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AN EXAMPLE OF A TWO-TERM ASYMPTOTICS
FOR THE "COUNTING FUNCTION" OF A FRACTAL DRUM

JACQUELINE FLECKINGER-PELLÉ AND DMITRI G. VASSILIEV

Abstract. In this paper we study the spectrum of the Dirichlet Laplacian in a
bounded domain iî C R" with fractal boundary 3Q . We construct an open
set S for which we can effectively compute the second term of the asymptotics
of the "counting function" N(X, S), the number of eigenvalues less than A .
In this example, contrary to the M. V. Berry conjecture, the second asymptotic
term is proportional to a periodic function of In X , not to a constant. We also
establish some properties of the f-function of this problem. We obtain asymp-
totic inequalities for more general domains and in particular for a connected
open set t? derived from @ . Analogous periodic functions still appear in our
inequalities. These results have been announced in [FV].

I. Introduction

Let Q be a bounded open set in E" (n>2), with "fractal" (very irregular,
see below) boundary 9Q. We consider the following eigenvalue problem—in
its variational sense:

(1.1.a) -Au = Xu   inQ,

(l.l.b) u = 0   onöQ.
More precisely we say that X is an eigenvalue of ( 1.1 ) if there exists a nonzero
u in Hq(ÍI) satisfying the equation (1.1.a) in its distributional sense. Here
H¿(Q) is the completion of 3i(Q) with respect to the Sobolev norm || • \\H>(çi) ■
Since Q, is bounded the spectrum of problem (1.1) consists of a countable se-
quence of positive eigenvalues A_,-(£2) (each eigenvalue being repeated according
to multiplicity):

0 < Ai(£2) < A2(ß) < • • • < A;(Q) < • • • ,    Xj(Q) -> +oo   as ; -» +oo.

Let A be a positive given number. We denote by 7Y(A, £2) the number of
eigenvalues less than A :

(1.2) N(X,Q) = l{Xj(Q)<X}.
N(X, Q) is usually referred to as the "counting function" of problem (1.1).

It is known that the following asymptotics holds:

(1.3) 7v(A,Q)~ W(X,Q):=(2n)-"tonXn/2\a\„   asA^+oo,
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where co„ is the volume of the unit ball in E" and | • |„ denotes the n-
dimensional Lebesgue measure in R" . Formula (1.3) was established in 1911
by H. Weyl [Wl, W2] for smooth boundaries and then extended to irregular
boundaries in [BS, FM, Mtl, Mt2].

In the case of smooth boundaries and under some other assumptions (there
are not too many periodic geodesies) one has [Ivl, Iv2, Mil, M12, VI]:
(1.4) 7V(A,Q) = W{X,Çi)-Kn\dÇl\n^xX{n-X)l2 + o{X(n-X)l2)   asA-*+oo,
where Kn is a constant which depends only on n . When Q is a Riemannian
manifold and has symmetries (1.4) does not necessarily hold as shown in [DG,
SI, S2].

Here we study the case of a fractal boundary dQ, i.e. a boundary with a
noninteger dimension. Fractal boundaries have attracted much attention lately
since they appear in many physical problems such as the detection of cracks,
the catalysis on porous media etc.

In 1979 M. V. Berry studying the scattering of waves by "fractals"—and mo-
tivated by (1.4)—made the following conjecture for dQ with fractal dimension
Ô £(n- I, n):
(1.5) N{X,Q) = rV(X,Q)-KnJps(dÇl)Xâ'2 + o{Xs'2)   asA^oo;
in this conjecture ô is the Hausdorff dimension of the boundary dQ and
ßg(d£l) is its ¿-dimensional Hausdorff measure.

It was then proved by [BC] that (1.5) cannot be true with ô being the Haus-
dorff dimension and the authors suggested to replace ô by d¡—the interior
Bouligand-Minkowski dimension of the boundary.

In [LF1, LF2], the following asymptotics was proved:
(1.6) N(X,Q) = W{X,Q) + 0{Xd/2)   asA^+oo,
where d is the Bouligand-Minkowski dimension of the boundary which is as-
sumed to have a finite upper Minkowski content. Extensions of (1.6) were
established in [LI] and it was proved in [V2, LI, FV] that for our problem
(1.1) (with Dirichlet boundary conditions) only d¡—as sketched in [BC]—can
appear.

