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Active circulation control of the two-dimensional unsteady separated flow past a semi- 
infinite plate with transverse motion is considered. The rolling-up of the separated 
shear layer is modelled by a point vortex whose time-dependent circulation is predicted 
by an unsteady Kutta condition. A suitable vortex shedding mechanism introduced. A 
control strategy able to maintain constant circulation when a vortex is present is 
derived. An exact solution for the nonlinear controller is then obtained. Dynamical 
systems analysis is used to explore the performance of the controlled system. The 
control strategy is applied to a class of flows and the results are discussed. A procedure 
to determine the position and the circulation of the vortex, knowing the velocity 
signature on the plate, is derived. Finally, a physical explanation of the control 
mechanism is presented. 

1. Introduction 

In recent years, the efforts to actively control unsteady separated fluid flows in a 
broad range of applications have become more intense, see Gad-el-Hak & Bushnell 
(1991) for a discussion and references. In particular the control of the flow past bluff 
bodies is receiving a great amount of attention because of the large variety of 
applications : lift enhancement, drag reduction, noise and vibration control, mixing 
improvement, etc. Most of these studies are of an experimental nature while numerical 
contributions have increased in the past few years. Theoretical work is almost non- 
existent, probably because of the high complexity of the equations governing the flow. 

In approaching the problem of controlling a physical system, the choice of the 
mathematical model used to represent the system is of major importance : the selected 
model will influence the entire process of deriving and implementing the controller. If 
the system under investigation is a fluid flow the description through the full 
Navier-Stokes equations might be preferable for accuracy but would be dependent on 
large-scale computation and would not necessarily lead to any insights that would 
guide to the derivation of a control strategy. Consequently, the brute-force approach 
of controlling a full problem is unlikely to produce a controller which can be applied 
to an experimental situation in the near future. A different approach, the one taken in 
this study, is to derive a simpler fluid model which is able to capture the major features 
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of the flow. With a simpler mathematical description one can hope to solve 
theoretically a class of interesting control problems and to produce fast numerical 
algorithms for control. Then, before attempting to control a laboratory flow, the 
controller derived for the simpler model might be used as a starting point to control 
the same class of flows simulated by a more sophisticated CFD code. The advantage 
of controlling a flow simulated by another CFD code is that it is possible to measure 
all the quantities required to feedback to the controller and, also, the action of the 
controller is naturally synchronized with the evolution of the flow because both 
algorithms run on virtual time. Furthermore, the use of higher-level simulator allows 
one to apply the derived controller to gradually more complicated situations. For 
example, if the controller were derived for an inviscid model, then it could be applied 
to the same flow when the fluid is slightly viscous. To perform properly in the new 
environment the controller has to be made robust about the new perturbation (see 
Doyle, Francis & Tannenbaum 1992; Fan, Tits & Doyle 1991). The iteration of the 
robustness process over different perturbations (e.g. viscosity, three-dimensionality, 
background noise, etc.) might produce a controller able to handle the flow modelled 
through the Navier-Stokes equations. The final ambitious step of actively controlling 
a real experiment might be undertaken only if the final product of this chain of 
refinements is a controller that is robust enough to perform in presence of the 
unmodelled and unpredictable uncertainties contained in the real system and which is 
‘fast’ enough to control the flow in real time. 

Recently, efforts to modify certain features of the wake behind bluff and slender 
bodies using open loop control, such as reduction or magnification of the wake 
thickness (Tokumaru & Dimotakis 1991), vortex cancellation (Koochesfahani & 
Dimotakis 1988), pattern reproduction (Ongoren & Rockwell 1988a, b), and lift 
enhancement (Slomski & Coleman 1993) have been successful. In all these 
investigations the free-stream velocity was kept constant and quasi-steady results were 
achieved usually by moving the body with a frequency scaled by the shedding 
frequency. In a more general situation in which the free-stream velocity is time 
dependent this approach is generally not sufficient to control the flow and a feedback 
control strategy is necessary. 

In the present study we investigated active circulation control of a two-dimensional 
unsteady separated flow past a semi-infinite plate with transverse motion. As the 
authors have shown (Cortelezzi & Leonard 1993), the motion of the plate affects 
sensibly the wake dynamics and it therefore should be useful for control purposes. 
Although extremely simple, this basic flow involves several important features 
common to many unsteady separation processes. In particular, because this flow can 
be interpreted as the two-dimensional unsteady analogue of the three-dimensional 
steady separation over a delta wing, it could provide deeper insight into vortex 
management concepts in such three-dimensional flows (Rao 1987). The aim of this 
paper is to show that, using a reasonably simplified model, it is mathematically possible 
to solve the control problem in a quite general way and to provide a complete 
framework in which to implement the feedback strategy. We model the unsteady 
separation from the transversely moving plate by a point vortex whose time-dependent 
circulation is predicted by an unsteady Kutta condition. This simplified model, first 
introduced by Brown & Michael in 1954, is able to capture the main features of the flow 
and, for example, is quite accurate for power-law starting flows (see Rott 1956; Pullin 
1978; Cortelezzi & Leonard 1993). A suitable vortex shedding mechanism is also 
introduced to allow the simulation of flows involving multiple vortices. We then derive 
a control strategy which inhibits the production of further circulation when a vortex 
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is present in the flow. Furthermore, we obtain for any time-dependent free-stream 
velocity of definite sign the analytical closed-form solution of the controller, i.e. the 
predicted motion of the plate that satisfies the Kutta condition without requiring 
further shedding of vorticity into the wake. The mathematical derivation of the 
controller shows that the fluid domain is divided in three controllability regions. The 
performance of the controller within these regions is then characterized by a dynamical 
systems type of analysis. The predictions of this analysis are confirmed by two 
numerical simulations in which the controller is successfully tested. Finally, we provide 
a procedure to determine the information necessary for feedback to the controller ~ the 
position and the circulation of the vortex - from the velocity signature on the plate, i.e. 
the velocity along the plate at the edge of the boundary layer. The analysis of the wall 
velocity shows that the signature is different depending on which controllability region 
the vortex is located. We conclude by presenting a physical argument that explains the 
control mechanism. 

