behavior of the first band function E1(k) near
its minimum point. In such cases we talk about the threshold effects at the point λ = 0.
It is a nontrivial task to judge whether or not a given effect is a threshold one. As an
example, we point out the problem of the discrete spectrum that appears to the left of
the point λ = 0 when a periodic DO is perturbed by a decaying negative potential. If
this potential decays not too fast, then the crucial contribution is of threshold nature.
Another important case of a threshold effect at the point λ = 0 is the behavior of a
periodic DO in the small period limit.

0.2. The investigation of threshold effects becomes much easier if the periodic DO in
question admits an appropriate (“regular”) factorization. In [BSu], a wide class of elliptic
periodic second order DO’s was distinguished, and a fairly deep analysis of the lower edge
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of the spectrum was developed for that class. In the scalar case, this class of DO’s is
described by the following condition: the operator M admits the representation

(0.1) M = f(x)b(D)∗G(x)b(D)f(x), b(D) :=
d∑

j=1

Djbj ,

where D = col{D1, . . . , Dd} = −i∇ = −i col{ ∂
∂x1

, . . . , ∂
∂xd

}, f(x) is a Γ-periodic func-
tion, G(x) is a Γ-periodic (m × m)-matrix-valued function (m ≥ d), and the bj , j =
1, 2, . . . , d, form a set of linearly independent vectors in Cm. Moreover,

(0.2) f, f−1 ∈ L∞(Rd); c01 ≤ G(x) ≤ c11, x ∈ R
d, 0 < c0 ≤ c1 <∞.

Under conditions (0.2), the factorization (0.1) will be called a proper factorization. The
following statements are direct consequences of the existence of a proper factorization.

1) The first band function E1(k) has a nondegenerate minimum at the point k = 0
(and then E1(0) = 0). The corresponding quadratic form can be estimated explicitly;
the constants in estimates are well controlled.

2) We have E1(k) > 0 for k �= 0 (mod Γ).
3) minkE2(k) > 0.
Sometimes, the DO in question is given not in the form (0.1), but can be rewritten

properly. In [BSu] it was noted that, in particular, the periodic Schrödinger opera-
tor − div g(x)∇ + V (x) with a positive matrix-valued function (metric) g(x) admits a
proper factorization. The same is true for the two-dimensional periodic Pauli operator
(D−A)2±(∂1A2−∂2A1), which is a particular case of the magnetic Schrödinger operator

(0.3) (D− A)∗g(x)(D − A) + V (x).

Here A(x) is a Γ-periodic R2-valued function.

0.3. We consider the “pure magnetic” Schrödinger operator

(0.4) H(t) = (D − tA)2, t ∈ R.

Here, for convenience, we have introduced the parameter t. The operator (0.4) is already
factorized, but this factorization is not of the form (0.1). The lower edge of the spectrum
of the operator H(t) is positive for t �= 0 unless the vector-valued function A is potential.
For an appropriate θ(t) > 0, the lower edge of the spectrum of the operator H(t)− θ(t)I
is equal to λ = 0, while the initial factorization disappears.

For sufficiently small t, the operator H(t) − θ(t)I can be shown to admit a proper
factorization under conditions on the coefficients that are not very restrictive. However,
in general, if t is not assumed to be small, a proper factorization fails.

Observe that the situation may be much different if the electric potential in (0.3) is
coordinated properly with the magnetic potential. For example, the lower edge of the
spectrum of the two-dimensional Pauli operator is always equal to λ = 0, and a proper
factorization exists.

In the present paper we construct an example of a pure magnetic Schrödinger operator
such that not only does it fail to admit a proper factorization, but also the lower edge of its
spectrum is partially degenerate. Namely, the first band function E1(k) of this operator
near its minimum point is of fourth (but not second) order in one of the components of
the quasimomentum. Such degeneration of the lower edge of the spectrum leads to some
particular features of the threshold effects that could not be observed in the nonmagnetic
situation. A more detailed discussion of the effects arising in this case will be presented
in another paper, where we shall also examine the existence of a proper factorization for
the operator (0.3) with sufficiently small A.
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§1. The main result

1.1. Notation. We use the notation x = {x1, x2} ∈ R2. Let Ω := [−1/2, 1/2)2, and
let Ω̃ := [−π, π)2 be the cell dual to Ω. The Sobolev space of functions that are square
integrable with all derivatives of the first and second order is denoted by H2(R2). By
H̃2(Ω) we denote the class of functions whose Z2-periodic extensions belong to H2

loc(R
2).

The symbol 1 stands for the unit (2 × 2)-matrix.

1.2. Construction of the operator. Preliminary remarks. In L2(R2), we consider
the operator

Mt := (D − tA(x))2 − t2, t ∈ R, x ∈ R
2.

Here the magnetic potential A(x) is given by A(x) = col{0, A2(x1)}, where

(1.1)
A2(x1) := sgnx1, x1 ∈ [−1/2, 1/2),

A2(x1 + 1) = A2(x1), x1 ∈ R.