Here we construct an example which contradicts the "modified Berry con-
jecture" where ô is replaced by d¡ ; in our example the second term of the
asymptotics of the counting function is not proportional to Xd,l2 ; as for smooth
Riemannian manifolds with strong symmetries, the second term oscillates and
is of the form -cp{\nX)Xd,l2 where p is a positive periodic function as first
suggested in [V2] and then announced in [FV].

Before giving our results, let us recall the definition of the interior Bouligand-
Minkowski dimension of dQ. For a positive given number e we set
(1.7) PE = {x € Q: dist(x, dQ) < e}
where dist(-, •) denotes the Euclidean distance in R" . For a given h > 0 we
consider
(1.8) /r(/z,dQ) = limsup£-("-A)|r^|„

E-.+0

and
(1.9) ß,(h, dQ) = liminfe-{n-h)\re\n.

e—>+0
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TWO-TERM ASYMPTOTICS FOR THE "COUNTING FUNCTION" 101

The interior Bouligand-Minkowski dimension of dQ, denoted by d¡, is the
number

(1.10) dj = inf{hcR:ß*{h,dQ) = 0}.
Obviously d,G [n - 1, n].

An analogous definition can be given for the exterior Bouligand-Minkowski
dimension of dQ by replacing Y'e by Yee where

H = {x ?Q: dist(x, dQ) < £}.
Then

(max(di,de)   if|aQ|„=0,
\ n   if |0Q|„ ¿ 0

is the Bouligand-Minkowski dimension. This dimension is greater than or equal
to the Hausdorff one defined for example in [Fa].   To contradict the Berry
conjecture J. Brossard and R. Carmona constructed a domain such that the
Bouligand-Minkowski dimension is strictly larger than the Hausdorff one.

In this article we first construct an example of a disconnected open set S
in E2 for which the second term can be exactly calculated and is of the form
announced above (-cp(\nX)Xd>/2). We then obtain a lower bound and an up-
per bound of the same form for a connected open set tf derived from S.
Finally we give some extensions for more general domains flcK" with fractal
boundary. We also derive some properties of the Ç-function 0f our problem.

For the convenience of the reader we introduce now some notations that we
use throughout the paper.

For a given positive number r we set

(1.11) A,(r) = #{(qi, q2, ... , qn) €Z": q, > 0, q2 + ■■■ + q2 < r2}.

We also introduce
(1.12) pn(r):=2~nconrn-Jin{r).

It is a well-known result—established by Gauss [G]—that there exists a positive
constant y„ , which does not depend on r, such that
(1.13) 0 < pn{r) < ynrn~x    for all r > 0.

II. Example
H.A.   Open sets and results.   Let 5 be a positive given number satisfying
(2.1) l + v/2<5<3.

We consider in E2 the open set S (as shown in Figure 1), which consists of
a union of open squares. The central square Qo has side 1. The side of each
of the 4 consecutive squares Q\ is 5 times smaller; these squares are "sticked"
on the middles of the sides of go •

We now have 4x3 "free" sides with length s~x ; on each middle part of the
sides we "stick" again one square Q2 with side s~2 etc. At the kth step we
have
(2.2) nk = pk,        k> 1, and«0= 1

squares Qk with sides s~k .
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Figure 1

We denote by S the union of all these squares for k = 0, 1, 2,... . Note
that ¿? is disconnected; moreover it follows from (2.1) that the squares do not
overlap and that ¿f is with finite measure.

The interior Bouligand-Minkowski dimension d, of dS is
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TWO-TERM ASYMPTOTICS FOR THE "COUNTING FUNCTION" 103

This can be derived by a simple calculation, since for a given e > 0
K +00

(2.4) \T'E\2 = Y/nk(4es-k-4e2)+  £  nks~2k
k=0 k=K+\

where K is such that
(2.5) s~(K+x) < 2e < s~K.