2. Mathematical formulation 

In this section we present a mathematical model to represent two-dimensional 
unsteady separation from the tip of semi-infinite plate which is allowed to move 
transversely with respect to the unsteady free-stream velocity (Cortelezzi & Leonard 
1993). We restrict our investigation to the case where the shear layer that separates 
and is convected away is thin enough to justify a description by means of a vortex sheet. 
In addition we replace the spirals of the vortex sheet with point vortices. However, the 
vortex sheet is not completely lost; it is assumed to consist of a sheet of negligible 
circulation that connects the tip of the plate to a point vortex of variable strength which 
replaces the core .of the forming spiral and satisfies an unsteady Kutta condition. 
Mathematically the feeding vortex sheet is just the branch cut due to the logarithmic 
singularity representing the vortex. 

The frame of reference is fixed to the plate so that the body can be identified with 
the negative imaginary axis of the complex plane. Using Schwartz-Christoffel's 
technique we transform the semi-infinite plate in the z-plane onto the real axis in the 
<-plane (see figure 1) with the following map: 

z = -i$. (1) 

We then build the complex potential F by superimposing basic flows. Thus, the 
complex velocity field w = dF/d< in the mapped plane has the form 

(2) 

Equation (2) contains the free-stream velocity, U ,  the velocity of the plate, up,  and N 
vortices of strength rn at < = Cn with their images at the complex conjugate position 
6 = cn. Note we use the convention that positive circulation corresponds to flow 
rotating in the clockwise sense. Note, that U is labelled free-stream velocity for 
simplicity: in reality, it is the leading order of the expansion of the potential flow past 
a finite plate about the tip of the plate. We allow the strength of the first vortex to 
depend on time so that the Kutta condition may be satisfied. We choose the convention 
that the vortex of variable strength is labelled with the subscript I ,  so that whenever 
a vortex is shed all the others are renumbered. 
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{-plane 

FIGURE 1. Physical and mapped planes. 

We impose the Kutta condition to regularize the potential flow which, in the physical 
plane, presents a square-root singularity at the tip of the plate. To remove the 
singularity in the z-plane the complex velocity (2) in the mapped plane has to be zero 
at the origin all the time. Solving for rl we obtain 

Note that Tl does not depend directly on up because the motion of the plate cannot 
affect the velocity of the fluid at the origin. In the mapped plane, in fact, the motion 
of the plate reduces to a stagnation-point flow about the origin. However, a change in 
the position of the plate modifies the relative position of the vortices with respect to the 
tip and so r1 will be affected indirectly. 

The motion of this system of vortices in the physical plane is described by the 
following set of ordinary differential equations : 

dt r1 dt Z*Z1 

with the initial conditions 

Zl(t,) = zo, z,(t,) = Zrs (y = 2, . . ., N ) ,  ( 5 4  b) 

where Fis  the complex potential and zo is the separation point. Note that zTg is the final 
position of the vortex r -  1 at the shedding time t = t,, which becomes the initial 
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position of the vortex r .  Thus the number of equations increases every time a new 
vortex is shed. The term containing dTl/dt in (4a) is known as Brown & Michael's 
correction (Brown & Michael 1954). The motion of a vortex of variable strength 
described by this equation guarantees no net force on the vortex and its connecting cut. 
In the mapped plane the limiting process indicated in (4) produce the so-called Routh 
correction (e.g. Clements 1973). 

For convenience we choose to solve the problem in the mapped plane. Once we have 
performed the change of variables, substituted for the complex potential and carried 
out the limits required in (4), we obtain 

with the initial conditions 

where r, is given by (3). Note that because of Brown & Michael's correction the 
equations are coupled not just through the position of all the vortices but also through 
their velocities. 

The final element necessary for a correct implementation of this model is a vortex 
shedding mechanism. If we envision the separation process in terms of a vortex sheet 
then the instantaneous circulation necessary to keep the flow regular at the tip of the 
plate is associated with an infinitesimal segment of the sheet which is then shed into the 
fluid. The circulation is consequently distributed along the singular line and the sheet 
rolls up around the points of highest absolute circulation per unit length and it 
stretches most where the circulation per unit length is lowest. As the process continues, 
we observe that a large amount of circulation concentrates in the core of the spirals 
which are connected with each other by filaments of almost negligible circulation. This 
process can be reflected in our model by replacing each spiral with a point vortex of 
fixed circulation, except for the spiral connected to the separation point which is 
replaced by a point vortex with time-dependent circulation. This latter vortex will 
continue to be fed circulation until the rate of change of circulation becomes zero 
because we conjecture that this is the part of the sheet that will be stretched most. 

Let us consider the problem of shedding a new vortex when N -  1 other vortices are 
already present in the flow. If t ,  is the shedding time then it is crucial to analyse the 
transition from t; to t:. Up to the time t; vortex 1 has variable strength such that 
the Kutta condition is satisfied. At time t = ts this vortex has its strength frozen and 
all the vortices are renumbered. Finally at t: a new vortex 1 is introduced into the 
flow to remove the square-root singularity. If we restrict our simulation to the case 
where the shed vortices have alternate sign, then we can model the vortex shedding 
making the assumption that the time ? = t, is determined by the condition: 

Cl:l(ts) = 0, Cr(ts)  = Q, (I = 2, ..-> N ) ,  (7a, b) 
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assuming d2r,/dt21,=,s =I= 0. Any other choice for the shedding time implies the 
arbitrary production of two sequential vortices of the same sign or the existence of a 
vortex of strength that decreases in time. The latter situation is physically unacceptable. 
This procedure has been proposed by Graham (1980) to simulate the flow induced by 
an oscillating diamond-shaped cylinder. 