(As we shall see, the term −t2 ensures that the lower edge of the spectrum of Mt is equal
to zero for sufficiently small t.) Obviously, on the domainH2(R2) the operatorMt, t ∈ R,
is selfadjoint and lower semibounded. Using (1.1), we can rewrite the operator Mt in the
form

(1.2) Mt = D2
1 +D2

2 − 2tA2(x1)D2.

We put

(1.3)
ϕ(x1, x2) := 2|x1|, x1 ∈ [−1/2, 1/2), x2 ∈ R,

ϕ(x1 + 1, x2) = ϕ(x1, x2), x1 ∈ R, x2 ∈ R.

Also, we introduce the following family of Hermitian matrices:

(1.4) Gγ(x; t) :=
(

1 −i(tϕ(x) + γ)
i(tϕ(x) + γ) 1

)
, γ ∈ R.

The identity

(1.5) Mt = D∗Gγ(x; t)D, t ∈ R, γ ∈ R,

can be verified directly. Observe that the matrix (1.4) generates the representation (1.5)
for any γ ∈ R, though the operator Mt does not depend on γ.

We say that the matrix Gγ(x; t) is uniformly positive (for fixed t and γ) if for some
constant c > 0 the following estimate is fulfilled:

(1.6) Gγ(x; t) ≥ c1, x ∈ R
2, c = c(t, γ) > 0.

Lemma 1.1. The matrix Gγ(x; t) is uniformly positive if and only if

|t| < 2 and

{
γ ∈ (−1, 1 − t) for 0 ≤ t < 2,
γ ∈ (|t| − 1, 1) for − 2 < t < 0.

Proof. Clearly, estimate (1.6) is equivalent to the condition

(1.7) detGγ(x; t) > 0, x ∈ R
2.
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By (1.3) and (1.4), inequality (1.7) implies that

1 − (2t|x1| + γ)2 > 0, x1 ∈ [−1/2, 1/2).

Now, the lemma easily follows. �
Remark 1.2. Lemma 1.1 and identity (1.5) imply that for |t| < 2 the operator Mt admits
a proper factorization of the form (0.1). (However, we cannot take one and the same γ
ensuring a proper factorization for all |t| < 2 (cf. Lemma 1.1).) As a consequence, the
point λ = 0 is the lower edge of the spectrum of the operator Mt. In what follows we
shall see that the lower edge of the spectrum still coincides with λ = 0 up to |t| ≤ 2

√
3.

1.3. Investigation of the spectrum of the operator Mt. In L2(Ω), we consider the
family of operators depending on the parameter k ∈ R2 (k is the quasimomentum):

(1.8) Mt(k) := (D1 + k1)2 + (D2 + k2)2 − 2t sgnx1(D2 + k2), k = {k1, k2} ∈ R
2.

Defined on the domain H̃2(Ω), the operators Mt(k) are selfadjoint and lower semi-
bounded. Each of them has discrete spectrum. Let {Ej(k; t)} denote the eigenvalues
of the operator Mt(k); we enumerate them in nondecreasing order:

E1(k; t) ≤ E2(k; t) ≤ · · · ≤ En(k; t) ≤ · · · .
Let {ψj(x,k; t)} be the corresponding (periodic) orthonormal eigenfunctions. The func-
tions Ej(k; t) are continuous in k and t and (2πZ)2-periodic in k. In what follows, we
consider only the quasimomenta k belonging to the dual cell Ω̃.

The general Floquet–Bloch theory implies that the spectrum of Mt has a band struc-
ture, and

(1.9) σ(Mt) =
∞⋃

j=1

R(Ej(·; t)).

Here the symbol R(·) stands for the range of a function.
In the present subsection we discuss the structure of the lower edge of the spectrum

of the operator Mt in detail. Combined with not too difficult variational arguments, the
existence of a proper factorization (1.5) with uniformly positive matrix Gγ leads to some
relations for the eigenvalues Ej(k; t) of the operator Mt(k) (cf. [BSu]). In particular, for
|t| < 2 we have

(1.10)
E1(k; t) ≥ 0, E2(k; t) > 0, k ∈ Ω̃;

E1(k; t) = 0 ⇐⇒ k = 0; ψ1(x, 0; t) = 1.

Furthermore, the minimum of the function E1(·, t) at the point k = 0 is nondegenerate.
We are interested in the values of t for which relations (1.10) are true. Using the

discrete Fourier transformation in x2, we see that the operator (1.8) can be decomposed
into the orthogonal sum of operators

(D1 + k1)2 + (2πn2 + k2)2 − 2t(2πn2 + k2) sgnx1, n2 ∈ Z,

with periodic boundary conditions, acting on L2([−1/2, 1/2)). Thus, the problem con-
cerning the spectrum of the operator Mt(k) reduces to investigation of the spectrum of
the operator family

M̃t(k1, ξ) := (D1 + k1)2 + ξ2 − 2tξ sgnx1, k1 ∈ [−π, π), ξ ∈ R,

on the interval x1 ∈ [−1/2, 1/2), with periodic boundary conditions. Let Ẽ1(k1, ξ; t),
k1 ∈ [−π, π), be the smallest eigenvalue of the operator M̃t(k1, ξ). The operator M̃t(k1, ξ)
has the form (D1 + k1)2 + Vξ(x1). Then, as is well known (see, e.g., [RSi]),