Note that it follows from (2.1) that 1 < d, < 2.
For this open set ¿f we can compute exactly the second term of the asymp-

totics of the counting function; we have

Proposition 1. As X tends to +00

(2.6) H«.,*) = W{X,€)-\ (^pj\2 (^j^) + OiVX)

where
+00

(2.7) p2(y):=  £  $-> Pi{?-k).
k=—00

The function p2 is well defined, positive, bounded, l-periodic and left-continuous;
moreover the set of its points of discontinuity is dense in R. Here n - 2 and
hence

(2.8) W{X,S) = '^,    p2(r) = '-r¿-yr2(r)

where JV2 is defined by (1.11).
The set ¿f being disconnected, we also consider the connected set tf, derived

from ¿f by opening in the middle of each dQkf)dQk_{ a small interval Ik
with length

(2.9) ek = (\00(k\))-1 ;
throughout the paper we refer to these Ik as "cuts". This connected open set &
has the same Lebesgue measure (in E2) as @ and it also has the same interior
Bouligand-Minkowski dimension d¡■ = £|.

Theorem 1. As X tends to +00

4 (A
3 fl'»{,^rLh^

(2.10) = N{k,£) - W{X,@) < N{X,cf) - W(X, cf)

4 fVx\ '     /lnA-21n7t       ,,.\       ,,¿m
--3{-T)   P2(^ln^ + 0(1)J+0(A'/)-

ILB.    Proof of (2.6).   Since @ is the union of disjoint squares, we simply have
+00

(2.11) N{X,@) = YjnkN{X,Qk)
t=o

where nk is given by (2.2).
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On each square Qk the eigenvalues of the Dirichlet Laplacian are
(q2 + q2)n2s2k where q\ and qi are positive integers; hence, by use of (1.11)
we have
(2.12) N(X, Qk) = N(Xs-2k,Q0)=J2'(VXs-k/n).
It follows then from (2.8) combined with (2.11) and (2.12) that

N(X, <g) - W(X, <g) = f> Lv2 \~Ç\ - ¿í-

k=0 \ /

Therefore
(2.13) N(X,&)-W(X,@) = A + B
with

(2-14) A:=-4- g  ?J^)SAW
\-.

and

We deduce from (2.8) and (2.1) that

Of course the same argument shows that the part corresponding to negative k
in the series (2.14) converges. For the other part, corresponding to positive k ,
we simply notice that by (2.8) p2(r) < nr2/4 ; therefore, by use of (2.1)

(2.17)
VXs~k\       1^/3^ 3AW     Í ^S     1 <  l V Í 3 ̂

¿Í V    *    /      ^eí^2^       4^(52-3)'
It follows from (1.13), (2.1), (2.16) and (2.17) that ^ given by (2.14) is well
defined. We introduce now y G E by

v7!       . lnA-21n7r(2.18) *> = -,    i.e.   y=      ^     .

This implies that

(2.19) 3'=(f)*'
Hence, substituting (2.18) and (2.19) in (2.14) we get

4 / fl\di   +°°
(2.20) ,4 = __    X-        £   3*-'/»2(^-*) ee .4(A).

\ /      fe= —oo

Finally, (2.6) is a simple consequence of (2.7), (2.13), (2.16), (2.18) and (2.20).
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U.C.   The function p2.   It follows from (2.7) and (2.20) that

hence p2 is well defined and bounded. Since k - y = (k + 1) - (y + 1) it is
obvious that/J2 is 1-periodic.

Moreover, since pi is positive, so is p2. Obviously JV2 is left-continuous,
therefore the same remark holds for p2 . We now notice that

v, s     Í °   wnen r ^ "^2,
•"IV) =  { r- r-l 1    when V2<r< yß,

so that r — V2 is a point of discontinuity for JV2 ; each time that there exist
two strictly positive integers q\ and qi, satisfying q\ + q2 = r2, then r is a
point of discontinuity for JV2. This implies that P2 is discontinuous in y G E
each time there exist three integers q\,qi,k , with q\ and q-¿ strictly positive,
satisfying q\ + q\ = s2(y~k*> or equivalently

(2.21) y = k + ̂ K±Él_
2 In s

In particular this shows that any

(2.22) y(k,q) = k+2ln* + *n2,       keZ,qeZ+,
¿ins

is a point of discontinuity for p2 .
Note that (2.22) comes from (2.21) by choosing q\ = q2 = q . Now let yo G E

be an arbitrary fixed point, and / a positive integer, large enough. Let us denote
by q¡ the maximal natural integer such that

2 In q¡ + In 2

We have the obvious inequality

ln(g/+l)-lng/     ln(l+g/-')|yo -y,\ <-¡5J-- —i^—•
But the right-hand side of this inequality tends to zero as / tends to +oo because
q¡ tends to +oo. Therefore the sequence (y/)/6N tends to yo as / tends to
+00, and hence the set of points of discontinuity is dense.