The quality of the simulation with many vortices depends in large part on the 
shedding mechanism. Let us assume that between two zero crossings dT,/dt is positive 
and has two peaks, then it is not clear whether one or two vortices should be shed 
during this period. It seems that the deepness of the trough separating the peaks would 
be an important parameter. If it is very deep it seems reasonable to have two vortices, 
otherwise just one. Although the shedding mechanism can be implemented for all 
cases, to avoid any ambiguity we restrict ourselves to cases where the rate of circulation 
production has only one local maximum or minimum between consecutive zero 
crossings or, equivalently, where d2r1/dt2 does not change sign between crossings. 

3. Active circulation control 

The authors have shown (Cortelezzi & Leonard 1993) how the motion of the plate 
can modify the flow, in particular how it can affect the rate of circulation production. 
In the same work we derived the approximate solution of the equations of motion (6) 

which suggested that there may exist a particular up(t) that inhibits the production of 
circulation. Now it seems legitimate to ask whether once the starting vortex has been 
shed, i.e. t >, t,, is it possible to move the plate in such a way that the Kutta condition 
remains satisfied without requiring a new vortex? 

First let us recall the equations of motion in polar form for the starting vortex: 

dp, - Usin0, p1 dU U , C O S ~ ~ ,  

dt 12p: 3U dt 3p, ’ (9 4 ~ - 

do, Ucos 20, up  sin 28, 

dt 8p~cos0, 2p; ’ 
~ + - - 

with the initial conditions : 

p m  = 0, = 4. 

Note that the initial condition for 0,, i.e. the vortex departure angle, depends on the 
free-stream and plate velocities (see Cortelezzi & Leonard 1993). Now if we assume, 
as we have before, that a reasonable criterion for vortex shedding is when the rate of 
circulation production goes to zero, i.e. t = t,, then it is important to analyse the 
expression for dr,/dt. The Kutta condition in polar form can be easily derived by the 
general expression for r,, (3): 

r l = n -  u. 
cos 8, 

Taking the time derivative of (1 1) and using the equations of motion (9), we can write 
the rate of circulation production in terms of U, dU/dt and up as follows: 

(8 cos2 8, - 3) sin 8, 2p1 d U 
+----up 

4 cos2 8, - 3 

dt 3 cos O1 8p; cos2 8, u dt P1 

It is interesting to observe that the plate velocity cannot affect the rate of circulation 
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production if the angular position of the vortex is kin.  A more detailed analysis of this 
expression is presented in $6. Equating (12) to zero and solving for up we have 

Hence for this choice of up the rate of circulation production is zero. At this point then 
we have a technique to discontinue feeding the starting vortex and .to create a new 
vortex as long as 8, + &:n. 

Let us assume for the moment that as long as one vortex of fixed circulation is 
present in the flow it is possible to move the plate in such a way that the Kutta 
condition is satisfied for all time. Then, from (4) this vortex of fixed strength r, moves 
in accordance with the following equations : 

dp, _ Usin8, Tlssin0, u,cos28, 

do, - Ucos8, rlS +upsin28, 

(144 

(14b) 

- 
dt 4p: 16np~cos8, 2p, ' 

dt 4pf 8np; 2p: ' 

with the initial conditions : 
Pl(t,) = Pl,' @,(ts> = 8lS, 

where p,,, 8, and rlS = np,, U,/cos OlS are the values at the shedding time. From the 
Kutta condidon or the requirement that the complex velocity be zero at the origin, we 
obtain the relationship 

(16) 
rlS cos 8, u = 0. _ _ ~ -  

n P1 

If this constraint on the trajectory of the vortex is satisfied for all time after the 
shedding time, t,, then the Kutta condition is satisfied. We must now impose this 
constraint on the equations of motion (14). To do so we take the time derivative of (16) 
and we use the equations of motion (14) to rewrite the trajectory constraint in terms 
of U,  dU/dt and up. Then solving for up we obtain 

2n2p; U 2  sin 28, + np, u r , p  cos2 8, - 1) sin 8, - cs sin 28, 

8np:(7tp1 Ucos 28, - rl8 sin 28, sin 8,) cos O1 u p  = [ 
d U  

+ npl U cos 28, 2 n d  - rlS sin 28, sin 8, -1. dt (17) 

This then is the speed that the plate has to assume, for t > t,, to take advantage of the 
presence of the starting vortex now with constant circulation and keep the Kutta 
condition satisfied without forming a new vortex. The compatibility of the two parts 
of the argument can be verified by taking the limit of (17) for t + t, and recovering the 
plate velocity (13). Substituting the plate velocity (17) in the equation of motion (14) 
we obtain 

dp, (rlS cos 8, - 2np, u) rlS sin 8, cos 8, - 8n2p:(dU/dt) cos 28, 
' (184  - 

dt 8 ~ p ; ( T ; ~  sin 28, sin 8, - npl U cos 28,) 

do 

dt 

cos - 2zp, U )  Ucos 8, - 8np:(dU/dt) sin 28, 
1 -  -- 

8p:(Tls sin 28, sin 8, - npl Ucos 28,) 
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These are the equations of motion of the vortex in the controlled case. The trajectory 
of the vortex is affected by the displacement of the plate which keeps the Kutta 
condition satisfied. 

Since the above equations implicitly satisfy the constraint (16), we can use such a 
relationship to decouple the equations of motion. After the simplification, ( 18) reduces 
to 

u4+-- sini8, dJ, 

with the initial condition 

where the radial position is 

and the plate velocity (17) reduces to 

Analysing the denominator of (22) we can see that, in general, d0,/dt and up become 
singular for 

The constraint on U means that it is not possible to reverse the direction of the free 
stream and at the same time maintain the Kutta condition without further production 
of circulation. In other words, when U = 0 the plate prefers not to have a vortex in the 
flow because the singularity caused by the vortex cannot be balanced, hence the plate 
has infinite velocity, leaving the vortex behind. When 8, = k i n  the vortex touches the 
wall of the plate, and to avoid this situation the plate has to have an infinite speed. 
Finally, when 8, = the flow is uncontrollable because, in this case, the motion of 
the plate does not affect the rate of circulation production. Consequently, the physical 
plane is divided in three sectors of angle gz each and the vortex cannot move from one 
to another without having the plate having infinite velocity. 