(1.11) Ẽ1(k1, ξ; t) > Ẽ1(0, ξ; t), k1 ∈ [−π, π)\{0}, ξ ∈ R.
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Now we proceed to the study of the spectrum of the operator

M̃t(0, ξ) = − d2

dx2
1

+ ξ2 − 2tξ sgnx1, ξ ∈ R,

on the interval x1 ∈ [−1/2, 1/2), with periodic boundary conditions. We distinguish
the case where ξ = 0. Obviously, this case corresponds to the relations E1(0; t) = 0,
ψ1(x, 0; t) = 1. We consider the problem

(1.12) M̃t(0, ξ)u(x1) = 0, u(−1/2) = u(1/2), u′(−1/2) = u′(1/2), ξ ∈ R\{0}.
Obviously, the following condition is necessary for the existence of a nontrivial solution
of problem (1.12):

(1.13) ξ2 < 2|tξ|, ξ ∈ R\{0}.
We put

α± :=
√

2|tξ| ± ξ2, ξ2 < 2|tξ|, ξ ∈ R\{0}.
Simple but cumbersome calculations show that problem (1.12) has a nontrivial solution
if and only if relation (1.13) and one of the relations

(1.14) α+ tanh−1 α+

4
= −α− tan−1 α−

4
, α+ tanh

α+

4
= α− tan

α−
4

are fulfilled. From the further analysis it is clear that for |t| ≤ 2
√

3 relations (1.14) fail.
Combined with (1.9) and (1.11), this implies that for |t| ≤ 2

√
3 the point λ = 0 is the

lower edge of the spectrum of the operator Mt and that relations (1.10) are fulfilled.
To complete the study of the lower edge of the spectrum of Mt, we consider again the

problem for the first eigenvalue of the operator Mt(k):

Mt(k)ψ1(x,k; t) = E1(k; t)ψ1(x,k; t).

From the above considerations it follows that E1(0; t) = 0 and ψ1(x, 0; t) = 1 for |t| ≤
2
√

3. Moreover, the point λ = 0 is a simple eigenvalue of Mt(0). It is easy to write down
several initial terms of the analytic expansion of the function E1(·; t) near the point
k = 0:

E1(k; t) = k2
1 + (1 − t2

12
)k2

2 +
1
42

· t4

144
k4
2 − 1

10
· t

2

12
k2
1k

2
2 +O(|k|6).

In particular, for |t| = 2
√

3 we have

E1(k;±2
√

3) = k2
1 +

1
42
k4
2 − 1

10
k2
1k

2
2 +O(|k|6).

We summarize the results obtained.

Theorem 1.3. 1) For |t| < 2
√

3 the point λ = 0 is the lower edge of the spectrum of
the operator Mt; relations (1.10) are fulfilled ; and the function E1(·; t) is analytic in a
neighborhood of k = 0 and has a nondegenerate minimum at the point k = 0. Moreover,
for |t| < 2 the operator Mt admits a proper factorization.

2) For |t| = 2
√

3 the point λ = 0 is the lower edge of the spectrum of the operator Mt;
relations (1.10) are fulfilled ; and the function E1(·;±2

√
3) is analytic in a neighborhood

of k = 0 and has a minimum of second order in k1 and of fourth order in k2 at the point
k = 0.

Remark 1.4. 1) It can be proved that, for 2 ≤ |t| ≤ 2
√

3, there is no proper factorization
for the operator Mt. 2) A more detailed analysis shows that, for |t| > 2

√
3, the operator

Mt is not positive anymore. Herewith, at least if |t| ∈ (2
√

3, 2
√

3 + δ), where δ > 0 is
sufficiently small, the (negative) minimum of the spectrum of the operator Mt is reached
at two different (mod(2πZ)2) points k(1) = {0, k2}, k(2) = {0,−k2}, k2 > 0.
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Remark 1.5. Of course, an example similar to that described in the present subsection
can be constructed also for d ≥ 3. We can simply consider the operator

M
(d)
t := Mt ⊗ I ′ + I ⊗ (−∆′), where ∆′ :=

(
∂2

∂x2
3

+ · · · + ∂2

∂x2
d

)
,

and I, I ′ are the identity operators relative to x1, x2 and x3, . . . , xd. Then an analog of
Theorem 1.3 is valid.

We have constructed a periodic magnetic Schrödinger operator for which the lower
edge of the spectrum is partially degenerate (for one of the components of the quasi-
momentum). The author believes that there exist examples of complete degeneration
of the lower edge of the spectrum. Such situation seems to come true for a family of
two-dimensional operators Mt := (D − tA)2 − t2, where the Z2-periodic magnetic po-
tential A is given on Ω by the formula A(x) = col{sgnx2, sgnx1}, {x1, x2} ∈ Ω, while
the parameter t ∈ R is varying.
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