It is useful to compute the Fourier coefficients of the function p2 :

,n ^^ fl    i v      /   „      • x j 1 p(di     nmi\(2.23) cm = Jo p2(y)exp(-2nmiy)dy = -^^—^j + -¡57] ,

m G Z. Here
+00   +00 /-l-OO

£(z) = EE(«i+ <?')"Z = j      r~2zdyr2(r)
<7i = l «72 = 1

is the C-function of the Dirichlet Laplacian on a square with side n ; this series
converges for Rez > 1 and £((d¡/2) + (nmi/\ns)) is understood as the result
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106 JACQUELINE FLECKINGER-PELLÉ AND D. G. VASSILIEV

of analytic continuation around the pole z = 1. Alternatively, Ç(z) for Rez G
(1/2, 1) can be defined as

/ \

£    (*.+*22rz+7C(z)=   lim
q\+q\<R2

-L+oo
2zr-lzdp2(r).

4(z-l)
V?i,«2'€Z;îi,92>0 J

Numerical results for s = 2.5 show that inf p2(y) ~ 5.67, sup/?2(y) « 6.91.
Note that Co « 6.3 is the mean value of the function p2 over a period.

II.D.    Proof of (2.10). Of course, since H¿ ((f) D H¿ (¿f ), we have
(2.24) N(X,c?)>N{X,€).
It is also obvious that

(2.25) W(X,@) = W(X,@).
Therefore the left-hand inequality of (2.10) is a combination of Proposition 1
and (2.24) and (2.25).

For having an upper bound we make use of a refinement of the usual "Dirich-
let-Neumann bracketing" [CH]. For each Qk let us denote by N(X, Qk) the
number of eigenvalues less than A of the Laplacian defined on Qk with Neu-
mann boundary conditions on the four "cuts" and with Dirichlet boundary
conditions elsewhere. We have

N{X,cf)<YjnkN(X,Qk)
k=o

and hence
+oo

(2.26) N(X,&) - W(X,d?) < $>*(;V(A, Qk) - W(X, Qk)) = C + D
k=0

with
+oo

(2.27) C:=$>*(tf(A,ß/t)-tf(A,ß*)),
k=0

+oo

(2.28) D :=Y,nk(N(X, Qk) - W(X, Qk)) = N(X, S) - W{X,S).
k=0

An estimate for C is obtained through the use of the following result which
will be proved in the next subsection.

Proposition 2.
Ñ(X,Qk)<N(X(l+cok),Qk)

where cok is some positive number which depends only on k and which tends to
zero as k tends to -foe.

Let us finish the proof of Theorem 1 by finding an upper bound for C .
Consider a positive integer / and set

(2.29) K{X) = E[(lnX)/{2lns)]
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where E[-] denotes the entire part. Here and below A > 0 is assumed to be
sufficiently large. Note that (2.29) implies

(2.30) VX/s<sKW <VÂ,
(2.31) Xdi'2/3 < 3KW < Xd'l2.

We now split C into two parts

(2.32)
with

(2.33)

(2.34)

C = CX + C2

Q=      £      nk(N(X,Qk)-N(X,Qk)),
\k-K(X)\>J

k>0

C2=      £      nk(Ñ(X,Qk)-N(X,Qk)).
\k-K{X)\<J

k>0

We remark that in view of (2.30) for k > K(X) + J we have 2n2s2k > X(i+tok) ;
hence, by [CH] and Proposition 2 for these k

(2.35) 0 < N(X, Qk) < N(X, Qk) < N{X{\ + tok),Qk) = 0.
Therefore, by (2.33) and (2.35), C\ is reduced to

K(X)-J-\

(2.36) C'=     E    nk(Ñ(X,Qk)-N(X,Qk)).
A:=0

For each square Qk we know [CH] that there exists a constant y > 0, which
does not depend on A or k, such that

W(X,Qk)-y(l + VXs-k)<N(X,Qk)
< Ñ(X, Qk) < /V,(A, Qk) < W(X, Qk) + y(l + v^)

where N\ (A, Qk ) denotes the number of eigenvalues less than A for the Neu-
mann Laplacian on Qk .