The question asked at the beginning of this section has, hence, a positive answer. We 
derived the closed-form solution for the nonlinear controller that inhibits the 
production of circulation, for any given free-stream condition of definite sign, when the 
starting vortex is present in the flow. The controller predicts the plate velocity if, at any 
time, the free-stream velocity and acceleration and the vortex circulation and position 
are known. The present system might be classified as MISO, i.e. multiple-input single- 
output system. The problem of determining the position and the circulation of the 
vortex from the velocity distribution near the plate will be addressed in $6. 

u = 0, 8, = +in, kin. (23) 

4. Dynamical behaviour of the controlled system 

In the previous section we have been able to find a controller that inhibits the 
production of circulation when a vortex is present in the flow. Now, we are interested 
to know if it is possible to control the system for infinite time and, if so, how this might 
be done. If this is not possible, then we would like to understand how to optimize the 
performance of the controller. Hence, this section is devoted to the analysis of the 
dynamical behaviour of the controlled system. 

We start by determining the fixed points of the unperturbed and uncontrolled 
system. The set of equations describing this case can be obtained by imposing U(t)  = Us 
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and u,(t) = up,. on (14). It is easy to prove that there does not exist any pair @,, 8,) 
such that the right-hand sides of (14) are simultaneously zero. Physically this means 
that, given fixed free-stream and plate velocities, it is not possible to find a vortex of 
the necessary strength that at the same time does not move and satisfies the Kutta 
condition. 

The lack of fixed points for the unperturbed system makes the search for periodic 
orbits of the perturbed one much more complicated. It also suggests the possibility of 
the total lack of such orbits. Note that the existence or lack of such orbits gives basic 
information about the possible performance of the controlled system. If a stable 
periodic orbit exists and if at the shedding time the vortex is located on the orbit then 
it will move on the orbit forever and consequently the system will be controllable for 
infinite time. On the other hand, if such orbits do not exist then it will be impossible 
to ‘trap’ the vortex and the control will eventually be lost. Because of the lack of fixed 
points the best way to conduct the search for periodic orbits is by investigating the 
global structure of the flow field. 

The form of the equations of motion can be crucial for the analysis of the dynamics 
of the system. The equations for the perturbed and controlled case (18) can be 
simplified by the use of the trajectory constraint (16). The result of such simplification 
(19) is numerically very useful because it reduces the computation time and improves 
the accuracy but does not aid in the analysis. The right-hand side of (19) is singular, 
which violates the Lipschitz-continuity required to apply averaging methods. Also the 
use of the singular perturbation theory is very difficult in the case of periodic forcing, 
the one of interest, because at each cycle we have to match inner and outer solutions. 
A better way to use the trajectory constraint is to eliminate r18 from (18). Substituting 
and simplifying we obtain 

U 2  sin 8, + 8p: - cos 28, , 
dt 8p: U(4 cos2 O1 - 3 )  dU dt 1 dP1 - 

U 2  cos 8, + 8p: - sin 28, . 
d U  dt 1 dB1 - 

dt 8pi U(4 C O S ~  8, - 3 )  

Note that we recover the same singularities as defined by (23), but the right-hand sides 
present an interesting symmetry. Such a symmetry suggests the use of a Liapunov-type 
stability argument (e.g. Wiggins 1990) to determine the global behaviour of the system. 
In other words, we attempt to determine a function V(p,,O,) such that its total 
derivative with respect to time has a definite sign for all pairs (pl, 8,). If such a function 
exists its level sets should provide global information about the evolution of the system. 
We limit the free-stream velocity so that it will not change sign because of the above 
singularity in U, and if we assume for the moment that el E [0, $1 or 8, E [ -in, 01 
depending upon whether U is positive or negative, then the free-stream acceleration is 
the only quantity that can change sign without constraint. Hence, the total derivative 
of I/ with respect to time should not contain the term dU/dt. Helped by the symmetry 
of the equations we are able to find such a function: 

V =  p:sin28,-A, (25) 

which for AE[O, a) describes a family of hyperbolas which covers the entire first 
quadrant, i.e. Vl?E[O,$]. Taking the total derivative with respect to time we obtain 

dV aVdp aVd0 Ucos0, 

dt ap, dt 38, dt 4p, 
U(t) > 0, vt > t,=+-- = -1+-----1= - > 0, V t  > t,. (26) 
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The converse is also true. Strictly speaking the function Vcannot be called a Liapunov 
function because it does not have a definite sign (e.g. Wiggins 1990). 

We assume from now on that U(t)  > 0 for all t > t,. To interpret the above result let 
us assume that a t  time t = t, the position of the vortex is identified by the pair b,,, 8,); 
then the hyperbola that passes through this point is V = p: sin 28, -& sin 20,*. Now 
(26) proves that the vortex moves away from this curve to another with a higher value 
of A and so on, i.e. the vortex drifts irreversibly away from the origin in this sense. This 
result gains greater physical meaning if we map the function V onto the physical plane. 
Writing (25) in complex form and using the map (1) we obtain: 

V = iRe(z)-A. (27) 

For A E[O, co) this function describes a family of straight vertical lines, parallel to 
the plate, which cover the entire right half-plane, i.e. Vx 2 0. Note that for A = 0 the 
function V coincides with the imaginary axis. Finally, we can conclude that 
the relationship (26) excludes the existence of any periodic orbit and consequently the 
controller cannot trap the vortex so that it remains near the plate, it may only slow 
down the drifting motion. 

We can gain further insight into the behaviour of the controlled system by changing 
variables and describing the motion of the vortex in terms of a new pair ( A ,  8,) where 
8, is the original angular variable and A is defined as 

(28) A = ,o: sin 20,. 