As a consequence of (2.36), (2.2) and (2.37) we have
K(X)-J-l

(2.37)

k=—oo

<
8y

3-5
3*W)-y-i + Vx 3\ A:(A)-y-r

-

with the help of (2.30) and (2.31) this formula transforms into

(238) c,<l"1;_f(i)Al.
We consider now C2. By Proposition 2

C2<      £     nk(N(X(l+tok),Qk)-N(X,Qk))

(2.39)
l*:-fU)|<y

k>0

<   e   ^(^wi + ̂ 5-/)),ô*)-^,ô^))
|Ar—Ar(yt)|<J-

fc>0
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where
(2.40) co(X,J):=     max     cok.

\k-K(X)\<J
k>0

It follows from Proposition 2 and from (2.29) that
(2.41) co(X, J) -> +0   as A -> +oc
(of course the rate at which co(X, J) tends to +0 depends on J).

We can rewrite the inequality (2.39) in the form

(2.42) C2 < Fi + F2 - F3
where
(2.43) Fl=      £      nk(W(X(\ + co(X,J)),Qk)-W(X,Qk)),

\k-K(X)\<J
k>0

(2.44) F2=      £      nkP2(^],
\k-K(X)\<J \ J

k>0

(2.45) «-      £     ^    ^('+M'A-J)r' V

k>0

From (2.43), (2.2), (2.8), (2.30) and (2.31) we deduce
Î2 46Ï s*to{X,J)Xd'l2 (s2\J
(146) Fl<     3*(i*-3)     (j)   ■

For estimating F2 and i^ we extend the summation in (2.44) and (2.45) to all
fceZ with nk = 4 • 3fc_1 and by (2.14) arrive at
(2.47) F2 < -A(X),

F3= -^(A(l + w(A,/)))--     ^     3^2-^^-z-—
(2.48) k-~°°

+oo /   -,   \ fcA(l+a?(A,/))      yí      (3_
3?r ,    ¿-      L2

By use of (2.20) and (2.7) we derive from (2.47)

,_ ,„ „      4 /v^V'      /lnA-21n7r\

Handling (2.48) analogously but with the use of (1.13), (2.30) and (2.31) we
obtain

(2.50) _   d
4 f^/X(l + co(X,J))\di     f\n(X(l+co(X,J)))-2lnn\

-Fi<-3 {-n-)   P2 {-2hVs-)

4sy2y/\ + co(X, J)Xd'l2 (s\J+l     s2{l+to(X,J))Xd-/2 (3\J
+ n(3-s) V3/      + n(s2-3) \s2
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Up to this moment the number / was fixed. But from now on we assume
that J is a function of A such that

(2.51) J(X) -» +00 and co(X, J(X))(s2/3)JW ^+0   as A - +00.

Of course this can always be achieved in view of (2.41). Bringing together
formulas (2.1), (2.6), (2.26), (2.28), (2.32), (2.38), (2.42), (2.46), (2.49), (2.50)
and making use of (2.51) we finally obtain the right-hand inequality (2.10).

U.E. Proof of Proposition 2. We intend in this section to establish an upper
bound for N(X, Qk) ; let us recall that Ñ(X, Qk) is the counting function of
the Laplacian on Qk with Neumann boundary conditions on the "cuts" and
Dirichlet ones elsewhere. But it follows from (2.9) that for a given Qk the
"cuts" are with size ek (for one of them) and ek+i (for three of them). Hence,
as a consequence of the inclusions of Sobolev spaces, we may write

(2.52) Ñ(X,Qk)<Ñ(X,Qk,ek)
where N(X, Qk,^k) denotes the number of eigenvalues less than A for the
Laplacian defined on Qk with Dirichlet boundary conditions everywhere but on
the four enlarged "cuts" where we consider the Neumann boundary conditions;
these enlarged "cuts" are all with the same size ek , and, as previously, they are
in the middle of the sides of the square.

We can now change the scale so that we have to study the eigenvalues X¡(Q, r¡)
of the Laplacian defined on a unit square ß with Neumann boundary condi-
tions on "cuts" with length r\ = skek and Dirichlet ones elsewhere; in the follow-
ing we denote by H(Q, n) the variational space associated with this problem
and by N(X, Q, n) the corresponding counting function. We have

(2.53) h(Qk,ek) = s2kXj(Q,skek)
or equivalently

(2.54) Ñ(X, Qk,ek) = Ñ(Xs~2k,Q, skek).

Remark 1. It follows from (2.9) that the length of the rescaled "cuts" n = skek
tends to zero as k tends to +00 .

By inclusion of the variational spaces

(2.55) Hx(Q) cH(Q,m)cH(Q,n2)cHx(Q)
for 0 < r]i < n2 < 1, we deduce that for any integer j > 1

(2.56) Xf (Q) < Xj(Q, n2) < Xj(Q, t¡x) < A?(ß),
where X^(Q) (resp. X^(Q)) denotes the y'th eigenvalue of the Dirichlet (resp.
Neumann) Laplacian on Q. Thus by (2.56), as r\ decreases to +0, Xj(Q, rj)
increases to

(2.57) lim 1(<2, V) := lj(Q, +0) < Xf(Q).

We shall show now that, in fact, (2.57) is an equality:
(2.58) A,(ß,+0) = A;fl(ß).

For simplicity we shall prove (2.58) for j — 1.
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Denote by (p\(n) G HX(Q) the eigenfunction associated with X\(Q, n) and
normalized by the condition   ||ç»i(î/)||l2(q) =  1;   obviously  H^iMH^i,™  =
•^•l(ß) f) + 1 • F°r anY monotonie sequence of positive numbers np tending
to zero as p —► +oo we have a sequence <p\(np) bounded in L2(Q) as well as
in HX(Q). Since the embedding of HX(Q) into L2(ß) is compact there exists
a subsequence of <P\(np) (still denoted by tp\(np) below) which converges to
some y/ G HX(Q), the convergence being strong in L2(ß) and weak in HX(Q).
Obviously

(2.59) \\v\\l2(Q) = ^lim^ \\<Pi(vp)\\l2(Q) = 1,

(2.60) livide) < ^ \\<Pi(riP)\\2Hi{Q) = Äi(ß, +0) + 1,

(2.61) y/cf)H(Q,n).
»?>o

But (2.61) means that the trace y/\dQ is zero almost everywhere (y/\dQ = 0
except on four points which are the middles of the four sides) hence y/ G H¿ (Q).
By the min max principle for the Dirichlet problem we have in view of (2.59)

(2.62) lkl|2i,(0)>Af(ß)+l.
Formula (2.58) follows from (2.57), (2.60) and (2.62).

Of course the above argument can be extended to the jth eigenvalues by
dealing with y'-dimensional spaces of functions.

Let us show now that uniformly over A > 0

(2.63) Ñ(X,Q,n)<N(X(\+co(n)),Q)
where
(2.64) co(n)^+0   as//-*+0;
recall that N(-, Q) is the counting function of the Dirichlet problem on the
unit square. Let â > 0 be an arbitrary number. By [CH] we have

(2.65) \Ñ(X,Q,n)-(4n)-xX\<yy/X,

(2.66) \N(X,Q)-(4n)-xX\<yVX,
where y > 0 does not depend on A > 0 or n G (0, 1/2]. Set

(2.67) A(â) = (4nyô-x(l + Vx-+ô))2.

It follows from (2.65)-(2.67) that for A > A(ô)
(2.68) N(X,Q,n)<N(X(l+ô),Q).
Note now that the number of eigenvalues Xj(Q, n) and X^(Q) on (0, A(ô)]
is finite (not more than the number of A^(ß) on this segment). Using the fact
that these Xj(Q, n) tend to Xf(Q) as n tends to +0 (see (2.58)) we obtain
(2.68) for A < A(S) and n < ij(A(ô)). As S > 0 is arbitrary, formulas (2.63)
and (2.64) follow from (2.68).