Under this transformation the equations of motion (24) take the following form: 

dA - U(sin 8, cos3 8,); 

dt 2(2A)i 
- - 

7 

(sin 0, C O S ~  0 , ) ~ + ~ -  4(2A3)idU] U dt ' (29 b) 
d*l U sin 20, 

dt 
- 

4 ( 2 ~ ~ ) +  (4 cos2 8, - 3) 

Note how (29 a )  basically restates the previous result (see (26)). Performing the same 
operation on (17) we obtain the following expression for the plate velocity: 

cos2 8, - 3) (sin5 0,); 4(2A3)idU 
u =  U "* (C0SOl)t +--I U 2  dt . (30) ' 2 ( 2 ~ ) t  (4 cos2 U, - 3) sin 20, 

We now wish to understand how the singularity at 8, = in affects the evolution of the 
controlled system. The second term between square brackets in (29b) and (30) is 
common to both expressions. If we set 

4(2A3)i dU 
p=-- 

U 2  d t '  

then P has the same sign as dU/dt. Using this term as parameter we can plot dU,/dt 
and u p  versus 0, (see figures 2 and 3). The presence of the singularity is clearly shown 
in both plots by the vertical line at 0, = in which divides the domain (0, in) in two parts. 
The plate velocity becomes infinite as the vortex approaches the values 8, = O,in,in, 
and consequently the motion of the vortex is confined in the sub-domains (0,;n) or 
(i, in) depending on the initial conditions. Note how the behaviour of the singularity 
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FIGURE 2. Qualitative behaviour of d@,,/dt with respect to 8,. 

1.5 

1 .o 

0.5 

-0.5 

-1 .o 

-1.5 
0 d12 6 6  d4 nI3 5rd12 d2 

4 

FIGURE 3. Qualitative behaviour of the plate velocity up with respect to 0,. 

depends on the sign and magnitude of P: for P > 0 the vortex is attracted by 0, = ~ T C  

while for P < 0 it approaches or drifts away from the singularity depending on the 
initial condition and on the value of P. Figure 4 presents a phase portrait which 
summarizes such behaviour. 

To understand better how the system evolves let us consider the vortex trajectories 
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in some simple case. We obtain the equation for the vortex trajectory by taking the 
ratio of the equations of motion (24), 

-0.6 

-0.8 

1 U 2  sin 8, + 8p:(dU/dt) cos 28, 

U 2  cos 8, + 8p:(dU/dt) sin 28, ’ 

- 4 * 

-I w 

1 I 

with initial condition P@l) = P1; (33) 

This equation, in general, cannot be solved in closed form. However, for the particular 
choice 

1 dU 

U 2  dt 
- B, (34) 

where B is a constant, an exact solution exists and the vortex trajectories are given in 
implicit form by the following expression : 

(35) 
4Bp: sin 28, - cos 8, 4B& sin 201S - cos OIS 

- - 

P1 PIS 

Let us analyse the following scenarios: 

(i) B = O=>dU/dt = 0 

in figure 5,  are described by the expression 
In this case the free-stream velocity is constant and the vortex trajectories, plotted 

cos 8, 
P1 = P1, q 2 V t  > t,. 

S 

Note that all the trajectories, independently of the initial condition, end up at 8, = fn. 
This is consequence of the fact that P = 0 and hence the singular ray 8 = in behaves 
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FIGURE 5 .  Vortex trajectories (U( t )  = const.). 
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FIGURE 6. Vortex trajectories (dU/dt = U2). 

as an attractor (see figure 4). As the vortex moves along one of these trajectories the 
plate picks up speed, which tends to infinity as the vortex approaches the singularity 
(see figure 3). 
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FIGURE 7. Vortex trajectories (dU/dt = - U 2 ) .  

(ii) B > 0 * dU/dt > 0 

In this case the free-stream velocity increases monotonically and has the form 

Us U(t) = 
1 - BU,(t - t,) ’ (37) 

Figure 6 shows the vortex trajectories (35) for this case. As in the previous case all the 
curves, independently of the initial condition, end up at 8, = in. The singularity 
behaves, again, as an attractor because P > 0 (see figure 4), but its strength is greater 
than before (see figure 2), explaining why the trajectories approach the singularity more 
directly. The plate velocity has the same trend as before but its magnitude is larger (see 
figure 3). 

(iii) B < 0 =- dU/dt < 0 

In this case the free-stream velocity decreases monotonically and has the form 

VB < 0, V t  > t,. us U(t) = 
1 - BU,(t - t,) ’ 

The trajectories (35) are plotted in figure 7. The complexity of the pattern is because 
the singularity at O1 = in behaves as an attractor or as a repulsor depending on the 
vortex position and on the value of P .  The dashed curve in figure 7 is the solution of 
the following equation : 

(39) 

which determines when dOJdt changes sign (see (29)). When the vortex moves within 
the area defined by the imaginary axis and the dashed line its angular position is 
attracted by the singularity. Outside this region the singularity switches behaviour and 
the vortex drifts away from the dashed line 8, = in. Note there are trajectories that 

(sin el C O S ~  0,); + P = 0, 
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cross the dashed curve. In these cases the attractor is not strong enough to keep the 
vortex inside the region. Thus when it crosses the dashed curve the singularity starts 
to repel the vortex, which moves irreversibly away. 

(iv) d U/dr = sin (or + 4) 
This is a case of simple periodic forcing : an exact solution is not available but in each 

period we satisfy the condition of one or other of the previous two cases. Note that the 
upper bound on the acceleration amplitude is given by the free-stream magnitude 
which we restrict not to go to zero nor change sign. In this case a comprehensive 
quantitative analysis is possible using the Poincare map. As an alternative to this 
computationally intensive technique the evolution of the system will be described 
qualitatively. The parameter P swings from positive to negative values in accord with 
the free-stream acceleration and consequently the singularity acts as an attractor or as 
a repulsor in agreement with it (see figure 4). It is important to observe that over an 
entire period the singularity behaves as an attractor for more than half a period, hence 
we speculate that the vortex drifts downstream, fatally attracted by it. Figures 2 and 
3 suggest that the evolution of the system is largely affected by the initial condition and 
that an escape to infinity is still possible but unlikely. 

From the above analysis it follows that the performance of the controller can be 
greatly improved by an appropriate choice of the initial condition. Since the vortex 
eventually ends up on the border of the controllability region, i.e. on 1 9 ~  = in, then the 
best initial condition is the one that forces the time necessary to reach the singularity 
to be as large as possible. This time can be formally expressed as 

Then, it would seem that ttot can be made larger by choosing the initial condition so 
that the integrand is singular at t = t,. It follows that the best 8, is the one for which 

and consequently 

Note that (42) has a solution only if -(27)+/4 < P < 0, i.e. when the free stream 
decelerates. In the case of uncontrolled periodic forcing it is possible to prove that the 
first vortex is cut away when dU/dt < 0 (see Cortelezzi 1993), hence the optimal BI8 
might be determined. 

(sin olS C O S ~  o,,P + p(t,) = 0. (42) 

5 .  Results 

In Cortelezzi & Leonard (1993) we presented a simulation where the free stream at 
time zero suddenly rose and then oscillated about a non-zero mean. We chose such a 
free-stream variation because it closely resembles that associated with the flow past a 
plate that is put into flow-induced vibrational motion. In that case we did not move the 
plate transversely and a sequence of vortices was produced. We now use the same free- 
stream oscillations but move the plate to inhibit the production of circulation. We 
present two cases, one in which the motion of the vortex is confined in the third sector 
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FIGURE 8. Free-stream and plate velocities. 
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FIGURE 9. Rate of circulation production. 

and another where the vortex stays within the second. As we have noticed previously 
the formulation (19)-(22) is the most convenient for a numerical integration. 

We start active circulation control when the vortex is in the third sector because in 
the uncontrolled case (see Cortelezzi & Leonard 1993) the first vortex is naturally 
shed in this region. Figures 8-12 illustrate the growth of the starting vortex and the 
evolution of the controlled system. The velocity of the plate up to the shedding time 
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FIGURE 10. Starting vortex trajectory. 
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FIGURE 1 1 .  Velocity signature on the walls of the plate when up is subtracted out. 

has been chosen to provide a reasonable distance between the vortex location and the 
sector divider. Figure 9 shows that up to time t, M 0.32 the starting vortex grows in 
circulation. When the rate of circulation production goes to zero the strength of the 
vortex is frozen, triggering active control for the rest of the simulation (trznal M 6.75). 
From figures 8 and 10 we can see that as the vortex is convected farther downstream 
the plate velocity must increase to maintain control. Also, as the trajectory becomes 
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FIGURE 12. Shedding control: (a) t = 1.79, (b)  t = 3.17, (c) t = 4.59, (d)  t = 6.25 

closer to the sector divider the speed of the plate becomes larger making the situation 
progressively more critical with a complete loss of control for t > t f inaL. Figure 12(u-d) 
shows the instantaneous streamlines during the controlled period, giving insight into 
the behaviour of the flow near the tip of the plate. 

An example of active shedding control within the second sector is given by figures 
13-17. The free-stream velocity is the same as before and the plate velocity up to the 
shedding time is basically the same but with opposite sign to provide the necessary 
initial condition. In this case the circulation of the starting vortex becomes constant at 
time t ,  z 0.35, see figure 14. Figures 13 and 15 show that as soon as the controller takes 
over it imposes large oscillations on the plate motion, but the amplitude grows only 
slowly in time. Roughly speaking the plate moves as close to or as far away from the 
vortex as is necessary to maintain the Kutta condition. Figure 17(a-d) shows the 
instantaneous streamlines during the controlled period. 

The different behaviour of the controller in the two cases is a direct consequence of 
the position and strength of the vortex at the shedding time. In the first case (vortex 
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FIGURE 13. Free-stream and plate velocities. 
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FIGURE 14. Rate of circulation production. 

in the third sector) the plate at the beginning is moving into the flow and a strong 
vortex is trapped in the recirculating bubble near to the leading edge. Initially, slight 
movements of the plate are enough to satisfy the Kutta condition, then as the vortex 
drifts downstream larger oscillations are required. Of great help in this case is the fluid 
flowing around the edge which ‘keeps’ the vortex away from the attractor and the 
vortex strength which maintains smooth flow even if the vortex is quite far downstream. 
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FIGURE 16. Velocity signature on the walls of the plate when up is subtracted out. 

In the second case (vortex in the second sector) these factors become handicaps, the 
vortex is convected toward the sector divider and its strength is almost haIf that of the 
previous case, reducing the controllability of the system. The strength of the vortex is 
the result of the compromise between having a strong vortex too close to the singularity 
and a weak one too far away from the tip of the plate. The controller is left with a very 
delicate task and its performance is not as good as in the first case. 
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FIGURE 17. Shedding control: (a) t = 0.41, (b) t = 0.91, ( c )  t = 1.26, ( d )  t = 1.75. 

6. Vortex detection 

In 93 we derived the closed-form solution for the nonlinear controller for the 
transverse velocity of the plate that inhibits the production of circulation, for any given 
free-stream condition of definite sign, when the starting vortex is present in the flow. 
The controller requires, at all time, the free-stream velocity and acceleration and the 
vortex circulation and position. In a more general situation, where, for example, the 
controller might be used to control the flow simulated by another technique, it may not 
be possible or desirable to determine the above information directly but it may be 
necessary to deduce it from the flow field. The free-stream velocity does not represent 
a problem because it is known or is easily measurable, but the vortex parameters are 
not trivial to obtain. In this section we provide a procedure to identify the location and 
the strength of the vortex, knowing the velocity field near the tip of the plate. We show 
also that this provides a physical explanation for the controllability regions. 