Combining formulas (2.52), (2.54), (2.63), Remark 1 and making an inverse
rescaling N(X, Q) = N(Xs2k, Qk) we obtain Proposition 2 with cok = co(skek).
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II.F. The C-function. For the Dirichlet Laplacian on a bounded open set Q
with eigenvalues Xj(Q) we define as usual the C-function of the problem

+00 /.+00

(2.69) C(z, Q) = £ A-Z(Q) = /      X'zdN(X, Q).

Substituting (2.6) into (2.69) we immediately obtain the following result.

Proposition 3. For our example S the function Ç(z, S ) is meromorphic in the
complex half-plane Rez > 1/2 with simple poles at z = 1 and z = zm :=
dj/2 + (nmi)/(lns), m G Z. The corresponding residues are

Res(l, S) = \S\/4n,    Res(zm , (g) = -4cmzm/3n2Zm ,

where cm are the Fourier coefficients of the function p2, see (2.23).

It can be shown that Proposition 3 holds also for the domain tf but unfortu-
nately this fact does not follow immediately from (2.10). Proving Proposition 3
for the domain tf demands more delicate estimates which lie beyond the scope
of this work.

These results can be related to some new conjectures in [L2] or [LP].

II.G. Numerical results show that whereas for the smooth case the two-term
asymptotics usually start working effectively form the very beginning of the
spectrum [VI] the fractal two-term asymptotics become effective only for very
big (A > 106) values of A. This is illustrated by the following table, containing
results for the spectrum of the Dirichlet Laplacian on the open set & (s = 2.5) :

A= 102 A=104 A=106      A=108         A=1010

N(X,S)          6 1440 171289 17635990 1773236170

W2(X,S)      -16.2 1216 169080 17614000 1773000000

W(X,@)        17.8 1775 177520 17752000 1775200000

Here

is the fractal two-term asymptotics.
Numerical estimates of N(X, &) and of p2(y) have been done by Hervé

Innocenti and Dominique Pairault, "élèves" a l'Ecole Nationale Supérieure de
l'Aéronautique et de l'Espace ("Sup Aero"), Toulouse, France, where the first
author works part-time as a professor.

III. Extensions
As announced in [FV], we shall give a very precise lower bound for the count-

ing function of the Dirichlet (or Neumann) Laplacian on a general domain
QcR". Indeed, upper bounds can also be obtained by use of methods from
[FM, Mtl,... ], but since they are not as precise as Theorem 1 and for brevity
we restrict ourselves to the lower bound.
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Theorem 2. Let Q be a bounded domain in R" for which the boundary 9Q is
with interior Bouligand-Minkowski dimension d¡ e (n - I, n);  we assume that
(3.1) ß*(di,dQ)<+oo
where ß*(d,, dQ) is defined by (1.8). Then, for X —► +oo

N(X,Q)-W(X,Q)

(3'2)        > -(4„)(»-*>/y (4, an) (^ /„ (^^) + <{**)

where
+oo

(3.3) fn(t)=   £  2^->„(2'-fc).

The function fn is well defined, positive, bounded, {-periodic and left-continuous;
moreover the set of its points of discontinuity is dense in R.
Proof of Theorem 2. We consider a "Whitney covering" of E" . For each integer
k G N, we consider a tessalation of E" into congruent and nonoverlapping open
cubes (ßfj, it e Z" , with sides r\k = 2~k . We define by induction

^o = {CoGZ":ß{ocQ};    Q'0 =  \J Qlo;    Q'¿ = Q\3£;
fo€/lo

¿, = {Ci ez": ßf, cog};   n; = n0u ( |J ßCl ] ;   Q'; = n\äy;

Ak = {ÇkeZ":QrkcQ'k^};    Q'k = Q'k_,u [   \J Qik\ ;    Q^ = Q\Q-

In other words, we include in Q all the cubes with side no = 1 that we can;
we denote by Ao the set of their indices, so that we have «o = (#^o) such
cubes. In the remaining part Q'¿, which is "near" the boundary, we include
«i = (#A\) cubes with side rj\ = n0/2 etc. We make the following remark, as
in [LF1]:
Remark 2.  Q'k' c T'vrik, where v = nx/2.