Figures 11 and 16 show that the presence of the vortex produces a well-defined 
velocity signature on the walls of the plate (above the boundary layer). Within our 
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model the velocity field in the physical plane is obtained by multiplying the velocity 
field in the mapped plane (2) by the Jacobian of the mapping, i.e. by dc/dz. Then, the 
mapping could be used to determine the velocity field in terms of physical coordinates. 
However, because this transformation generates a complicated expression for the wall 
velocity, we choose to work with the physical velocity written in terms of the mapped 
coordinates 6 = [ + i y .  The plate walls in the mapped plane are along the real axis 
T,I = 0, and the velocity on this axis is given by 

The velocity at the separation point is obtained by setting 6 = 0. We note that there is 
a stagnation point at 6 = 25, when the plate is stationary, while two stagnation points 
are identifiable if the plate velocity satisfies the following inequality : 

When the plate velocity is outside these bounds there are no stagnation points, i.e. the 
zero streamline leaves the tip of the plate and extends to infinity (e.g. see figure 17u-d). 
To characterize the velocity signature in terms of the vortex location, we compute the 
derivative of the wall velocity along the [-axis. We find that the wall velocity has two 
extrema : 

where the subscripts I and r indicate left and right. Note that the locations of the 
extrema do not depend directly on the free-stream velocity nor on the velocity of the 
plate but exclusively on the position of the vortex. The magnitudes of the wall velocity 
at these points are 

Let us restrict our discussion to the case when U(t) > 0 for all t > 0, then, from the 
results presented in the previous sections, it follows that tl(t) > 0 for all t > 0. In this 
case it is easy to see that ul is a maximum while u, is a minimum. The minimum is 
always located on the back face of the plate because 5, is always positive. It is easy 

to show that the maximum is located on the front face of the plate if v1 < 4 3 ,  
while it moves on the back face of the plate otherwise. Recalling that 6 = p sin 6 and 
11 = pcos H (see figure 1) it follows that the maximum can be found on the front face of 
the plate if 1 9 ~  < &IT, while is located on the back face otherwise. When 8, = fn the 
maximum velocity is at the separation point, i.e. at the tip of the plate. The argument 
can be easily reversed to obtain the results when U(t) < 0. Figures 11 and 16 show that 
as the vortex moves within a sector the location and the magnitude of the extrema 
change but the structure of the velocity signature remains the same. Consequently, the 
lines B = +in  gain further importance: the fluid domain is divided in three sectors not 
only because of controllability reasons, but also because the structure of the flow field 
depends upon the sector in which the vortex is located. The fact that the flow becomes 
uncontrollable when the location of the maximum wall velocity coincides with the 
separation point suggests that knowledge of the velocity field near the tip of the plate 
might provide insight into the controllability of the system. 

If we consider (45) and (46) we can see that it is possible to extract information about 
the position of the vortex when the location and magnitude of one of the extrema is 
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measurable. On the other hand, knowledge of the wall velocity around the tip of the 
plate is already important for controllability reasons, consequently it might be more 
reasonable to predict the position and circulation of the vortex from the wall velocity 
and its derivative at the tip of the plate. Another advantage of this choice is that these 
quantities are simpler to measure. Using the expression for the wall velocity (43) and 
computing its derivative with respect to 5 and then evaluating both expressions at the 
origin we obtain the following equations: 

where uo is the fluid velocity at the tip of the plate with the plate velocity subtracted 
out, i.e. ug = utip + up,  while MI, is the spatial derivative of the velocity ‘around’ the tip 
of the plate. To compute this derivative we must measure the fluid velocity on the walls 
of the plate at distance :Ay from its tip. Then, the measured velocities would be 
associated with the two corresponding points of the <-plane which lie on the &axis 
symmetrically with respect to the origin. If we call A[ the distance between these two 
points, then this quantity is related to Ay through the mapping (1). Consequently, the 
derivative ‘around’ the tip of the plate can be defined as 

Solving the set of equations (47) we obtain 

where = t1 + iq, is the predicted position of the vortex. The final step is to estimate 
the circulation of the vortex. To be consistent with our model the vortex has to satisfy 
the Kutta condition, hence using the estimate location of the vortex and (3)  we obtain 

7c U 2  r, = 
(3u;-2Uu;)t 

Finally, the predicted position and circulation of the vortex can be fed back to the 
controller, i.e. we can compute the plate velocity using (22). It is actually possible to 
save one step in the feedback process by rewriting the controller in terms of u, and ui. 
Substituting (49) and (50) in (22) we obtain 

u0(2ut - U U ~ )  ( 6 4  - 5 U U ~ )  

4 U ( 3 4  - 2 uu;y 

d U  +-I. d t  u =-- 
P 

This expression is equivalent to (22) - the plate velocity goes to infinity when MI, goes 
to zero, i.e. when the vortex approaches the lines 0 = kin. We want to underline that 
(49)-(51) are well defined and no extra singularities have been introduced by the above 
derivation. It is easy to show, using (47), that 2 4 -  Uuh 2 0 and 3ut-2Uu; 2 0, b’U, 
V&, ql. Equation (51), therefore, also reflects the other two singularities discussed at the 
end of 93, i.e. the plate velocity has to become infinite when U goes to zero or when 
the vortex approaches the walls of the plate. 

Let us conclude this section by rewriting the rate of circulation production (12) in 
terms of u, and uh. We obtain 
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FIGURE 18. Velocity signature on the walls of the plate. 
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FIGURE 19. Instantaneous streamlines. 

This expression and (12) are, of course, equivalent but deeper insight into the flow is 
obtained only from the simultaneous analysis of these two expressions. The first term 
in square brackets is the contribution to the rate of circulation production due to the 
free-stream velocity. This term is, in general, non-zero even if the free-stream 
acceleration is zero and the plate is stationary. However, there are two exceptions: the 
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term vanishes when uo = 0 e sin 13, = 0 or when 6 4  - 5 Uuh = 0 o 8 cos2 8, - 3 = 0. 
The first relationship identifies a particular flow structure, the one where the vortex lies 
on the positive imaginary axis, see figure 19. The flow in this case is symmetric with 
respect to the plate and the wall velocity vanishes at the origin; consequently the tip of 
the plate becomes a stagnation point, see figures 18 and 19. The second relationship 
identifies two lines, 8 = f 0 . 2 9 ~ .  When the vortex moves across one of these lines the 
contribution to the rate of circulation production due to the free-stream velocity 
changes sign. One should not be misled by this term. Even assuming that dU/dt = 0 
and up = 0, the vortex cannot move on one of these lines and at the same time satisfy 
the Kutta condition without requiring further production of circulation, see (1 1). 
Furthermore, it cannot stay on one of these lines because of the proven lack of a fixed 
point for this flow, see 34. 