The "remaining part" Q'k  at the /cthstep is included in the "Minkowski
sausage" with width vnk ; therefore, by (1.8) and (3.1), we have
(3.4) nk+l < ß*(dt, dQ)v"-d'2d-k+n(\ + o(\))   as k -► +oo.
Since

+oo

(3.5) N(X,Q)>Y,nkN(X,Qk),
k=0

(Qk is a cube with side nk) we are lead to calculations analogous to those
handled in §II.B. It follows from (1.11), (1.12) and (3.5) that

W(X, Q) - N(X, Q) < £ nkp„   ^—-   .
k=o V /
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Hence, by (3.4)
W(X,Q)-N(X,Q)

(3'6) < f{dlt ÖQ)(2*)"*X; 2**(1 + *(1))Ä f^l^) •

Since í/¡ < n by hypothesis, the series (3.6) converges by use of the obvious
inequality

(3.7) 0 < pn(r) < 2-"tonr"

(consequence of (1.12)). By (1.13) and since d > n - 1 we have

(3.8) £ 2d>kp„ (^f^-) < CA("-')/2£ (^¡-\ < C'A("-"/2.
<:=-oo \ / j=\ '

Moreover, using (1.13) for k < (lnA)/(21n2) and (3.7) for k > (lnA)/(21n2)
we obtain

+°° /\/I?-*\
(3.9) £ 2diko(\)pn   l^±—    = o(Xd'l2)   as A - +oo.

fc=o \    *    /

Thus, by setting VX/n = 2', we derive from (3.3), (3.6), (3.8) and (3.9)

W(X, Q) - N(X, Q) < ( —- )   ß*(di, dQ)(2i/)"-d<2d'<fn(t) + o(Xd''2)

which is the estimate (3.2) with t = ln(Vx/n)/\n2.
The proof of the properties of the function fn can be handled exactly as

those of the function p2.

Remark 3. Our method applied to the Brossard-Carmona open set D with a
positive integer parameter a gives

/   r-\ d<      /4 / v A \       /In A - 2 In 7iw.«>-w».»>-4jm ,(!4¿£s)+<*/i>
where

q(y) =   £ (5a2)k~yp2((3ay-k)
k=—oc

is positive, bounded, left-continuous, 1-periodic and with a dense set of points
of discontinuity. This explains of course the fact that the authors [BC] did not
find the same upper and lower bounds for the second asymptotic term of the
"partition function" Z(t) = /0+o° exp(-Af) dN(X), t - +0.

Remark 4. As in [BC] we have in our examples Q = S and Q = tf strict
inequalities

0 < p,{di, dQ) < ß*(di, dQ) < +00
so the boundary is not in fact (internally) ¿/,-Minkowski measurable. However
an equality ß*(di, dQ) = ß*(d,, dQ) can always be easily achieved (see also
[BC, p. 106]) by extracting a specially chosen infinite sequence of isolated points
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from Q; this will not change the spectrum but will change pt(d¡, dQ) and
ß*(di, 9Í2). For example, set the origin of our Cartesian coordinate system in
the center of ßo and extract from tf (without changing the spectrum!) the
sequence of points

Am,n := ( —, —.F ( — ) ) ,        m=l,2,...,« = l,2,...,m!,\m   ml    \mJJ
where

G(z) + cz3'2d' >0,

4v/ëC7(v/ê) == \Pe\2, and \Pe\2 is defined by formulas (2.4), (2.5), (2.2). Then
we obtain (by a straightforward calculation) ß*(dl-, <9Q) = ß*(di, dQ). This
observation combined with Theorem 1 disproves the modified Berry conjecture
as formulated in [LI].

Remark 5. From the physical point of view our example of the "fractal drum"
tf has a certain defect in the sense that part of the boundary of Q is "interior"
(in some places it separates parts of Q). However we can make all the boundary
"exterior" (i.e. separating Q and E2\£2) by expanding the lines d(§k n d€k+\
into narrow rectangles of width (100(A:!))_1 . Estimates for the counting func-
tion of the Dirichlet Laplacian on such a domain are similar to that for tf and
the second asymptotic term is the same.

Remark 6. Sometimes the Weyl law plus smooth corrections is regarded as the
asymptotic expansion of the smoothed (in some sense) counting function; under
such an approach, the periodic function p2(y) in the second asymptotic term
might be replaced by a corresponding transform, e.g. its average value cq which
was defined in (2.23).
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