The second term between square brackets in (12) and (52) is the contribution to the 
rate of circulation production due to the free-stream acceleration. Note the strong 
correlation between these two quantities : circulation must be produced if the free- 
stream velocity is unsteady. Consequently, dU/dt is a powerful and robust means of 
controlling the injection of circulation in the flow, although not necessarily easy or 
convenient to use. For example, if the goal is to control the vortical structures on top 
of a delta wing it is probably unrealistic to think of changing the velocity of the aircraft 
to achieve the result. 

Finally, the third term between square brackets in (12) and (52) is the contribution 
to the rate of circulation production due to the motion of the plate. As we can see, it 
is possible to use the transverse motion of the plate to control the production of 
circulation only if there is a non-zero gradient in the velocity field at the tip of the plate. 
As the magnitude of the gradient decreases, increasingly higher plate velocities are 
necessary to achieve control, and the control is totally lost when the gradient vanishes, 
i.e. when the vortex reaches I9 = +in. The wall velocity for this limiting case yields a 
cusp-like maximum at the tip of the plate, see figure 20. Figure 21 shows the associated 
instantaneous streamlines. It is interesting to observe that when 8, E (0, in) the zero 
streamline, the one leaving the tip of the plate, at first bends upstream while, when 
8, E (in, :IT) it turns immediately downstream. The case O1 = k i n  constitutes, hence, the 
borderline between these two situations. This observation suggests that the control is 
lost when the velocity field around the tip of the plate becomes uniform. To check this 
hypothesis we expand the complex velocity field about the tip of the plate: 

The leading order is the fluid velocity at the separation point. The first order shows that 
the velocity field around the tip of the plate in general depends linearly on 5. Such a 
dependency is lost when 7, = & &  2/3, i.e. when 8, = &in, and the flow becomes 
uniform around the tip of the plate. A physical interpretation of the control mechanism 
is the following: if there is a velocity gradient around the separation point then the 
motion of the plate changes the flow balance between the two sides of its tip, affecting 
the production of circulation as necessary to control the flow. On the other hand, when 
the vortex reaches one of the lines 8 = k i n  the velocity field is locally uniform around 
the tip of the plate and parallel to the plate, consequently a displacement of the plate 
cannot modify the velocity field around the separation point and ultimately cannot 
affect the production of circulation. 
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FIGURE 20. Velocity signature on the walls of the plate. 
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FIGURE 21. Instantaneous streamlines. 

7. Conclusions 

A point-vortex model has been used to simulate the unsteady separated flow past a 
semi-infinite plate with transverse motion. Within this model we derived a control 
strategy that inhibits the production of additional circulation when a vortex is present 
in the flow. Because of the simplicity of the model we obtained the analytical closed- 



Active circulation control of unsteady separatedflow 153 

form solution of the controller for any time-dependent free-stream velocity of definite 
sign. The mathematical derivation of the controller showed that the fluid domain is 

divided into three controllability regions. The performance of the controller within 
each region was then characterized with a dynamical systems type of analysis. Using 
a Liapunov type of argument we proved that the vortex moves irreversibly downstream 
regardless of the control strategy, i.e. the motion of the plate cannot reverse the 
trajectory of the vortex. Furthermore, for an oscillatory free stream the analysis of the 
phase space showed that the vortex is attracted, on average, by the lines 8 = kin.  
These lines, in the frame of reference fixed with the plate, separate the controllability 
regions. When the vortex reaches one of these lines the flow becomes uncontrollable 
because the motion of the plate cannot affect the rate of circulation production. As a 
consequence of this result the time over which the system is controllable is finite but 
it can be maximized by an intelligent choice of the shedding conditions. We successfully 
tested the controller and verified the predictions about its performance when the free- 
stream oscillates about a non-zero mean and showed that the motion of the plate, 
before the shedding time, can initiate the controlled system in two totally different 
controllable states. Finally, we presented a procedure to derive, from the velocity 
signature on the plate, some of the information necessary for feedback to the 
controller, i.e. the position and the circulation of the vortex. Such information may be 
deduced from the velocity at the walls near the tip of the plate. We showed that 
structure of the signature depends on the position of the vortex and we identified three 
sub-domains, which coincide with the controllability regions, within which the vortex 
generates the same kind of signature. Furthermore, we proved that the controller is 
able to modify the rate of circulation production because the motion of the plate 
changes the flow balance between the two sides of its tip. On the other hand, the control 
is lost when the vortex reaches the border of the controllability region because the 
velocity field near the tip of the plate becomes uniform. We conclude that there is a 
strong correlation between controllability and flow structure and a deep understanding 
of the fluid flow is required to explain the performance and limitations of the control 
strategy. 

The logical continuation of the present work would be to embed the derived 
controller into a more realistic CFD code which can, for example, integrate the full 
Navier-Stokes equation. The possibility of testing the controller in a numerical 
environment instead of a real experiment is of great utility. On one hand it permits the 
synchronization of the flow and the controller and on the other it produces information 
on how the controller performs with a flow model different from the one in which it 
was derived. Without the difficulties of controlling a laboratory experiment in real time 
attention can be focused on making the controller progressively more robust with 
respect to different types of perturbations (e.g. viscosity, three-dimensional, back- 
ground noise, etc.). Successful iterations of this process might open the possibilities for 
the active control of large-scale coherent vortical structures in an experiment. 
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